
How to write an own WinZip
– from basic coding to Huffman codes –

Christiana Mavroyiakoumou & Georg Hahn

Imperial College London

Undergrad Colloquium, 14.03.2014

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 1 / 15

Overview

1 What is a code?

2 The Kraft inequality

3 The optimal code

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 1 / 15

What is a file?

A file is a sequence of 0s and 1s (called bits), e.g. 01010101010101...

Each block of 8 bits is turned into a symbol, hence there are 28 = 256

symbols, numbered off from 0 to 255

The alphabet used to convert a number 0− 255 into a symbol is called the

ASCII code (“American Standard Code for Information Interchange“)

Example: A file with “Hello” is converted into 8 bit ASCII as follows:

H = 072 = 01001000

e = 101 = 01100101

l = 108 = 01101100

o = 111 = 01101111

Hello = 01001000, 01100101, 01101100, 01101100, 01101111

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 1 / 15

Why should I care?

This talk gives a full introduction to how information is stored digitally

Main aim: efficient storage, also known as data compression

For this, need efficient codes, introduced on the next slide

After this talk, you will have all the tools needed to write an own

WinZip-like compression program (pretty cool...)

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 2 / 15

What is a code?

Collection of symbols...

a (finite or infinite) set of symbols A is called an alphabet

the set of words built from A by concatenation is A∗

Now, can define a code...

A code is a mapping C (X) : R → A∗, where X is a random variable, A is an

alphabet and R is the range of X

C works for one symbol at a time only!

Can extend to A∗ by C (x1 · · · xn) := C (x1) · · ·C (xn)

Example:

C (A) = 0, C (B) = 10, C (X) = 11

Then C (BAX) = 10011

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 3 / 15

What is a code?

Suppose each symbol in X occurs with a probability p(X = x)

Example: in a file of length 10 (bytes) with C (A) = 0, C (B) = 10,

C (X) = 11, A occurs 2 times, B occurs 5 times, X occurs 3 times

Then p(X = A) = 2/10, etc.

Expected length of the code C :

L(C) =
∑
x∈R

p(X = x)l(C (x))

Example: in the above, the code has an expected length of

L(C) = 0.2(1) + 0.5(2) + 0.3(2) = 1.8

This is the average bitlength of a symbol in the file:

⇒ it measures how much space the information takes up!

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 3 / 15

Want to decode as well!

Encoding is not sufficient! Need to be able to uniquely decode:

C non-singular if it is injective: xi 6= xj ⇒ C (xi) 6= C (xj)

C is uniquely decodable if its extension to A∗ is non-singular, that is, if every

codeword C (s) ∈ A∗ corresponds to just one string s = x1 · · · xn.

Codeword s is a prefix iff it is the beginning of a longer codeword

C is a prefix code (“prefix”) iff no codeword is the prefix of a longer

codeword

Two issues:

Every prefix code is also uniquely decodable!

Examples!!!

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 4 / 15

Example: Which code is “good”?

Over the alphabet A = {0, 1}, consider the following codes for the three symbols

{x , y , z} = R:

Symbol C1 C2 C3 C4

x 1 0 00 0

y 1 1 11 10

z 1 01 001 11

C1 is clearly singular

C2 is not uniquely decodable as 01 could be xy or z

C3 is an example of a uniquely decodable code (why? – George!)

C4 is prefix and therefore uniquely decodable!

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 5 / 15

Main message

Observation
The second example shows that prefix codes are a real subset of uniquely

decodable codes, i.e. there are more codes which are uniquely decodable than

there are prefix codes.

A surprising result will follow in the next section...

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 6 / 15

Overview

1 What is a code?

2 The Kraft inequality

3 The optimal code

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 6 / 15

Leon Kraft (Massachusetts Institute of Technology, MIT)

Leon Kraft (1949) discovered a powerful property of prefix codes (Kraft in

German means power – coincidence?)

Necessary condition for the existence of prefix codes

Shows how to construct prefix codes of given lengths

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 7 / 15

Leon Kraft (Massachusetts Institute of Technology, MIT)

Theorem (Kraft inequality)

Let C be a code over an alphabet A of size S = |A| consisting of n codewords

with lengths l1, . . . , ln. Then,

C is prefix⇒
n∑

i=1

S−li ≤ 1.

