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Reflection of vortex rings at a water-air interface
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We experimentally investigate how vortex rings, generated and propagating within a
water tank, interact with the water-air interface. Near-perfect reflections of these vortex
rings occur when they approach the interface at a sufficiently large incident angle. To
understand this interaction, we employ a vortex-sheet-vortex-pair model in numerical sim-
ulations, which captures the essential dynamics. Additionally, a simplified model based on
the conservation of flux or momentum provides further insight into the mechanism behind
the vortex-ring reflection. Through combined approaches—experimentation, numerical
simulation, and detailed analysis—we gain a deeper understanding of how vortex rings
interact with free boundaries.

DOI: 10.1103/dg4m-hbts

I. INTRODUCTION

Since Helmholtz first introduced the equations for vortex rings in 1858 [1], related problems have
fascinated both mathematicians and physicists. Perhaps the most famous and immediate follower
was Lord Kelvin, who was introduced to Helmholtz’s work by his colleague Tait [2]. Amazed by
the experiments performed by Tait on smoke rings, Lord Kelvin proposed his theory of vortex atoms
[3] in which the idea of knotted vortices was introduced to explain the different structures between
atoms. Although this theory was eventually abandoned as an atomic theory by Lord Kelvin himself
[4] and his contemporaries, partly due to the discoveries in experimental atomic physics around
the turn of the 20th century, the original idea and its theoretical interest persist to this day. For
one, the topological concept of knots continues to attract attention across various fields, including
electromagnetism [5,6] and fluid dynamics [7–9]. Additionally, knot theory has also developed into
a key branch of modern topology [10–12]. Another line of research has focused on vortex dynamics,
particularly the circular vortex ring. In Lord Kelvin’s model, it represents the hydrogen atom as a
zero knot and also bears similar importance in fluids. The evidence for the importance of vortex
rings is ample. A vortex ring has been shown to serve as the building block of homogeneous
and isotropic turbulence [13]. Its interactions with other vortex rings are also believed to play an
important role in turbulence cascade [14], not to mention its ubiquity in flows observed in nature
[15–19]. More recently, vortex structures, often known as toroidal vortices, have been created and
detected in electromagnetic fields as well [20,21].

Northrup was one of the earliest researchers to continue the research on vortex dynamics [22,23].
He conducted a series of experiments in 1911 on vortex rings, covering a variety of phenomena
including the collision and merging of two rings, as well as the reflection and refraction of a single
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ring at the interface of two fluids. Although the results were mostly qualitative, he confidently stated
in his work: “The experiments which are about to be described would, if made earlier, have possibly
had a greater interest as bearing upon Lord Kelvin’s ingenious theory of the vortex atom” [22]. Since
then, many researchers have contributed in this direction, either on the dynamics of an isolated ring
[24–32], on the interactions between rings [33–37], or on the interaction between vortex rings and
boundaries, either solid or freely deformable fluid-air interfaces [38–40].

In particular, the coupling between vortex rings and deformable interfaces is complex, making
the study of their interactions both mathematically challenging and physically intriguing. Related
experiments become essential. Willmarth et al. [41] performed an experiment of a vortex pair
moving vertically upwards toward the free surface and found that the vortex dissipates at the
interface. Bernal and Kwon [42] produced a vortex ring that travels parallel to the surface and found
that the top of the vortex ring opens up and reconnects to the surface, forming a U-shaped ring.
Various observations have been made over the past decades, either from experimental or numerical
studies. Their key findings are summarized in Table I. Three main types of phenomena have been
observed: (1) the vortex ring dissipates beneath the interface, (2) the vortex ring opens up and
reconnects to the interface forming a U-shaped ring, known as reconnection, and (3) the vortex ring
moves across the interface. In the first two cases, the original vortex ring breaks up and dissipates
after the interaction, whereas in the third case, the vortex ring rises entirely above the surface, and
then collapses.

Surprisingly, the phenomenon of a vortex ring reflecting at the water-air interface, as reported
by Northrup [22], did not draw much attention for an extended period of time, aside from some
discussions that appeared in the work by Ohring and Lugt [43] and a few public videos online [44].
In contrast, the reflection of a vortex ring on a moving solid boundary has been reported by Chu
and Falco [45], while Kuehn et al. [46] have reported vortex ring reflections at a gravity-induced
interface separating two fluids with different densities. Similarly, numerical simulations have also
demonstrated that in a superfluid, a quantum vortex dipole can reflect at an interface between regions
of different densities [47]. Therefore, this study aims to advance the pending understanding of the
reflection of a vortex ring at the water-air interface through experiments, numerical simulations, and
simple modeling.

Focusing on an isolated vortex ring, the Reynolds number Re = �/ν predominantly determines
its dynamics, where � is the circulation of the vortex ring, which is the line integral of fluid
velocity around the vortex, and ν is the kinematic viscosity. However, upon a freely deformable
water-air interface, the behavior of a vortex depends on the competition between its inertia and the
gravitational force, which limits the vertical motion of a vortex ring that tends to cross the interface.
The two competing factors form a dimensionless parameter known as the Froude number, defined
as Fr = �/

√
gL3

0, where L0 is the diameter of the vortex ring and g is the gravitational constant. In
addition to Fr, another key parameter that affects the dynamics is the incident angle θi at which the
vortex ring aims at the interface.

By examining a wide range of Fr and θi, the current research rediscovers and confirms that a
vortex ring undergoes near-perfect reflection at a water-air interface, depending on the incident
angle, in a way similar to the total internal reflection (TIR) of light in optics. Most importantly,
a phase diagram of the related phenomena in the Fr − θi space is unveiled through systematic
experiments. In comparison, we report results from a detailed numerical simulation that captures
the essential dynamics. The phase diagram, found through simulations, is consistent with the
experimental findings. A much simplified model, which focuses on the conservation of mass and
momentum, also provides some physical insights that help explain the reflection.

The rest of our work is structured as follows. Section II introduces the experimental setup and the
basics of a vortex ring. Section III provides the experimental results and their analysis. Section IV
discusses a numerical model, and the simulation results are placed in Sec. V. Section VI introduces
the simplified model. Lastly, Sec. VII is the discussion and conclusions.
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TABLE I. Key results and their typical parameter ranges for the Froude number Fr, incident angle θi, and
Reynolds number Re used in previous computational (c), experimental (e), and theoretical (t ) studies, presented
in chronological order. A vortex ring reflection at a free surface was first observed in 1911 by Northrup [22]
(with the estimated parameters listed), but was largely forgotten for over a century. The current study unveils
most of the phenomena found in the list. In the Fr column, the markers 2D or 3D show whether the definition
of Fr is based on a 2D or 3D framework. The distinction between the two is discussed in Sec. V. The “

√
”

symbol indicates which vortex ring behaviors were reported in each study. In the “dissipated” column, the
“
√

R” symbol shows which studies observed vortex rings undergoing reconnection. “Reflected” is shown in
bold font to emphasize its importance in the current study.

