Time averaging for flows

\(\Phi^t \) is a \(C^0 \) flow on a space \(X \) with invariant ergodic measure \(\mu \). \(U^t \) is the Koopman group. \(A_T : L^2 \to L^2 : = (\mathcal{A}_T f)(x) = T^{-1} \int_{[0, t]} f(\Phi^x) dx \). \(H_T := \text{range}(A_T) \). \(V \) is the generator of \(U^t \).

The purpose of this write-up is to show that \(\text{range}(A_T) \subseteq \text{dom}(V) \). In other words, \(V \circ A_T \) is well defined on the entire space \(L^2(X, \mu) \).

\(L \) is the limiting operator \(\lim_{t \to 0} A_t \), \(\text{Dom}(L) \) is the subset of \(L^2(X, \mu) \) on which \(L \) can be defined.

1. Time averaging operator is a Markov operator: \(A_T f \)

2. Time averaging commutes with Koopman: \(A_T U^t = U^t A_T, \forall t \in \mathbb{R} \)

3. Averaging preserves Koopman-invariant subspaces: Subspaces of \(L^2(X, \mu) \) which are invariant under \(U^t \) are also invariant under \(A_T \).

4. Difference operator formula: \(t^{-1}(U^t - Id)A_T f = T^{-1} A_t (U^t - Id) f \).

 Proof: Let \((\mathcal{A}_T f)(x) = \int_{[0, t]} f(\Phi^x) dx \) \(\in C \). Secondly, \(\int_{[0, t]} f(\Phi^x) dx \) \(\in L^2(\mathcal{A}_T f) \).

 Therefore, \(\| f \|_2 \leq \| \tilde{\mathcal{A}}_T f \|_2 \). Thus, \(\| f \|_2 = \| \mathcal{A}_T f \|_2 \).

 Thus, \(Lf \) is continuous at \(f = 0 \) as \(t \to 0 \).

5. Proof: \(\| f \|_2 \) is continuous at \(f = 0 \) as \(t \to 0 \).

 Therefore, \(\| f \|_2 \) is continuous at \(f = 0 \) as \(t \to 0 \).

 Thus, \(\| f \|_2 = \| \mathcal{A}_T f \|_2 \).

6. Let \(C := \{ f \in L^2(X, \mu) : t \mapsto \langle f, f \rangle \) is continuous at \(t = 0 \} \). Then \(C \subseteq \text{Dom}(L) \). Let \(f \in C \).

 Proof: \(f \in C \) such that \(\lim_{t \to 0} \| f \|_2 = \| f \|_2 \).

 Therefore, \(\| f \|_2 \) is continuous at \(t = 0 \).

7. It will now be shown that \(C = L^2(X, \mu) \) through a series of claims.

7.1 \(C \) is closed under \(U^t \).

 Proof: From the fact that \(U^t \) is a unitary group.

7.2 If \(\mu(X) < \infty \), then \(L^\infty(X) \subseteq C \). In particular, if \(X \) is compact, then \(C^0(X) \subseteq C \).

 Proof: \(f \in L^\infty(X) \) and \(M < \infty \) be the essential supremum of \(f \). Then \(\forall t \in \mathbb{R} \), \(\| U^t f \|_\infty = M \). Then by the dominated convergence theorem, \(t \mapsto \langle U^t f, f \rangle \) is continuous at \(t = 0 \) and therefore, \(f \in C \).

7.3 If \(\mu(X) < \infty \), then \(C = L^2(X, \mu) \).

 Proof: \(f \in L^2(X, \mu) \) and \(\epsilon > 0 \). WLOG, \(\| f \|_2 = 1 \). It will be shown that for \(t \) sufficiently small, \(\| U^t f, f \|_2 < \epsilon \).

 Firstly, \(\| U^t f, f \|_2 = \| f \|_2 \). Then \(\forall t \in \mathbb{R} \), \(\| f \|_2 = 1 \). Then by the dominated convergence theorem, \(t \mapsto \langle U^t f, f \rangle \) is continuous at \(t = 0 \) and therefore, \(f \in C \).

8. Therefore, if \(\mu(X) < \infty \), then \(V \circ A_T \) is defined on all of \(L^2(X, \mu) \).