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1 Introduction

The aim of this report is to describe water overland flow in terms of a mathematical

model to see how this flow influences the soil. In particular, we want to investigate

soil erosion on the bed (surface) of the land.

Firstly, soil erosion refers to the phenomenon that causes soil degradation as a

consequence of wind or water effects. We will consider the latter in this report.

antidunesdunes

ripples

F r < 1 F r > 1

flat bed

Figure 1.1: Subcritical and supercritical

flow. See Appendix B.

More specifically, water flowing down a

slope causes soil erosion and as water waves

propagate they tend to form rills. Within

these rills, instabilities tend to grow in the

soil, creating periodic wave-like structures

that travel upstream (antidunes) if Fr > 1,

or downstream (dunes) if Fr < 1, as shown in Figure 1.1. For more details on what

the Froude number (Fr) is, see Appendix B. Note that in this project we have as-

sumed that the flux of water, q (m2 s−1), flowing down a slope is constant and that

the water layer is shallow. The main objective is to model the formation of antidunes

in shallow overland flow.

Many mathematical models have been developed in an attempt to make predic-

tions of erosion rates as a function of the various interactions that cause soil erosion

in the first place. Here we consider the Hairsine-Rose (HR) erosion model [2]. The

HR model is unique in that it deals with the effect of particle size distribution and

distinguishes between deposited non-cohesive soil and original cohesive soil. In partic-

ular, the model assumes that there exist I particle size classes. Considering particles

of different sizes establishes a more realistic model that enables better predictions

to be made on how overland flow affects soil particles of different sizes, rather than

assuming that the soil consists of a single uniform particle size.

This report is organised as follows: In Section 2, we introduce the HR model. Then

in Section 3, we simplify the model by non-dimensionalising it, finding the travelling

wave solution and reducing the coupled PDE system to the leading order ODE system.

The leading order system is further reduced by integrating the equations that have

decoupled. Finally, in Section 4, the existence of hydraulic jumps is demonstrated

by carrying out numerical simulations. In particular, we reproduce [3, Figure 7.29]

and study the effect of changing parameters such as bed slope and overland flow rate.

Some of the details are relegated to the appendices.
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2 The HR Model

Hairsine and Rose [2] developed a soil erosion model that includes the processes of

rainfall, detachment, entrainment and sediment deposition. Figure 2.1 shows the flow

diagram for these different processes as they are visualised by the HR model.

Figure 2.1: Flow diagram describing the interaction of soil erosion processes between

the sediment flux, the original soil and the deposited layer, taken from [2].

Furthermore, Figure 2.2 shows a sketch of the flow geometry used in the model.

Most importantly, the height of the water is denoted by h (m), the water flux by

q = uh (m2 s−1) and the velocity of the water by u (m s−1). Moreover, in Figure 2.2,

zD represents the reference height, zm represents the deposited layer height and finally,

zb represents the height of the cohesive soil layer.

Figure 2.2: A sketch of the model and flow geometry.

In the following subsections, we will describe the individual components and equa-

tions that constitute the HR model as they appear in [3].
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2.1 Entrainment and Detachment

Entrainment describes the removal of sediment from the original uneroded soil by the

action of overland flow. The rate of entrainment of sediment from the original soil is

ri (kg m−2 s−1) for each size class i and is given by

ri =
F

J
pi(1−H)(Ω− Ωcr), (2.1)

where pi is the proportion of sediment of size class i of the original uneroded soil and

p ∈ (0, 1]. Its components are described below. Entrainment depends on the stream

power1 of the flow. For a plane with slope S0, the stream power per unit width of

flow, Ω, is given by

Ω = ρgS0q (2.2)

and has units (W m−2). Here ρ is the density of the water (kg m−3), g is acceleration

due to gravity (m s−2) and q is the water flux (m2 s−1).

In Figure 2.3, we show how the potential energy of the excess rainfall is dis-

tributed.

Dissipation of potential

energy of the excess rainfall

Total stream

power Ω

Available

stream power

F (Ω − Ωcr)

Threshold of

entrainment Ωcr

Entrainment

(1−H)F (Ω− Ωcr)

Re-entrainment

HF (Ω − Ωcr)

Passive power to

heat and noise

Figure 2.3: Flow diagram of the use of the potential energy.