Observed result
Reference Fr θi (deg) Re

Dissipated Reflected Broken Across

Northrup (1911)
[22]e

3.7 (3D) “Small,” 65–90 30 000
√ √

Telste (1989)
[48]c,t

0.5, 2.24, 7.07 (2D) 0 —
√ √

Willmarth et al.
(1989) [41]c,e

2.47 (2D) 0 3000
√

Bernal and
Kwon (1989)
[42]e

0.41 (3D) 90 7400
√

R

Bernal et al.
(1989) [49]e

0.1, 1.45 (3D) 0 2500, 3800,
18 000

√

Yu and
Tryggvason
(1990) [50]

c

0.5–22.4 (2D) 0, 45 —
√ √

Song et al.
(1992) [51]e

0.252–0.988 (3D) 0 15 100–64 700
√√

R

Lugt and Ohring
(1994) [52]

c
0.01, 0.2 (3D) 45 100

√√
R

Wu et al. (1995)
[53]

c
0.707, 7.07 (3D) 0 1000

√ √

Weigand and
Gharib (1995)
[54]e

0.46 (3D) 70–83 7500
√

R

Ohring and Lugt
(1996) [43]

c
0.01, 0.08, 0.2 (3D) 45, 70 100, 200

√√
R

Gharib and
Weigand (1996)
[55]e

0.07, 0.2 (3D) 83 1150, 5000
√

R

Zhang et al.
(1999) [56]

c
0, 0.166 (3D) 60, 70, 80 471, 942, 1570

√
R

Archer et al.
(2010) [57]

c
0 (3D) 0 3708, 7417,

11 126

√

Current study
c,e,t

0.45–2.6 (3D) 40–90 3400–23 000
√√

R
√ √ √

II. VORTEX RING GENERATION AND ITS BASIC PROPERTIES

Vortex rings in our experiment are generated in water via a spring-loaded piston system as
sketched in Fig. 1(a). The releasing speed and displacement of the piston are controlled by a stepper
motor through a steel cable pulling at the rear end. The nozzle outlet diameter of the vortex generator
is 1.5 cm. This generator is submersed in a water tank with a 1 × 1 m footprint and a height of 0.5 m
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FIG. 1. Vortex generator and vortex ring. (a) Vortex generator: a spring-loaded piston, released at controlled
speed and distance, pushes a volume of fluid out from a tapered (10◦) opening (1.5 cm diameter). The
accelerated fluid forms a vortex ring that travels forward. (b) Aiming at the free surface with an incident angle
θi, a vortex ring moves towards the water-air interface and interacts with it. (c) Sketch of the vortex core that
propagates at speed U with circulation �. The vortex ring has a diameter L0, with its vorticity concentrated
near the core of diameter a. (d) A volume of fluid is entrained around the core and moves forward. The
ellipsoid “bubble” is the average shape of vortex rings uncovered using streamlines measured by particle image
velocimetry (PIV).

that is filled up to 0.4 m. By varying the release speed and displacement of the piston, vortex rings
of different strengths can be generated, thereby altering the Froude number Fr. Changing Fr is
equivalent to changing Re here since they only differ by a constant as the vortex diameter is fixed
at approximately 1.9 cm in this study. A small amount of fluorescent dye is pre-injected from both
the top and bottom near the nozzle outlet, where the dye stays put until the piston is released. As the
vortex ring forms, the fluorescent dye rolls up into the top and lower portions of the ring, marking
only two representative locations of the 3D structure. For later convenience, we refer to the upper
and lower portions of the same vortex ring as the upper and lower cores, respectively, as shown
in the following text and images. The vortex cores are then captured by a high-speed camera, iX
i-SPEED 211, at a frame rate of up to 1000 fps with a field-of-view size of about 8 cm × 20 cm.
The trajectories of the cores are tracked with an object-tracking algorithm, and the core velocities
are subsequently obtained. The vortex ring generator is mounted on a rotational stage, which makes
it convenient to adjust the incident angle θi [Fig. 1(b), simplified]. For each experiment run, the
generator is fixed at a specific incident angle, then the vortex ring is released and recorded until it
exits the field of view of the camera.

A. The vortex ring and its effective drag coefficient

The vorticity of a vortex ring concentrates in a circular ring of diameter L0 with a core diameter
a, as shown in Fig. 1(c). Surrounding the vortex core, a blob of fluid is entrained and moves along,
creating a vortex bubble, as depicted in Fig. 1(d). The circulation � of a vortex ring in an ideal fluid
is conserved [58], allowing it to maintain a constant propagation speed U . However, for a viscous
vortex ring, its energy is continuously dissipated, causing it to slow down. In the early stage, shortly
after the vortex ring is formed, the entrainment of the ambient fluid is weak [59], and the size of
the vortex bubble can be considered constant. The shape of the vortex bubble is approximated as
an ellipsoid based on the streamlines surrounding its boundary [60], as shown in Fig. 2(a). The
streamlines are constructed using the particle image velocimetry (PIV) measurements. The length
of the major and minor axes of the ellipsoid are found to be 4L0/3 and 3L0/4 within a 10% error
for the vortex rings studied here. This gives a ratio of approximately 0.56 between the minor and
major axes. Similar values (0.55 ∼ 0.63) have also been reported in previous studies [32,61,62],
demonstrating shape similarity between vortex rings of different sizes and speeds. Given its ellipsoid
shape, the volume of the vortex bubble is estimated to be V = 2πL3

0/9.
Since the vortex bubble has little material exchange with its surroundings, we treat the moving

vortex as a bluff body and compute its effective drag coefficient. In particular, the drag coefficient is
Cd = 2Fd/ρU 2A, where Fd is the drag force, A = 4πL2

0/9 is the flow-facing area, and ρ is the fluid
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FIG. 2. A vortex bubble and its effective drag coefficient. (a) Flow field and streamlines around an
advancing vortex ring, in a coordinate fixed at the ring center, measured by PIV. The thick black ellipse marks
the boundary of the volume shown in Fig. 1(d). (b) Drag coefficient Cd of vortex rings versus ReU . The circles
show the drag coefficients of a vortex ring based on its speed and deceleration, and each gray band shows how
the drag coefficient evolves over time as a vortex ring slows down (ReU decreases). The dashed line shows the
relationship fitted by Eq. (1). The inset shows the relationship between Re and ReU .

density. The drag force Fd is defined as Fd = ρVar , which is the product of the mass of the vortex
bubble and the deceleration ar derived from the core velocities. This gives a drag coefficient of Cd =
arL0/U 2. Figure 2(b) shows the dependence of the drag coefficient on the Reynolds number, ReU =
4UL0/3ν, defined based on the bubble diameter and its propagation speed. The relationship between
ReU and Re is given in the inset of Fig. 2(b). For the vortex rings examined in this study, Re �
1.5ReU . The experimental data is fitted to show that Cd depends on ReU , following an empirical
relationship over the range 300 < ReU < 7000:

Cd = 260

Re2
U

+ 53.4

ReU
+ 0.0088. (1)

