Modelling Bed Formation in Shallow Overland Flow

Marius Lange, Christiana Mavroyiakoumou, John McCarthy, George Sialounas

Supervised by: Prof. Graham Sander

University of Oxford

7 March 2017

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- 4 Numerical Solution of the Model
- Results and Discussion

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- Mumerical Solution of the Mode
- 5 Results and Discussion

Setting the scene

 $\label{lem:figure 1:https://commons.wikimedia.org/wiki/File:Rill_network_from_Tyrone,_lreland.jpg$

Setting the scene

http://www.youtube.com/watch?v=zgesmtodrUM&t=0m42s

 $\textbf{Figure 2}: \ https://commons.wikimedia.org/wiki/File:Ripples_mcr1.JPG$

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- 4 Numerical Solution of the Model
- 5 Results and Discussion

Setup

Setup

Equations

Water equations

$$\label{eq:mass:equation:mass:equation} \begin{split} \text{Mass: } \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) &= 0, \\ \text{Momentum: } \frac{\partial}{\partial t} (uh) + \frac{\partial}{\partial x} (u^2h + \frac{g}{2} h^2) &= gh(-\frac{\partial z_m}{\partial x} - S_f). \end{split}$$

Equations

Sediment equations

Suspended:
$$\frac{\partial}{\partial t}(hc_i) + \frac{\partial}{\partial x}(qc_i) = E_{ci} = r_i + r_{ri} - d_i$$
,
Bedform: $\frac{\partial m_i}{\partial t} = E_{mi} = d_i - r_{ri}$.

Equations

Interface equations

Deposited:
$$\rho_s(1-\phi_m)\frac{\partial}{\partial t}(z_m-z_b)=\sum_{i=1}^{i_{max}}d_i-r_{ri},$$

Cohesive:
$$\rho_s(1-\phi_b)\frac{\partial}{\partial t}(z_b-z_D)=-\sum_{i=1}^{i_{max}}r_i$$
.

Summary

Summary of dimensional HR model equations

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} &= 0 \text{ Water mass cons.} \\ \frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} + \frac{g}{2} h^2 \right) &= gh(-\frac{\partial z_m}{\partial x} - S_f) \text{ Water mom. cons.} \\ \rho_s(1 - \phi_m) \frac{\partial}{\partial t} (z_m - z_b) &= \sum_i v_i c_i - \frac{F}{g} \frac{H}{h} \frac{\rho_s}{\rho_s - \rho} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t} \text{ Interface: deposited} \\ \rho_s(1 - \phi_b) \frac{\partial}{\partial t} (z_b - z_D) &= -\sum_i \frac{F}{J} p_i (1 - H) (\Omega - \Omega_{\rm cr}) \text{ Interface: cohesive} \\ \frac{\partial (hc_i)}{\partial t} + \frac{\partial (qc_i)}{\partial x} &= \frac{F}{J} p_i (1 - H) (\Omega - \Omega_{\rm cr}) + \frac{F}{g} \frac{H}{h} \frac{\rho_s}{\rho_s - \rho} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t} - v_i c_i \text{ Susp. sed.} \\ \frac{\partial m_i}{\partial t} &= v_i c_i - \frac{F}{g} \frac{H}{h} \frac{\rho_s}{\rho_s - \rho} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t}. \text{ Bed. sed.} \end{split}$$

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- Mumerical Solution of the Mode
- 5 Results and Discussion

Non-dimensionalisation

Define scales: $\bar{x} = \frac{x}{x_0}$, $\bar{t} = \frac{t}{t_0}$, $\bar{c} = \frac{c}{c_0}$, etc.

Summary of dimensionless HR model equations

$$\begin{split} \varepsilon \frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} &= 0 \text{ Water mass cons.} \\ \varepsilon F r^2 \frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(F r^2 \frac{q^2}{h} + \frac{h^2}{2} \right) &= h \left(-\frac{\partial z_m}{\partial x} + \delta \frac{u^2}{h^k} \right) \text{ Water mom. cons.} \\ \frac{\partial}{\partial t} (z_m - z_b) &= \sum_i \left[v_i c_i - \frac{H}{h} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t} \right] \text{ Interface: deposited} \\ \beta \frac{\partial z_b - z_D}{\partial t} &= -\sum_i A p_i (1 - H) (\Omega - \Omega_{\rm cr}) \text{ Interface: cohesive} \\ \varepsilon \frac{\partial (h c_i)}{\partial t} + \frac{\partial (q c_i)}{\partial x} &= A p_i (1 - H) (\Omega - \Omega_{\rm cr}) + \frac{H}{h} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t} - v_i c_i \text{ Susp. sed.} \\ \frac{\partial m_i}{\partial t} &= v_i c_i - \frac{H}{h} (\Omega - \Omega_{\rm cr}) \frac{m_i}{m_t} \text{ Bed. sed.} \end{split}$$