Note that there is a critical stream power Ωcr below which no soil is entrained

or re-entrained and that some of the excess stream power (Ω − Ωcr) is lost through

1Stream power is the rate of work of the mutual shear stress between the soil surface and the

overland flow and represents the power per unit area available to get work done.
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heat or noise. Moreover, F represents the fraction of (Ω−Ωcr) which is available for

entrainment and re-entrainment. Now, we define the protection factor, H, which is

provided by the deposited layer as

H = min
(

1,
m

m?

)
=

 m
m? , m < m?,

1, m > m?,
(2.3)

where m? is a threshold mass that determines the value of H. So H ∈ [0, 1], with

H = 0 corresponding to no deposited layer and H = 1 corresponding to fully covered

original soil. Note that in this report we assume that H = 1.

Since the soil particles in the original soil are bound together by cohesive forces,

we define a parameter J (J kg−1) as the specific energy of entrainment2. The rate of

entrainment is driven by the effective excess stream power (1 − H)F (Ω − Ωcr), and

the rate of re-entrainment is driven by the rest of the effective excess stream power,

which is HF (Ω− Ωcr).

The rate of detachment ei (kg m2 s−1) is given by

ei = a(h)piP (1−H), (2.4)

where P is the rainfall rate, and a(h) is the flow depth-dependent soil detachability

coefficient and it is a property of the soil.

2.2 Soil Equations

Now we write equations that describe the bed formation and evolution. We initially

consider multiple particle sizes and concentrations ci, i = 1, ..., I, where I is the

number of particle size classes.

2.2.1 Mass Conservation for Suspended Sediment and Deposited Layer

The one-dimensional HR model equation for suspended sediment concentration ci is

given by

∂

∂t
(hci) +

∂

∂x
(qci) = ri + rri − di. (2.5)

Soil is ’added’ to sediment by overland flow lifting it off from the cohesive layer at a

rate ri, or by lifting it off the deposited layer at a rate rri. Soil is ‘lost’ when it falls

to the bed at a rate di. Note that all of these rates are dependent on the particle size.

2J is the energy per unit mass required to break the soil particle into individual size classes.

4



Let mi denote the mass that particle type i contributes to the deposited layer.

The mass conservation equation can thus be written as

∂mi

∂t
= di − rri. (2.6)

Note that here, deposited sediment is ‘lost’ from water at a rate rri and ‘added’ to it

at a rate di.

2.3 Re-Entrainment, Re-Detachment and Deposition

Overland flow acting on the deposited layer which is now covering the soil surface

causes re-entrainment. Bonds in the cohesive soil have been broken down and are thus

negligible, and the original soil has turned into deposited soil. So the force resisting

the removal of soil by the flow is dependent on the suspended sediment weight. This

is proportional to ρs−ρ
ρs

, where ρs (kg m−3) is the density of the sediment and ρ (kg

m−3) is the density of the water. The re-entrainment rate, rri (kg m−2 s−1), is

rri =
F

gh

ρs
ρs − ρ

H(Ω− Ωcr)
mi

m
, (2.7)

and the rate of re-detachment, edi (kg m2 s−1), is given by

edi = ad(h)PH
mi

m
, (2.8)

where ad(h) is the flow soil detachability coefficient for the deposited layer.

Deposition relates to the action of gravity on the suspended sediment. The sus-

pended sediment falls on the soil surface due to its weight and it increases the height

of the deposited layer. The deposition rate, di (kg m−2 s−1), is therefore given by

di = vici, (2.9)

where vi is the fall velocity for each size class and ci is the suspended sediment

concentration.

2.4 Water Equations – St. Venant Equations

The St. Venant equations are a pair of mass and momentum equations given by

∂h

∂t
+
∂q

∂x
= 0, (2.10)

∂q

∂t
+

∂

∂x

(
q2

h
+
gh2

2

)
= gh(S0 − Sf ), (2.11)

where S0 = −∂zD
∂x

is the bed slope and Sf = cru2

hk
is the friction factor3.

3Note that k and cr are different depending on what friction law is being used, i.e. Chézy is

k = 1 and cr = f
g or Manning is k = 4

3 and cr = n2.
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2.5 Soil Interface Equations

At this point we need to introduce the equations that describe the evolution of soil

interfaces between the cohesive and the deposited soil layer and also between the

deposited soil and the water layer. The two equations are given by

ρs(1− φm)
∂(zm − zb)

∂t
=

I∑
i=1

(di − rri), (2.12)

ρs(1− φb)
∂(zb − zD)

∂t
= −

I∑
i=1

ri, (2.13)

and are often referred to as the Exner equations. Here the constant φb defines the

porosity of the cohesive soil and φm the porosity of the deposited layer. The height

above the datum reference slope is given by z = mt

(1−φ)ρs
, where mt is the total mass

of suspended sediment particles.