The drag coefficient of a vortex ring is extremely small, as low as 0.017 at ReU ∼ 6500, compared to
that of a solid body of a similar shape, which is normally greater than 0.5 [63]. A similar definition
of drag coefficient has also been used in previous works [32,60,64,65] and limited results have
been reported. For vortex rings with Reynolds numbers below 300, the drag coefficient reported
by Sullivan et al. [32], when converted to the current definition, ranges from approximately 0.2
to 3. Gan et al. [60] reported drag coefficient values of 0.33 and 0.4 for turbulent vortex rings
with Reynolds numbers of 41 280 and 20 039, respectively. The huge difference, of almost two
orders of magnitude, between their drag coefficients [32,60] and our values, is due to the different
ReU ranges (low vs high) and states of motion (turbulent vs laminar) at which the numbers are
measured. Evidenced by our results shown in Fig. 2(b), Cd rapidly increases at low ReU due to
significant viscous dissipation. Similarly, dissipation across scales in a turbulent vortex ring quickly
slows the vortex motion, leading to higher drag coefficients. In our experiments, when ReU � 5000,
the speed drop for the vortex rings is around 10% of the initial speed over a distance of 8L0. Thus,
in the current study, the propagation speed of vortex rings at high Reynolds numbers is considered
constant.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The following ranges of Froude number and incident angle are tested: Fr ∈ [0.45, 2.6] and θi ∈
[40◦, 85◦]. The parameter ranges are so chosen to include large Fr and θi cases that were often
overlooked by previous works (Table I). This expanded parameter range makes it possible to observe
a broader range of phenomena, including vortex ring reflection, documented by Northrup in 1911
[22].
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FIG. 3. Vortex rings that interact with a water-air interface exhibit four behaviors. Each case is shown with
snapshots, pulled from high-speed video recordings, taken at equal time intervals of 0.25, 0.04, 0.04, and 0.04
seconds, respectively. The scale in the four images is the same. The vortex ring (a) dissipates near the water-air
interface; (b) reflects while temporarily deforming the interface (θi = 75◦); (c) breaks at the interface (upper
portion moves above the interface and the whole ring breaks up); and (d) crosses the interface (the entire core
of the ring moves above the interface) and then forms a jet. The insets on the bottom right of each panel
illustrate the behaviors. The interface is visualized using commercial baby powder, but all other measurements
are conducted without the powder to ensure accuracy and to eliminate any possible influence on the results.
For the complete movies see the Supplemental Material [66].

A. Four types of behavior and the phase diagram

Four types of behavior are observed in the current experiments, shown by typical examples in
Fig. 3. In the “dissipated” case shown in Fig. 3(a), when Re is low, the vortex ring can hardly deform
the interface and its structure is destroyed and dissipated near the interface due to viscous effects.
The “reconnection” phenomenon, where the top part of the vortex ring opens up and connects to the
interface, is also observed. It is, however, classified as a “dissipated” state here as the structure of
the original vortex ring is destroyed upon interaction. In the “reflected” case shown in Fig. 3(b), the
vortex ring notably deforms the interface, causing its propagation direction to deflect downward,
resulting in a reflection while preserving its original structure. For the “broken” and “across” cases
shown in Figs. 3(c) and 3(d), where θi is smaller, the propagation direction of the vortex ring also
deflects downward as it approaches the interface, similar to the “reflected” case. However, in these
two cases, the vortex ring travels too far beyond the interface for it to reflect. If the entire ring
moves above the interface, it forms a jet in the air and soon collapses. This is classified as an
“across” case. If the ring does not move fully above the interface, the portion above the interface
breaks up and smashes the remaining portion underneath. It is then termed a “broken” case, which
is an intermediate situation between reflection and across cases. Indeed, the difference between the
last two cases [Figs. 3(c) and 3(d)] is small, and distinguishing them can be challenging at times.
But the differences between the “dissipated,” “reflected,” and “broken and across” cases are evident.

To compare the four above cases in the parameter space of Froude number (or, equivalently,
the Reynolds number) and incident angle, a phase diagram is constructed based on systematic
experiments, as shown in Fig. 4. When Fr is less than a critical value Frc of approximately 1,
the interface deformation is small and the vortex ring dissipates regardless of the incident angle
θi. This state is marked as regime I, corresponding to the “dissipated” behavior. For Fr � Frc, the
vortex ring carries greater momentum that can visibly deform the interface, leading to the three
other behaviors. For θi smaller than a critical value θc, the vortex ring may either cross the interface
or break up upon contact, as shown by regime III, which corresponds to “across” or “broken” cases.
The critical value θc has been found to locate in a finite range, between 53◦ and 55◦. In regime III,
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FIG. 4. Phase diagram of the vortex-interface interaction, in Fr − θi or, equivalently, in Re − θi space. The
phase diagram is divided into three regimes (I, II, and III) by a critical Froude number Frc and a critical incident
angle θc. Below Frc, vortex rings are dissipated, no matter what θi is. Above Frc, however, larger θi gives rise
to reflection and lower θi yields broken and across cases. The four solid, larger markers correspond to cases
shown in Fig. 3.

the behavior is influenced by θi and Fr. At higher momentum (higher Fr or Re) and smaller incident
angle, vortex rings are more likely to cross than to break up at the interface. For regime II, when
both Fr and θi exceed the critical values, the vortex ring bounces robustly off the interface, which
corresponds to the “reflected” behavior. In this regime, the interaction exhibits weak dependence on
Fr or Re, as the trajectories of vortex rings with the same θi but different Fr show minor differences.
The phenomenon shown by regimes II and III, where reflection can occur only at sufficiently large
incident angles, closely resembles the total internal reflection of light in optics. Moreover, if the
vortex rings can survive above the interface, the “across” cases may be interpreted as “refracted.”
This scenario where the vortex ring can survive beyond the interface has previously been discussed
in the context of sharply stratified density interfaces, where the vortex ring can cross the interface
and remain coherent [46,67–70]. With the phase diagram in place, the following discussion focuses
on the “reflected” regime.

B. Reflection of vortex rings

Figure 5(a) shows a typical reflection process of a vortex ring at the interface when Fr = 1.92
and θi = 70◦. If the vortex ring is far from the interface, it travels along a straight line in the
upper-right direction. As it approaches the interface, the ring begins to rotate clockwise, causing
its trajectory to deflect downward. After reaching its highest point, the ring continues to rotate and
deflect, altering its propagation direction to the lower right direction. Once it moves far enough from
the interface, the rotation stops and the vortex ring resumes its straight path. It is evident that the
continuous rotation and reorientation of the vortex ring are key to its reflection. The evolution of
the propagation angle of the vortex ring, |θ (x)|, as defined in the inset, is plotted in Fig. 5(c). In
each case, |θ (x)| starts with the incident angle θi and increases to 90◦ as the vortex ring reaches the
apex—at which instant the vortex ring moves horizontally—then decreases back to the value of the
reflection angle θ∗

i , completing the reflection. The reflection angle is slightly less than the incident
angle, but the curves of the propagation angle are essentially symmetric, and the reflection angles
change monotonically with their incident angles, demonstrating a robust reflection mechanism. Data
points are averaged over five repeating runs for each θi. The error bars show the standard deviation
of |θ (x)|.
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FIG. 5. Vortex ring reflection at the interface, when Fr = 1.92 and θi is (a) 70◦ and (b) 55◦. The dashed line
in panel (a) shows the unperturbed interface while the deformed interface is not visualized. For a complete
movie, see the Supplemental Material [66]. (b) Deformed interfaces visualized at snapshots 4, 5, and 6,
respectively. The vortex ring structure is well preserved after the reflection even though a large part of the
vortex ring has moved above the interface. This is a “borderline” case in reflection, but close to a “broken”
case. (c) The evolution of |θ (x)| when Fr = 2.6 and θi is between 60◦ and 80◦. |θ (x)| evolves from θi to 90◦

and then drops back during the reflection, showing the rotation of the ring. The inset shows the definition of
θ (x) and the reflection angle θ∗

i .