Non-dimensionalisation

The scales chosen are:

$$\begin{array}{l} t_0 = \frac{z_0 \rho_s (1-\phi_m)}{v_0 c_0}, \ h_0 = \frac{F}{g} \frac{\Omega_0}{v_0 c_0} \frac{\rho_s}{\rho_s - \rho}, \ x_0 = \frac{q_0}{v_0}, \ c_0 = \frac{F}{g} \frac{\Omega_0}{h_0 v_0} \frac{\rho_s}{\rho_s - \rho}, \\ m_0 = h_0 \rho_s (1-\phi_m) \end{array}$$

With parameters:

$$\varepsilon = \tfrac{h_0}{t_0 v_0} \text{, } A = \tfrac{F\Omega_0}{J v_0 c_0} \text{, } Fr^2 = \tfrac{u_0^2}{g h_0} = \tfrac{q_0^2}{g h_0^3} \text{, } \beta = \tfrac{1 - \phi_D}{1 - \phi_m} \text{, } \delta = \tfrac{C_r u_0^3}{h_0^k v_0}$$

where the k is chosen depending on what friction law you use!

Typical values:

$$\varepsilon = 0.043$$
, $A = 0.12$, $\beta = 1.5$, $Fr = 1.37$

Rankine-Hugoniot Conditions

$$\frac{dx}{dt} = \frac{[q]_{-}^{+}}{[\varepsilon h]_{-}^{+}} \tag{1}$$

$$\frac{dx}{dt} = \frac{\left[Fr^2 \frac{q^2}{h} + \frac{h^2}{2}\right]_{-}^{+}}{\left[\varepsilon Fr^2 q\right]_{-}^{+}} \tag{2}$$

$$\frac{dx}{dt} = \frac{[qc_i]_{-}^+}{[\varepsilon hc_i]_{-}^+} \tag{3}$$

Consider the change of variables

$$\xi = x + \lambda t \tag{4}$$

$$\frac{\partial}{\partial t} = \lambda \frac{d}{d\xi}$$

$$\frac{\partial}{\partial x} = \frac{d}{d\xi}$$

and transform the dimensionless equations to be functions of ξ only

And let $\varepsilon \to 0$ and $A \to 0$ to obtain the leading order system.

Leading order system

$$q = uh = 1$$

$$\frac{d}{d\xi} \left(\frac{Fr^2}{h} + \frac{h^2}{2} \right) = -h \left(\delta + \frac{1}{\lambda} \frac{dc}{d\xi} - \frac{\delta}{h^{10/3}} \right)$$

$$\frac{dc_i}{d\xi} = \Omega \frac{H}{h} \frac{m_i}{m_t} - v_i c_i$$

$$\lambda \frac{dm_i}{d\xi} = -\frac{dc_i}{d\xi}$$

$$\frac{dz_m}{d\xi} = \sum_{i=1}^{i_{\text{max}}} \frac{dm_i}{d\xi}$$

Rearranging the leading order St. Venant momentum equation we get

$$\frac{dh}{d\xi} = \frac{h^3}{h^3 - Fr^2} \left(\delta + \frac{1}{\lambda} \frac{dc}{d\xi} - \frac{\delta}{h^{10/3}} \right) \tag{4}$$

Problem!

Singularity develops as $h^3 \rightarrow Fr^2$

Rearranging the leading order St. Venant momentum equation we get

$$\frac{dh}{d\xi} = \frac{h^3}{h^3 - Fr^2} \left(\delta + \frac{1}{\lambda} \frac{dc}{d\xi} - \frac{\delta}{h^{10/3}} \right) \tag{4}$$

Problem!

Singularity develops as $h^3 \rightarrow Fr^2$

Solution!

$$\left. \left(\delta + \frac{1}{\lambda} \frac{dc}{d\xi} - \frac{\delta}{h^{10/3}} \right) \right|_{h=h_c=Fr^{2/3}} = 0$$

Recap

- Non-dimensionalise
- Transform to travelling wave coordinates
- Find leading order system
- Remove the singularity from the St. Venant momentum equation

Rankine-Hugoniot conditions

•
$$c(\xi = 0) = c(\xi = L)$$

$$\bullet \left(\frac{Fr^2}{h} + \frac{h^2}{2} \right) \Big|_{\xi=0} = \left(\frac{Fr^2}{h} + \frac{h^2}{2} \right) \Big|_{\xi=L}$$

Main equations:

$$\begin{split} \frac{dh}{d\xi} &= \frac{1}{\lambda} \frac{h^3}{h^3 - h_c^3} \left(\lambda \delta - \lambda \delta h^{-10/3} + h^{-13/3} - c\right) \,, \\ \frac{dc}{d\xi} &= h^{-13/3} - c \,. \end{split}$$