Below we summarise our HR model equations.

Summary of HR Model Equations

Water mass conservation:
∂h

∂t
+
∂q

∂x
= 0 (2.14)

Water momentum conservation:
∂q

∂t
+

∂

∂x

(
q2

h
+
gh2

2

)
= gh(S0 − Sf ) (2.15)

Deposited soil layer: ρs(1− φm)
∂(zm − zb)

∂t
=

I∑
i=1

vici −
F

g

H

h

ρs
ρs − ρ

(Ω− Ωcr)
mi

mt

(2.16)

Cohesive soil layer: ρs(1− φb)
∂(zb − zD)

∂t
= −

I∑
i=1

F

J
pi(1−H)(Ω− Ωcr) (2.17)

Suspended sediment:
∂(hci)

∂t
+
∂(qci)

∂x
=
F

J
pi(1−H)(Ω− Ωcr)

+
F

g

H

h

ρs
ρs − ρ

(Ω− Ωcr)
mi

mt

− vici (2.18)

Bed sediment:
∂mi

∂t
= vici −

F

g

H

h

ρs
ρs − ρ

(Ω− Ωcr)
mi

mt

(2.19)

A summary of the constants that appear in the HR model can be found in Appendix C.
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3 Simplifying the Model

In this section, we treat the model to include multiple particle size classes but our

code is programmed to deal with a single particle size class. For a single particle size

class, note that quantities like mi

m
become 1 and all the quantities with an index i lose

this index.

3.1 Non-Dimensionalisation

We carry out appropriate non-dimensionalisation on the full HR model (2.14)–(2.19)

to simplify it in order to be able to work with it more easily. In particular, we

non-dimensionalise the model using the following scales (by choosing z0 = h0) and

parameters:

m0 = h0ρs(1− φm) = v0c0t0, c0 =
FΩ0

gh0v0

ρs
ρs − ρ

, z0 = h0 =
FΩ0

gv0c0

ρs
ρs − ρ

, Ω0 =
ρgh0q0δ

x0

,

A =
h0g(ρs − ρ)

Jρs
, δ =

cru
3
0

v0hk0
, F r2 =

q2

gh3
, ε =

h0

v0t0
=

c0

ρs(1− φm)
, β =

1− φb
1− φm

.

Here, Fr is a measure of how rapid the flow is and β is the ratio of porosities of the soil

layers. Suitable non-dimensionalisation leads to the dimensionless Exner equations

for the interface of the deposited layer and the original soil, respectively,

∂(zm − zb)
∂t

=
I∑
i=1

[
vici −

H

h
(Ω− Ωcr)

mi

mt

]
, (3.1)

β
∂(zb − zD)

∂t
= −

I∑
i=1

Api(1−H)(Ω− Ωcr). (3.2)

The dimensionless forms of the mass conservation equations in water are

ε
∂(hci)

∂t
+
∂(qci)

∂x
= Api(1−H)(Ω− Ωcr) +

H

h
(Ω− Ωcr)

mi

mt

− vici, (3.3)

∂mi

∂t
= vici −

H

h
(Ω− Ωcr)

mi

mt

. (3.4)

Finally, the St. Venant equations for mass and momentum conservation to describe

overland flow reduce to

ε
∂h

∂t
+
∂q

∂x
= 0, (3.5)

εFr2∂q

∂t
+

∂

∂x

(
Fr2 q

2

h
+
h2

2

)
= h

(
−∂zm
∂x

+ δ
u2

hk

)
, (3.6)

where h is the flow depth, q is the unit discharge and zm is the bed elevation.
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Note that since we wish to investigate the development of instabilities and bed

formation, the time scale should be chosen with regards to the bed evolution equation

for the deposited soil layer (2.16). The scale is determined by setting the coefficient

of the time derivative to be equal to 1 and is given by

t0 =
z0ρs(1− φm)

v0c0

. (3.7)

We choose the length scale by balancing the advection and deposition rates in (2.18).

Note that v0 is the average fall velocity and is given by v0 = 1
I

I∑
i=1

vi. The scale is

found as x0 = q0
v0

. Similarly, we choose the mass scale, m0, from (2.19).