The rotation of the ring is achieved by the upper core moving faster in the horizontal direction
than the lower core. As shown in Figs. 6(a) and 6(b), before reaching close to the interface, both the
upper and lower cores have the same horizontal and vertical velocities ux and uy. When close to the
interface, the horizontal velocity of its upper core significantly increases, surpassing that of the lower
core, while their vertical velocities remain equal. This velocity difference drives the vortex-ring
reorientation and ultimately leads to reflection. For comparison, the horizontal velocity component
of the entire ring, expressed as U0 sin θ (x), is plotted. Here U0 is the average speed of the two
cores during straight-line motion. U0 sin θ (x) increases as the vortex ring begins to rotate, reaches
a maximum at θ (x) = 90◦, and then decreases back. During reflection, the horizontal velocity of
the lower core is closely in line with U0 sin θ (x), showing that the lower core is not accelerated.
After reflection, as we observe, the horizontal velocities of both cores decrease from U0 sin θ (x) by
approximately 10%. This reduction in speed and energy is attributed to the viscous dissipation as
the vortex ring travels and to the energy spent creating surface deformations. Note that the diameter
of the vortex ring also slightly decreases as a result of reduced kinetic energy. Figure 6(b) shows
the vertical velocity components of the two cores, which are both close to U0 cos θ (x), following the
same trend. After reflection, the reduced horizontal speed and fully restored vertical speed result in
a slightly smaller reflection angle, which is consistent with the θ (x) measurement in Fig. 5(c).

The acceleration effect induced by the interface on the upper core is observed to intensify with
decreasing incident angle. This is shown by the maximum horizontal velocity difference �ûx plotted
against θi in the inset of Fig. 6(a). Another relevant quantity is the depth of reflection h, defined as
the distance between the flat interface and the highest position that a vortex ring can reach, as shown
by the inset of Fig. 6(c). The black squares in there show that a vortex ring with a smaller incident
angle reaches closer to or even goes above the flat interface. The proximity to the interface is found
to yield a stronger acceleration on the upper core. For a 3D vortex ring, such an effect is conceivably
weaker on portions of the ring gradually away from the top and weakest on the lower portion of the
ring. However, this acceleration effect has its limit. If the ring fails to complete the rotation before
it rises too far above the interface when the incident angle is below a certain value (θc), the vortex
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FIG. 6. The velocity decomposition and reflection depth h. (a, b) The horizontal and vertical velocity
components of the upper and lower cores are compared, also with those of the entire vortex ring, expressed as
U0 sin θ (x) and U0 cos θ (x), respectively, when Fr = 1.92 and θi = 70◦. The inset in panel (a) shows that the
peak horizontal velocity difference, �ûx , between the two cores decreases with increasing θi. (c) The reflection
depth h (defined in the inset) decreases with decreasing θi. When vortex rings are issued horizontally (θi = 90◦),
red symbols show the reflection angles θ∗

i decrease with decreasing depth of release (also denoted as h). The
dashed curve is fitted from the reflection data.

ring ends up with a “broken” or “across” case. That is to say, the critical incident angle for the
reflection is the result of the interplay between the rotation and the vertical motion of the vortex
ring. Figure 5(b) shows a “borderline” case at θi = 55◦, in which a large portion of the ring rises
above the interface as if a jet is about to form and break the ring below, yet the ring is still reflected.

Interestingly, when vortex rings are generated horizontally (θi = 90◦)—close to the interface at
an initial depth—they are also deflected downward by the interface. Figure 7 shows two examples
with different initial depths: (a) 1.5 cm and (b) 2.5 cm, both at Fr = 1.92. The deflection is more
significant when the initial depth is smaller. In addition, the trajectory of a horizontally issued vortex
ring closely resembles that of the outgoing part of a reflected ring. The apparent equivalence between
the initial depth of a vortex ring issued parallel to the interface and the depth of reflection for an
ascending ring leads us to denote both quantities by the same parameter h. For the horizontally
issued vortex rings, when θi = 90◦, h is called the depth of release. Similarly, the reflection angle
θ∗

i is used for the horizontal cases as well. The diamond symbols in Fig. 6(c) show that θ∗
i decreases

FIG. 7. Vortex rings issued parallel to the interface (θi = 90◦) at Fr = 1.92, with (a) h = 1.5 cm and (b) h =
2.5 cm. The deflection is stronger in (a) when h is smaller than that in (b). The scale in the two images is the
same. The nozzle of the vortex generator is highlighted on the left in both images.
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FIG. 8. Vortex sheet and vortex pair model initial setup. The two dark dots represent a pair of point vortices
of equal strength but opposite sign, � and −�, located a distance L0 apart at z1 = x1 + iy1 and z2 = x2 + iy2,
with a depth h0 and inclined depth d0. The location of the free water-air interface is denoted by zF = xF + iyF

and the incident angle by θi.

as h decreases. Compared to the reflection cases, the relationship between θ∗
i and h for horizontal

rings exhibits a similar trend to that of θi vs h.

C. Vortex interactions with a fixed wall

The interactions between a vortex ring and a fixed wall are also investigated to show the signifi-
cance of Fr for reflection. Lim [39] has shown that as a vortex ring approaches a solid wall obliquely,
its vortex cores split up, with the lower portion of the ring slightly rebounding before the vortex ring
vanishes. This behavior mirrors the “dissipated” cases observed in our experiments, where the weak
vortex ring lacks sufficient energy to induce significant water-air interface deformation. In contrast,
in the solid boundary scenario, the rigidity of the wall prevents the vortex ring from inducing any
deformations. This is equivalent to Fr = 0 for any vortex ring. That being stated, the interaction
behavior of any vortex ring with a fixed wall falls into regime I in the Fr − θi phase diagram (Fig. 4)
regardless of the vortex strength and its incident angle. A direct comparison between the solid wall
and water-air interface is presented in Fig. S1 in the Supplemental Material [66].

IV. VORTEX-SHEET-VORTEX-PAIR MODEL AND NUMERICAL METHOD

A 2D vortex-sheet-vortex-pair model is used to numerically simulate the interaction. In this
model, the vortex ring is represented by a pair of point vortices with opposite circulations (� and
−�), while the interface is modeled as a vortex sheet with distributed strength γ . Both the point
vortices and the interface evolve freely under their mutual interaction. Surface tension is neglected
here, as experimental observations show that the typical scale of surface deformation is comparable
to the vortex diameter in the reflected cases. The Weber number can be used to characterize the
relative importance of inertial forces to surface tension. Its definition is We = �ρ�2/(σL0), where
�ρ is the density difference between water and air, and the surface tension coefficient of water is
taken as σ = 0.072 N/m. With a vortex diameter L0 of approximately 1.9 cm, the Weber number
ranges from 8 to 400 for all vortex rings tested in the current experiments. Previous simulations
that included surface tension have shown that it only becomes significant when the Weber number
approaches unity [50,53]. Figure 8 illustrates the initial setup of the model. A semi-infinite domain

(t ) is assumed beneath the interface zF = xF + iyF , where the point vortices z1 = x1 + iy1 and
z2 = x2 + iy2 are placed with an incident angle θi relative to the interface. The entire domain is
assumed to be free of vorticity, except for where the point vortices and the interface are. The method
employed was first proposed by Baker, Meiron, and Orszag [71], and was also used by Telste [48]
to study vortex ring and water-air interface interactions. Here, building on these two works, small
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modifications to the method are made. The derivation is briefly repeated for the completeness of our
work.