Conversely, for any n numbers l1, . . . , ln satisfying the Kraft inequality, there

exists a prefix code C = {c1, . . . , cn} having these lengths l(ci) = li .

The first statement is “just“ interesting. The converse of Kraft is crucial!

Proof: George

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 7 / 15

A picture

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 8 / 15

This is unexpected!

Surprisingly, exactly the same statement is true not only for prefix codes, but also

for the larger set of uniquely decodable codes. This was proved by McMillan in

1956.

Theorem (McMillan)

Any uniquely decodable code C over an alphabet of size S satisfies the Kraft

inequality, i.e.
∑n

i=1 S−li ≤ 1, where li are the codeword lengths.

Conversely, for any numbers l1, . . . , ln satisfying
∑n

i=1 S−li ≤ 1, there exists a

uniquely decodable code C = {c1, . . . , cn} with lengths l(ci) = li .

Proof: slightly more complicated than the one of the Kraft inequality and omitted

Important: McMillan’s code is not prefix, it’s just uniquely decodable.

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 9 / 15

A new picture

Both theorems together establish a surprising result:

C prefix⇒ C uniquely decodable

as well as

C ′ uniquely decodable with l1, . . . , ln
⇒

∑n
i=1 S−li ≤ 1 by McMillan

⇒ ∃prefix code C ′′ with same codeword lengths l1, . . . , ln by converse of Kraft

⇒ L(C ′) = L(C ′′)

Unexpected result

L(C ′) = L(C ′′) means that the set of prefix codes is as powerful for encoding as

the larger set of uniquely decodable codes.

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 10 / 15

Overview

1 What is a code?

2 The Kraft inequality

3 The optimal code

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 10 / 15

Preliminaries

What can be said for the optimal code?

Should be optimal with respect to minimal expected length: data

compression!

Application: computer, so will consider binary alphabet A = {0, 1}
Can visualise the codes in a tree!

Main insight

By McMillan and converse of Kraft can assume that the optimal code is prefix.

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 11 / 15

The optimal code

Theorem

Let C be an optimal code over a binary alphabet to encode symbols {b1, . . . , bn},
where symbol bi occurs with probability pi . Then the lengths li of the codewords

C = {c1, . . . , cn}, where ci ∈ {0, 1}∗, must satisfy the following properties.

1 If pr > ps for any r , s ∈ {1, . . . , n}, then lr ≤ ls .

2 The two longest codewords have equal length.

3 There is a pair of two longest codewords which are siblings in a tree

representation.

Proof: George

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 12 / 15

The Huffman code

The last theorem gives the theoretical justification for the following optimal

code for single character compression, called Huffman code.

Developed by David Huffman (MIT):

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 13 / 15

The Huffman code: Example on the board + programs!

Construction of the Huffman code

1 The two least likely symbols will have the longest code lengths by

property (1) and are siblings by (3), so they’re joined into a supernode

with added probability. This ensures that they will have equal length at

the end as required by (2).

2 This reduces the number of nodes by one, so repeat the first step until

only one node remains and the tree (called Huffman tree) is constructed.

3 Once the tree is constructed, label the two branches leaving every node

with the symbols 0 and 1 and read off the codewords by following the

paths from the root to the leaves. This is the Huffman code.

4 Replacing every symbol of the input by its Huffman code then yields a

message length which is equal or shorter than the original length when

compared in a joint alphabet. No special symbol for separating the codes

is needed as the Huffman code is a prefix code.

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 14 / 15

Can you do better?

Answer: Yes, a lot better

Idea: don’t compress single characters, compress substrings

Example: ABABAB does contain two characters with equal probability, but

the structure is clearly visible

Lempel-Ziv coding is optimal (in the limit) and cannot be beaten

Abraham Lempel Jacob Ziv

Christiana Mavroyiakoumou & Georg Hahn Undergrad Colloquium 15 / 15

	What is a code?
	The Kraft inequality
	The optimal code