3.2 Travelling Wave Solution

The motivation behind introducing a shock is that we want to approximate the rapid,

periodic increase in the height of the water layer above the bed form that occurs in

flumes or experiments. Subsequently we move to the frame of reference of the shock

moving with speed s and we define the travelling wave coordinate as

ξ = x+ λt, (3.8)

where λ represents the wave speed4. This way we simplify the system of PDEs to a

system of ODEs. In Figure 3.1, L is the wavelength (L = ξ+ − ξ−) and h−, h+ are

the heights before and after the hydraulic jump, respectively. The arrow below λ in

Figure 3.1 shows the direction in which the shock propagates.

 ξ-  ξ+

Fr = 1

Fr < 1

Fr > 1

Figure 3.1: Schematic diagram of hydraulic jump modified from [3].

3.3 Hydraulic Jump Conditions (Rankine-Hugoniot)

Shocks are described by interpreting the equations in a weak form and returning to

the conservation arguments from which the equations were derived. This way we can

4If we perform a change of variables then we obtain ∂
∂t = d

dξ
∂ξ
∂t = λ d

dξ and ∂
∂x = d

dξ
∂ξ
∂x = d

dξ .
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describe the shock speeds, s, using the Rankine-Hugoniot conditions, which yields

s =
[q]+−

[εh]+−
, s =

[Fr2u2h+ 1
2
h2]+−

[εFr2q]+−
, s =

[qci]
+
−

[εhci]
+
−
. (3.9)

The first and third conditions in (3.9) imply that we require c+
i = c−i , or, equivalently

that concentration is continuous through the hydraulic jump.

3.4 Reduction to Leading Order System

Note that we can write a leading order system by letting the parameters A → 0,

Ωcr → 0 and ε → 0. These are verified from experimental data5. Note that we

assume that Ωcr has to be very low for soil to have the ability to be entrained.

If we do this then the system of equations from Subsection 3.1 for Manning’s law(
k = 10

3

)
simplifies to

Water mass conservation: q = uh = 1, (3.10)

Water momentum conservation:
d

dξ

(
Fr2

h
+
h2

2

)
= −h

(
dẑm
dξ
− δ +

δ

h
10
3

)
, (3.11)

Suspended sediment:
dci
dξ

=
H

h
Ω
mi

mt

− vici, (3.12)

Bed sediment: λ
dmi

dξ
= −dci

dξ
, (3.13)

Deposited soil layer: λ
dẑm
dξ

= λ
I∑
i=1

dmi

dξ
= λ

dmt

dξ
. (3.14)

Note that we have used zm = ẑm + δ(L− x) = ẑm + zD, and that mt =
I∑
i=1

mi.

It is evident that we can integrate (3.13) to obtain

λmi + ci = ψi, (3.15)

where ψi is the constant of integration and we can also integrate (3.14) to get

λẑm = λm = ψ − c. (3.16)

So it is easy to solve equations (3.10), (3.13) and (3.14), but equations (3.11) and

(3.12) are coupled for h and c, so they require more work.

If we rearrange the water momentum equation (3.11) as

− Fr2

h2

dh

dξ
+ h

dh

dξ
= h

(
δ +

1

λ

dc

dξ
− δ

h10/3

)
, (3.17)

5In [3] typical values for these parameters appear to be: A = 0.12 and ε = 0.043.
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where we used that dẑm
dξ

= − 1
λ

dc
dξ

, we can write

dh

dξ

(
−Fr

2

h2
+ h

)
=

dh

dξ

(
−Fr2 + h3

h2

)
= h

(
δ +

1

λ

dc

dξ
− δ

h10/3

)
. (3.18)

This coupled system for both the concentration and the height of the hydraulic jump

is given by
dh

dξ
=

h3

h3 − Fr2

(
δ +

1

λ

dc

dξ
− δ

h10/3

)
. (3.19)

However, (3.19) becomes singular when h3 = Fr2 which means that at this critical

height, hc = Fr2/3, we need to set(
δ +

1

λ

dc

dξ
− δ

h10/3

)∣∣∣∣
h=hc

= 0, (3.20)

since h(ξ) is a smooth function apart from the hydraulic jump position.

We know that this singularity can be achieved in the first place since the flow

goes from subcritical (Fr < 1) at h+ to supercritical (Fr > 1) at h− and so there is

a point (in the middle possibly) where it achieves Fr = 1. This means that h can at

some point obtain this critical value hc. But we would like to remove the singularity

that occurs at h = hc, or equivalently the singularity that occurs at θ = 1. Using

(3.12) and after some manipulations that can be found in Appendix D, we write

dc

dξ
=

H

h13/3
−

I∑
i=1

vici. (3.21)

If we substitute this into (3.20) then we obtain

λδ +
Ωc

hc
−

I∑
i=1

vic
c
i −

λδ

h
10/3
c

= 0 (3.22)

and so (3.19) becomes

h16/3
c λ

dθ

dξ
=

θ3

θ3 − 1

[
h13/3
c

I∑
i=1

vi(c
c
i − ci) +

1

θ13/3

(
H − θ13/3

)
− λδhc
θ10/3

(
1− θ10/3

)]
.