The vortex sheet strength γ and the position zF of the interface are both parameterized by a La-
grangian coordinate e, −∞ < e < ∞ and time, t � 0 as γ (e, t ) and zF (e, t ) = xF (e, t ) + iyF (e, t ),
respectively. The flow is represented as the superposition of the potential flows induced by the
interface and the two discrete point vortices [48,72,73]. The complex velocity potential w(z) at
z = x + iy in the fluid domain 
(t ) is given by

w(z) = 1

2π i

∫ ∞

−∞
γ (e′, t ) ln[z − zF (e′, t )] de′ + 1

2π i
ln(z − z1) − 1

2π i
ln(z − z2). (2)

This and all subsequent equations are nondimensionalized using the initial distance L0 between the
vortices in the pair as the characteristic length scale, with the timescale L2

0/�, and the velocity scale
�/L0. The complex velocity ux + iuy at points z inside the domain, except for where the vortex pair
is, can be calculated as the conjugate of dw/dz:

ux(z) − iuy(z) = dw

dz
= 1

2π i

∫ ∞

−∞

γ (e′, t )

z(e, t ) − zF (e′, t )
de′ + 1

2π i

1

z − z1
− 1

2π i

1

z − z2
. (3)

The velocities dz1/dt and dz2/dt of the two point vortices are

dz̄1

dt
= 1

2π i

∫ ∞

−∞

γ (e, t )

z1(t ) − zF (e, t )
de − 1

2π i

1

z1 − z2
;

dz̄2

dt
= 1

2π i

∫ ∞

−∞

γ (e, t )

z2(t ) − zF (e, t )
de + 1

2π i

1

z2 − z1
, (4)

respectively [48]. Since the integral in Eq. (3) is singular on the interface, it cannot give the velocity
of the interface directly. Instead, a Cauchy-principal-value integral is applied to give the interface
velocity q as

q = 1

2π i
−
∫ ∞

−∞

γ (e′, t )

zF (e, t ) − zF (e′, t )
de′ + 1

2π i

1

zF − z1
− 1

2π i

1

zF − z2
. (5)

Also, a constant weight factor α is introduced to give better control on the interface velocity. Thus,
the actual velocity used in the model is

∂ z̄F (e, t )

∂t
≡ Q̄(e, t ) = q̄(e, t ) + α

2

γ (e, t )

∂ezF (e, t )
. (6)

The weight factor α, −1 � α � 1, determines the weighting of the potential from both sides of
the interface; the velocity is that of the lower fluid when α = 1 and that of the upper fluid when
α = −1. A detailed derivation of Eq. (6) can be found in previous works [48,72].

To close the system, an evolution equation for γ (e, t ) is needed. For that, the Lagrangian form of
the Bernoulli equation is introduced on the interface zF as the dynamic boundary condition:

Dφ

Dt
= 1

2

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

− 1

(Fr)2
y. (7)

Here φ is the velocity potential, the real part of w. The derivation of the dimensionless Bernoulli
equation [Eq. (7)] can be found in Sec. SII of the Supplemental Material [66]. The Froude number
Fr that appears in the last term of Eq. (7) enters the evolution equation of the vortex sheet strength
γ (e, t ) and acts as one of the dominant parameters that affect the dynamics. For a water-air interface,
the evolution equation for γ (e, t ) is given by

∂γ (e, t )

∂t
=

(
α

2
− 1

4

)
∂

∂e

[
γ 2

(∂ezF )(∂ez̄F )

]
− 2

[
�

(
∂ q̄

∂t
(∂ezF )

)
− α

2
γ�

(
∂eq

∂ezF

)
+ 1

(Fr)2
∂eyF

]
.

(8)
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Equation (8) is derived in Sec. SIII of the Supplemental Material [66]. Shelley and Vinson [74]
have also derived an equivalent equation directly from the Euler equations and velocity boundary
conditions at the fluid interface, without making any assumptions about the vorticity distribution
within the fluid.

In the actual computation, the Cauchy-principal-value integral in Eq. (5) is replaced by a
regularized integral to avoid short-wave instability [75,76]. With this instability occurring after a
certain number of time steps, the interface would form a sawtooth shape and rapidly destabilize
afterwards. The regularized integral takes the form

1

2π i
−
∫ ∞

−∞
γ (e′, t )

zF (e, t ) − zF (e′, t )

|zF (e, t ) − zF (e′, t )|2 + δ2
de′, (9)

where δ is a regularization parameter. The effect of δ is to prevent the growth of free surface
structures on scales that are smaller than δ, while maintaining the shape and motion of the vortex
sheet on larger scales [74,75]. In the far-field u = 0 is enforced, which in potential flow u = ∇φ

corresponds to

∂φ

∂x
= 0 for x = ±∞ in (x, y) ∈ 
(t );

∂φ

∂y
= 0 for − ∞ < x < ∞, y = −∞. (10)

This is satisfied if lim
e→±∞ γ (e, t ) = 0. Since initially the free surface is assumed to be undisturbed,

we have that at t = 0 on the interface zF : φt=0 = 0 and yF |t=0 = 0.
The numerical approach employed is now briefly described. At each time step, the positions of

the two discrete vortices in the vortex pair z1(t ), z2(t ), the interface position zF (e, t ), and the vortex
sheet strength γ (e, t ), are solved using Eqs. (4), (6), and (8), respectively. The initial conditions are

zF (e, 0) = xF (e, 0); γ (e, 0) = 0; zk (0) = xk (0) + iyk (0), for k = 1, 2, (11)

with

xk (0) = −d0 sin θi ∓ (L0/2) cos θi; yk (0) = −d0 cos θi ± (L0/2) sin θi, (12)

where θi is the incident angle, d0 is the initial inclined depth of the vortex pair, and L0 is the initial
distance between the vortices as shown in the schematic diagram in Fig. 8, which is nondimension-
alized to 1.

Both the interface position zF (e, t ) and the vortex-sheet strength γ (e, t ) are discretized spatially
by defining

(zF ) j (t ) ≡ (xF ) j (t ) + i(yF ) j (t ) = zF (e j, t ); γ j (t ) = γ (e j, t ), (13)

on a uniform grid with e j = j and t � 0, where j = 1, 2, . . . , N with N representing the grid
size. The discretized initial conditions are thus given by (zF ) j (0) ≡ (xF ) j (0) and γ j (0) = 0, where
(yF ) j (0) = 0 for the initial flat interface. Since the free surface is infinitely long, a wave-damping-
type procedure is adopted to perform the computations over a finite region [48,72]. In particular, the
computations are done over a finite but large region |xF | � L with L � L0. Specifically, L = 50 with
the damping terms applied to Eqs. (6) and (8) in regions of |xF | � 45. The damping coefficient is set
to 0.1. The weight factor that appears in the interface velocity [Eq. (6)] is chosen as α = −1, which
is the same as the value used by Telste [48]. Among different values of α, this choice produced the
most desirable free-surface spacing in terms of resolution and uniformity. Further discussion about
the role of α is included in Sec. SIII of the Supplemental Material [66].