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- Mumerical Solution of the Model
- 5 Results and Discussion

Overview: The Problem at Hand

After all simplifications, the model reads (Manning's Law):

$$\frac{dh}{d\xi} = \frac{1}{\lambda} \frac{h^3}{h^3 - h_c^3} \left(\lambda \delta - \lambda \delta h^{-10/3} + h^{-13/3} - c \right) , \tag{5}$$

$$\frac{dc}{d\xi} = h^{-13/3} - c. \tag{6}$$

Initial condition: $h(0) = h_c, c(0) = c_c$,

$$c_c = \lambda \delta(1 - h_c^{-10/3}) + h_c^{-13/3}$$
 (7)

Around the singularity, we use an analytic expansion, otherwise we integrate using ODE45. We are interested in one period only.

Form of the Solution

Figure 3 : Profile for $h(\xi)$

Challenges

We don't know λ , ξ_- and ξ_+ . We have two conditions from the shock:

Hydraulic jump condition
$$(\frac{Fr^2}{h} + \frac{h^2}{2})|_{\xi_-}^{\xi_+} = 0,$$
 (8)
Concentration condition
$$c(\xi_-) = c(\xi_+).$$
 (9)

However, we need one more condition to get a unique solution. Define $L=\xi_+-\xi_-$

Sediment Flux Mass Conservation
$$\frac{1}{L} \int_{\xi}^{\xi_{+}} c \, d\xi = 1$$
 (10)

Numerical Procedure

Idea: iterative procedure:

- fix λ ,
- ② produce data: $h(\xi)$ and $c(\xi)$, analytic expansion + numerical integration,
- **3** check all three conditions, find best values of ξ_- and ξ_+ for given λ , record error.

Repeat steps 1 - 3 for a given range of λ , compare the final errors and chose the value of λ with the smallest error.

Output

lambda	tRight	tLeft	cDiff	QDiff	L2Error
5	0.2975	-0.265	0.05703	0.24357	0.25015
5.3333	0.2975	-0.2625	0.060432	0.23882	0.24635
5.6667	12.692	-0.7925	0.0073752	0.0013565	0.0074989
6	10.697	-1.025	0.016182	0.052391	0.054833
6.3333	0.2975	-0.2625	0.072135	0.22749	0.23865
6.6667	0.2975	-0.2625	0.076016	0.2237	0.23626
7	0.2975	-0.2625	0.079891	0.2199	0.23397
7.3333	0.2975	-0.2625	0.08376	0.2161	0.23177
7.6667	0.2975	-0.2625	0.087625	0.2123	0.22967
8	0.2975	-0.2625	0.091485	0.20849	0.22768

Best value of lambda found: 5.667, with an L2 error of 0.00750 and a time span from -0.79 to 12.69. Computation time needed: 4.9 s.

>>

Figure 4: Sample output

Outline

- Introduction
- 2 Model Derivation
- Model Simplification
- Mumerical Solution of the Mode
- Results and Discussion

The numerical experiment

Free parameters for the numerical model:

- Q Q_0 : the flow rate

We fix one parameter and vary the other.

Two Parameter Family

Two parameter family of solution. Two of the most important parameters (using Manning's law) are:

- **1** The Froude number (*Fr*): $Fr^2 = \frac{S_0^{9/10}q_0^{1/5}}{gn^{9/5}}$
- ② Delta (related to roughness): $\delta = \frac{S_0^{13/10}q_0^{2/5}}{v_0gn^{3/5}}$

Results

Results: 1 Left: $S_0 = 0.0105 \text{ Right}$: $q_0 = 0.022 m^3/s$

(a) Above: wave-height against ξ ; Below: Concentration against ξ

(b) Above: wave-height against ξ ; Below: Concentration against ξ

Results: 2 Left: $S_0 = 0.0115 \text{ Right}$: $q_0 = 0.033 m^3/s$

(a) Above: wave-height against ξ ; Below: Concentration against ξ

(b) Above: wave-height against ξ ; Below: Concentration against ξ

Results: 3 Left: $S_0 = 0.015$ Right: $Q_0 = 0.1097 m^3/s$

(a) Above: wave-height against ξ ; Below: Concentration against ξ

(b) Above: wave-height against ξ ; Below: Concentration against ξ

Variation of Wave-Speed and Wave-Length with S_0 and q_0

(a) Figure above: $\lambda(S_0)$; Figure below: $\lambda(g_0)$;

(b) Figure above: $L(S_0)$; Figure below: $L(q_0)$;

Conclusions and Further Work

Project summary:

Modelled the bedform evolution process

Further Work:

Multiple particle size classes

Thank you for your attention

Thank you! Any questions are welcome.