For each discrete point j on the interface, (zF ) j (t ) and γ j (t ) from Eq. (13) satisfy the discretized
versions of the coupled evolution equations [Eqs. (4), (6), and (8)]. Therefore, in total there are
3N + 2 equations in the full system of governing equations: N equations for each of the three
evolution equations for the interface and two equations for each of the discrete point vortices
comprising the vortex pair. The integral in Eq. (9) is computed using trapezoidal quadrature and the
spatial derivatives with respect to the Lagrangian coordinate e are computed using fourth-order finite
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difference formulas. The evolution equation for the vortex sheet strength on the interface is solved
iteratively by employing the generalized minimal residual (GMRES) method [77] (see Sec. SIV of
the Supplemental Material [66] for details), and γ (e, t ) and zF (e, t ) are obtained by integrating ∂tγ

and ∂t zF in time using a fourth-order Runge-Kutta method. The simulation results shown in Sec. V
are with N = 1000 points on the free surface, time step �t = 10−3, and regularization parameter
δ = 0.1. This choice of δ was determined empirically, and it was checked that using slightly different
values would not change the phase diagram obtained from the simulations. The initial vertical depth
below the interface for the vortex pair is set to h0 = 3. Therefore, as a function of the incident angle,
the inclined depth d0 shown in Fig. 8 is given by d0 = h0/ cos θi.

Due to the nature of the interaction, the initially equally spaced grid points (zF ) j either cluster
or disperse in the deformed regions of the free interface. This causes the numerical error to
grow rapidly, leading to convergence issues for the GMRES method. To address this problem, a
self-adaptive redistribution of the grid points on the interface is implemented. A threshold arc-length
distance �s between two adjacent grid points is introduced. At each time step, the distance between
adjacent grid points is checked, and if the largest arc-length distance exceeds the threshold, a
redistribution of the grid points is triggered. First, the interface is rediscretized into N equally spaced
points based on arc-length. The new xF and yF coordinates are interpolated from the current grid
points using piecewise cubic Hermite interpolating polynomials [78]. Similarly, γ is interpolated
at each point, with an additional factor applied. This factor ensures that the total circulation, or the
arc-length integral of γ along the interface, remains unchanged before and after the redistribution.

V. NUMERICAL RESULTS AND DISCUSSION

Prior to presenting the simulation results and comparing them to the experiments, it is essential
to reconcile a gap that exists between the two approaches. This gap is the inconsistency in the
definition of the Froude number, or more fundamentally, the difference in the relationship between
the three parameters that capture the nature of a vortex ring: the circulation �, the ring diameter L0,
and the propagation speed U . For a 3D circular vortex ring [79–81], U is known to be of the form

U ≈ �

2πL0

[
ln

(
8L0

a

)
− 1

4

]
, (14)

where a is the diameter of the vortex core shown in Fig. 1(c). This will be referred to as the
“3D model.” However, U in the 2D point vortex model used in the simulations follows a different
expression:

U = �

2πL0
. (15)

This will be referred to as the “2D model.” If the same vortex ring is to be correctly represented by
these two different models, the logical approach is to assign the macroscopic quantities propagation
speed U and diameter L0 as intrinsic quantities, while allowing the circulation � to be different.
This ensures that the motion and size of the vortex ring remains consistent across both models.
Figure 9(a) shows the dependence of � on U for both the 2D and the 3D models for the vortex
rings tested in the current experiment. The circulation measured directly by the experiment using
PIV is also plotted. The 3D model captures the relation between the circulation and the propagation
speed well, but there is a noticeable discrepancy between the values calculated using the 2D and 3D
models. Consequently, when using the definition Fr = �/

√
gL3

0, the value of the Froude number for
the same vortex ring in the 2D model differs from that in both the 3D model and the 3D experiment.
This explains why, in some previous studies, such as in the work of Willmarth et al. [41] where a
2D model was employed, the vortex ring still dissipates at Fr > 1. Therefore, to make a sensible
comparison between the experimental and 2D simulation results, a transformed Froude number is
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FIG. 9. Circulation � and Froude number Fr in 2D and 3D models are different for the same vortex ring.
(a) Circulation versus the measured speed U . The cross symbols show � measured directly by PIV, the squares
show � calculated by Eq. (14) using the measured speed U , while the circles show � calculated with the same
U using Eq. (15). The 3D model closely matches the direct measurements, while the 2D model deviates from
both, resulting in different values of Fr for the same vortex ring in the experiment and the 2D model we use.
(b) The correspondence between the Froude number Fr and the transformed Froude number Fr∗. The gray line
is a linear fit. (c) The transformed phase diagram, from Fr − θi space shown in Fig. 4 to that in Fr∗ − θi space.

defined:

Fr∗ = 2πU√
gL0

. (16)

This takes the same value for the same vortex ring described by both the 2D and 3D models.
Figure 9(b) shows the transition from the original Froude number Fr to the corresponding Fr∗ in
Eq. (16). Naturally, Fr∗ takes on a greater value. The relationship between the two is approximately
linear here, as both the L0 and a remain relatively constant across the tested cases. Figure 9(c) shows
the same phase diagram as Fig. 4 from the experiments, but with the transformed Froude number
Fr∗. The critical Froude number for reflection shifts to approximately 3.3.

A. Four types of behavior and associated interface deformations

Figure 10 shows typical examples of the same four vortex-pair behaviors as observed in the
experiments. Although the same nomenclature is used to describe the phenomena observed in the
simulations, the vortex pair does not numerically dissipate or break in the simulations. For each case
in Fig. 10, the interface deformations are also shown in progressively darker shades of blue as time
increases. Three time snapshots are plotted for each case, with the corresponding vortex pair shown
in the same color.

As shown in Fig. 10(a), at small Fr∗, the trajectories of both point vortices curve upward and the
vortex pair rotates counterclockwise. The interface only deforms to a small extent near the upper
point vortex, but otherwise remains mostly flat. Both the trajectories and interface deformation share
the same features of the “dissipated” case observed in the experiments in Sec. II. Similar dynamics
were obtained by Yu and Tryggvason [50] for the interaction of a free surface with a vortex pair
incident at an angle of 45◦. The simulations can terminate in one of the following two scenarios
besides been manually stopped: either the GMRES solver fails to converge due to the development
of nonphysical distortions and self-entanglement of the interface, or the distance between the two
point vortices drops below a threshold, beyond which the vortex pair itself is deemed nonphysical.
The former usually occurs when Fr∗ → 0, whereas the latter when Fr∗ → Fr∗

c , where Fr∗
c denotes a

critical Froude number above which a different mode of interaction occurs. A vortex pair is classified
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FIG. 10. Typical dynamics captured by the simulations, covering the four regimes observed in experiments.
The parameters used are (a) Fr∗ = 2, θi = 65◦, (b) Fr∗ = 8, θi = 65◦, (c) Fr∗ = 5, θi = 55◦, and (d) Fr∗ = 8,
θi = 45◦. In each case, three moments of the vortex pair and the corresponding interface are marked in blue,
with different shades. Black dots show the last moment of each run. In panels (c) and (d), the interface at the
last moment of each run is depicted by dashed gray curves. For the complete movies see the Supplemental
Material [66].

as “dissipated,” if the simulation terminates in one of these scenarios while both point vortices
remain below the interface.

The interface deformations and the vortex pair trajectory of another case shown in Fig. 10(b)
share the same main features as the “reflected” cases obtained in experiments. The simulations
proceed stably until they are terminated manually after rendering a full reflection trajectory. As
the vortex pair approaches, it pushes the interface upward, with the maximum elevation occurring
directly above, while simultaneously generating vorticity on the interface. The significant interface
elevation, combined with the vorticity generated at the interface, is the key mechanism responsible
for the horizontal velocity difference between the upper and lower cores of the vortex ring, thereby
inducing reflection. The difference in the horizontal velocity of the two point vortices can be seen
from Eq. (4), by considering the real part of dz̄1/dt − dz̄2/dt , which yields

�ux := dx1

dt
− dx2

dt
= − 1

2π

∫ ∞

−∞
γ (e, t )

y1(t ) − yF (e, t )

[x1(t ) − xF (e, t )]2 + [y1(t ) − yF (e, t )]2
de

+ 1

2π

∫ ∞

−∞
γ (e, t )

y2(t ) − yF (e, t )

[x2(t ) − xF (e, t )]2 + [y2(t ) − yF (e, t )]2
de. (17)

The premises are that |γ (e)| increases as the vortex pair approaches the interface and |γ (e)|
diminishes in the region where |x1,2 − xF | is large. Then based on Eq. (17), the influence of the
interface decays with the distance between the point vortices and the interface, and the influence on
the velocity of the point vortices from the region directly above the vortex pair is dominant. Thus,
at a given point in time, Eq. (17) can be approximated by

�ux ≈ 1

2π

∫ e0+�e

e0−�e
γ (e)

[
− 1

y1 − yF (e)
+ 1

y2 − yF (e)

]
de, (18)

where �e gives a small interval (xF (e0 − �e), xF (e0 + �e)) near x1 and x2, such that |xF − x1,2| <

�x, and |y1,2 − yF | is always large compared to �x. In this form, the contributions from the regions
with large |xF − x1,2| are ignored, and the terms y1,2 − yF dominate the denominators in Eq. (17)
in the region where |xF − x1,2| is small. Although this is an oversimplification, it can still provide
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some insights into the mechanism. Equation (18) further simplifies to

�ux ≈ 1

2π

∫ e0+�e

e0−�e
γ (e)

y1 − y2

[y1 − yF (e)][y2 − yF (e)]
de. (19)

With a given incident angle, y1 − y2 does not vary significantly. In addition, the simulations show
that γ (e) is positive in the interval (e0 − �e, e0 + �e). Thus, �ux is always positive and increases
as γ (e) increases. At the same time, as the vortex pair approaches the interface, (y1 − yF )(y2 − yF )
decreases which also causes �ux to increase. A similar argument can be used to explain why �ux

decreases as the vortex pair travels away from the interface. In the meantime, the difference in the
vertical velocities of the two point vortices in the vortex pair can be approximated by

�uy ≈ 1

2π

∫ e0+�e

e0−�e
γ (e)

x1 − xF (e)

[y1 − yF (e)]2
de − 1

2π

∫ e0+�e

e0−�e
γ (e)

x2 − xF (e)

[y2 − yF (e)]2
de. (20)

The integrals in the above equation evaluate to negligible values due to the near odd symmetry of the
integrands about e0. Then the vertical velocity difference between the point vortices is always small.
This explains the velocity decomposition shown in Figs. 6(a) and 6(b). Overall, this difference in the
horizontal velocities of the two point vortices, coupled with the similarity in their vertical velocities,
leads to the rotation of the vortex pair. This rotation ultimately causes the vortex pair to reflect off
the interface, as observed in both the experiments and the numerical simulations.

The parameters (Fr∗, θi ) used in Figs. 10(c) and 10(d) are (5, 55◦) and (8, 45◦), respectively.
In these cases, the trajectories curve down initially, similar to the reflected case in Fig. 10(b). The
interface deformation is also wavelike. Then the point vortices go above the y = 0 line and the
interface deformation turns into a blunt bump or jet shape for the broken and across behavior,
respectively, as shown by the dashed gray lines. Meanwhile, the distance between the two point
vortices shrinks which causes the simulation to terminate, mirroring the vortex ring breakup
observed at the interface in the experiments.

B. The phase diagram produced from the model

The simulations also provide a similar phase diagram in the Fr∗ and θi space, presented in
Fig. 11(a), that encompasses the four types of phenomena observed in the experiments. Despite
the simplicity of the model, the primary dynamics and their corresponding regions in Fr∗ − θi

space show good agreement with the experimental results in Sec. III. “Dissipated” vortex pairs
are observed at small Fr∗ with any θi, and reflected vortex pairs exist above a critical Fr∗

c and
critical θc that is approximately 4 and 55◦, respectively. The “across” behavior takes up the whole
regime for large Fr∗ (�4) and small θi (<55◦). This is due to the inviscid nature of the model
which eliminates the effects that lead to the breakup of the vortex pair, such as air entrainment and
instability development. However, several “broken” cases still occur in the central region where
the three regimes intersect. This is due to the sensitivity of the criteria used to classify cases at
the boundaries of the regimes. A slight change in the criterion parameter can lead to a slightly
different classification of the results, but only near the boundaries of the different regimes, where
the distinction is subtle. Despite this, the physical picture of the three main regimes is consistent
with the experimental results. In addition, the detailed features of the reflection behavior are also
well captured by the model. The angle evolution for the rotation of the “reflected” vortex pairs at
different incident angles is shown in Fig. 11(b). Similar to Fig. 5(c) obtained from the experiments,
|θ (x)| starts with the incident angle θi and increases up to 90◦ as the vortex pair approaches the
interface. Then |θ (x)| starts to decrease, and eventually reaches a value that is slightly smaller than
the incident angle θi.

In summarizing this section, the 2D vortex sheet and vortex pair model captures both the phase
diagram and the detailed features of the reflection phenomenon, including the slight asymmetry
in the angular evolution of the vortex ring, as observed in the experiments. A detailed analysis of
the governing equations that comprise the model, provides valuable insights into the mechanism of
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FIG. 11. Simulation results. (a) Phase diagram of the interactions between the vortex pair and the free
interface in Fr∗ − θi space, obtained from numerical simulations. The four solid, larger markers correspond to
the four cases shown in Fig. 10. (b) The propagation angle |θ (x)|(◦) of the vortex pair at different x positions
during the reflection when Fr∗ = 8. Similar to the experimental data shown in Fig. 5(c), each |θ (x)| changes
from θi to 90◦ and then drops back after reflection, showing the rotation of the vortex pair.

vortex ring reflection. A more detailed description of the surface and vortical structure evolutions
can only be given by employing more sophisticated 3D simulations. Some possible methods are
discussed in previous works [53,56,67].

VI. SIMPLE MASS CONSERVATION MODEL

The above 2D vortex-sheet-vortex-pair model has successfully captured the essential dynamics
observed in the experiments. In order to gain an intuitive understanding of the interaction between
vortex rings and a free interface, we introduce a simple model based on the flux conservation for
each portion of the advancing ring. In this model, the upper and lower portions of the same 3D
vortex ring are treated separately, but the vortex velocity is determined by both. That is, the velocity
vector is always perpendicular to the line connecting the two cores. In the fluid bulk far from the
interface, both cores move forward at the same rate; their connecting line translates along a straight
line, normal to the vortex velocity. However, in a situation depicted in Fig. 12(a), the upper core
experiences a narrow passage ahead of its path. Flux or mass conservation requires the upper core
to accelerate, more so if the passage is smaller. Here, the simple rule is as follows: the product of the
core speed and the area it occupies (a rectangular box) in water, which is the local flux for each core,
remains constant v0A0. The areas A1 and A2 represent the fluid volumes entrained by each core, and
also serve the dual purpose as fluid passages. The same rule applies to both cores. As a result, at
each time step while moving forward, the upper core accelerates more significantly than the lower
core. Over time, the upper core passes the lower one. The orientation of the connecting line between
the two cores gradually changes clockwise, leading to the reflection of the vortex ring, as shown in
Fig. 12(b).

Both box areas A1 and A2 are shown in Fig. 12(a). When the vortex ring is close to the interface,
at least the upper box is truncated in size. Considering the fact that the interface tends to remain
flat, the following equation must be satisfied for the conservation of mass flux for an incompressible
fluid:

vn
k An

k = v0A0 for k = 1, 2, (21)

with v0 representing the propagation speed U and A0 the initial box area. At t = 0 we assume that
v0

1 = v0
2 = v0 and A0

1 = A0
2 = A0, and both boxes are fully immersed in the water. The two cores are
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FIG. 12. A flux conservation model explains the velocity difference between the upper and lower cores, and
hence the reflection. The velocities of the two cores are considered separately, with a flow channel or passage
assigned to each of them, shown by the dashed areas with an initial area A0. When the two cores propagate
forward, area A0 sees the same passage, thus maintains its original speed. When moving closer to the interface,
the channel for the upper core will be truncated, for instance, to An

1. Then the upper core must speed up to
satisfy the requirement vn

1An
1 = vn

2An
2 = v0A0, which results in a velocity difference and the reorientation of the

vortex ring. Gradually, the vortex is reflected.

placed at the centers of their respective box whose width is chosen as the initial separation between
the two cores, L0. The two cores are evolved by updating their positions and velocities as follows:
at each time step the area of the box below the interface is checked. If any part of a box crosses the
interface, its area An

k is updated to be the area of the new emergent polygon, which is the rectangle
after truncation. Once An

k is determined, vn
k is updated according to Eq. (21). The results of this

simple mass conservation model are presented in Fig. 13 for θi = 65◦.
The velocity components of the two vortex cores are shown in Figs. 13(a) and 13(b). Figure

13(a) shows how the horizontal component of the velocity ux, of each core, changes versus the
horizontal spatial coordinate x, as predicted by the model (solid and dashed lines). As the vortex
cores approach the interface, the upper core experiences a larger ux increase than the lower core.
Figure 13(b) instead shows how the vertical component of the velocity uy changes as the vortex cores
propagate. In this case, the two cores have almost identical uy throughout the process. The value of

FIG. 13. Comparison between the model and experimental results, showing that the simple model captures
the reflection behavior. (a) The model-predicted horizontal velocity ux for the two cores (curves) and the cor-
responding experimental result (triangles); (b) the vertical component |uy| are shown using the same symbols.
(c) The trajectories of the vortex cores predicted by the model. (d) Comparison between the trajectories from
(c) and the experimental results, in x − y space.
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uy = 0 corresponds to an instant when the vortex ring moves parallel to the water-air interface.
After that, uy increases again, showing a change in direction when the vortex ring is reflected by
the interface. The vortex trajectories predicted by the model are shown in Fig. 13(c). The flat blue
line at y = 0 is the water-air interface. The two curves show the traces of the upper and lower
cores, respectively. The circles show snapshots at equal time intervals before and after the reflection.
This model captures the reflection qualitatively and a comparison with experiments is presented in
Fig. 13(d).

In summary, the simple model presented in this section is reminiscent of the Huygens-Fresnel
principle that explains wave propagation [82], in that different parts of a vortex collectively deter-
mine its direction of travel. It effectively describes the reflection of the vortex ring at the interface. It
also helps to explain why horizontally issued vortex rings are deflected when they start at a distance
close to the free interface (Fig. 7). In that case, the upper portion of a vortex ring has a narrow
passage to advance, so it has to accelerate, given its initial momentum. When the free interface
is replaced by a solid wall, the no-slip boundary condition imposed on the upper core introduces
significant dissipation, breaking a speeding core. This effect is not part of the simple model. At
sufficiently small incident angles, the model would show that one or both cores accelerate and
move above the interface, ending with a situation where the core speed diverges. This corresponds
to a “broken” or “across” case. Although further refinement of the model is needed to predict
quantities such as the critical incident angle, this toy model undoubtedly provides some intuition
on the phenomenon.

VII. DISCUSSION AND CONCLUSIONS

In this work, we study how vortex rings interact with a free water-air interface. Through sys-
tematic experimentation, a phase diagram is constructed that demonstrates four different behaviors.
These behaviors include the so-called dissipated, reflected, broken, and across cases. The phase
diagram is divided into three regimes delineated by critical values of the Froude number Frc � 1
and incident angle θc (53 ∼ 55 degrees). When Fr < Frc, the vortex ring dissipates regardless of the
incident angle. For Fr � Frc, the vortex ring reflects at θi � θc, as the vortex ring gradually turns
around when it moves close to the interface. Before and after the reflection, the change in the speed
of the vortex ring is small and the incident and exiting angles are essentially the same, leading
to symmetric reflections. When θi < θc and Fr � Frc, the vortex ring crosses or breaks up at the
interface, depending on the specific value of the Froude number.

Our numerical simulations using the vortex sheet and vortex pair model provide a similar phase
diagram. The model gives values of both the critical Froude number and critical incident angle for
reflection, closely aligned with the experimental results. From both the experiments and simulations,
the reflection is seen to be accompanied by the gradual reorientation of the vortex ring. During this
process, the speed of the upper core exceeds that of the lower core because of the influence of the
boundary. Detailed analysis of the governing equations of the vortex sheet and vortex pair model
shows that the interface induces a larger velocity to the upper core as it is closer than the lower one.
The toy model, which considers the local flux conservation, also explains the speed difference.

Physically, the free interface plays the role of an elastic spring, which stores energy through its
temporally deformed shape. The deformation and subsequent restoration of the interface during
reflection shows the exchange between the kinetic energy of the vortex ring and the energy
associated with the deformed interface. The vertical kinetic energy of the vortex ring creates a bump
over the original flat interface, which has a higher potential energy than before, and a curved surface
that has an extra surface energy. Both energies tend to minimize spontaneously, converting back to
the moving vortex ring. This picture is consistent with the observation that there is no reflection
when the free interface is replaced by a solid boundary: no energy can be stored. However, such an
energy-storing-and-releasing mechanism has a limit. When the interface is further deformed, as the
incident angle is sufficiently small and Fr high, the water bump develops into a jet in the air. The
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energy conversion mechanism is no longer reversible. In such cases, the integrity of the vortex ring
is also destroyed.

Through experimental investigation, numerical simulations, and detailed analysis, we have ex-
panded the understanding of how vortex rings interact with a free boundary—the water-air interface,
particularly in cases with large Froude numbers. Future work could focus on providing a theoretical
explanation for the critical values of the Froude number or conducting 3D simulations to reveal
more details on the vortical structure and interface evolutions. Additionally, the similarity between
the reflection phenomenon of vortex rings and the total internal reflection of light merits further
exploration.
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