(3.23)

For a detailed derivation of (3.23), see Appendix D. Let us note that for the rest of

this section we will assume that the protection factor takes the value H = 1 and in

the case of single class particle size we would have that vi scales to 1.

We factorise θ3 − 1 = (θ2 + θ + 1)(θ − 1), so (3.23) can be written as

h16/3
c λ

dθ

dξ
=

h
13/3
c θ3

θ2 + θ + 1

[∑I
i=1 vi(c

c
i − ci)

θ − 1

]
+

1− θ13/3

θ4/3(θ3 − 1)
− λδhc

(
1− θ10/3

)
θ1/3(θ3 − 1)

. (3.24)
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For that we assume that we can write the following series expansion∑I
i=1 vi(c

c
i − ci)

θ − 1
= a0 + a1(θ − 1), (3.25)

meaning that the whole equation can now be reduced to

h16/3
c λ

dθ

dξ
= b0 + b1(θ − 1). (3.26)

The task now is to determine the constants a0, a1, b0 and b1.

The solution of (3.26) subject to θ = 1, ξ = ξc is found using an integrating factor

of the form exp
(
− b1

h
16/3
c λ

ξ
)

and the series expansion of the exponential function.

Details on the derivation of (3.27) can be found in Appendix F. Integrating the first

order differential equation (3.26) yields

θ − 1 =
b0

λh
16/3
c

(ξ − ξc) +
b0b1

2λ2h
32/3
c

(ξ − ξc)2. (3.27)

Equivalently, if we solve 6 for (ξ − ξc) instead, shows that the solution can also be

given by

ξ − ξc =
λh

16/3
c

b0

(θ − 1)− b1λh
16/3
c

2b2
0

(θ − 1)2. (3.28)

Note that the above was done for the case of Manning’s law. For Chézy’s law, see

[3]. Below we present the single size class solution for both types of friction laws. See

Appendix A for more details on Manning’s and Chézy’s friction laws.

Manning Chézy

a0 = −λh
16/3
c

b0

dc(ξc)

dξ

a1 =
b1λh

16/3
c

2b20

dc(ξc)

dξ
− λ2h

32/3
c

2b20

d2c(ξc)

dξ2

cc = λδ(1− h−10/3
c ) + h−13/3

c

dc(ξc)

dξ
= h−13/3

c − cc

d2c(ξc)

dξ2
= − 13b0

3λh
29/3
c

− dc(ξc)

dξ

b0 =
h

13/3
c

3
a0 +

10

9
λδhc −

13

9

b1 =
h

13/3
c

3
(a1 + 2a0)− 5

27
λδhc +

26

27

a0 = −λh
5
c

b0

dc(ξc)

dξ

a1 = −b1λh
5
c

2b20

dc(ξc)

dξ
− λ2h10

c

2b20

d2c(ξc)

dξ2

cc = λδ(1− h−3
c ) + h−4

c

dc(ξc)

dξ
= h−4

c − cc

d2c(ξc)

dξ2
= − 4b0

λh9
c

− dc(ξc)

dξ

b0 =
h4
c

3
a0 + λδhc −

4

3

b1 =
h4
c

3
(a1 + 2a0) +

2

3

6Since it is a quadratic equation for (ξ − ξc).
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To determine what these constants should be, we first solve quadratically for b0

and this fixes a0. Once λ is chosen then cc is determined and subsequently dc(ξc)
dξ

.

Equations for a0 and b0 become two equations in two unknowns, i.e. a quadratic for

either unknown. Now, d2c
dξ2

(ξc) is also determined since we have λ, hc, b0 and dc
dξ

(ξc).

This in turn allows us to find b1 and a1. For more details, see Appendix E.

4 Numerical Procedure

In this section, we explain how to find a solution for the coupled system of equations

dh

dξ
=

1

λ

h3

h3 − h3
c

(
λδ − λδh−10/3 + h−13/3 − c

)
, (4.1)

dc

dξ
= h−13/3 − c, (4.2)

if we are given the wave speed, λ. We start by presenting the constraints on the

solution which arise from the Rankine-Hugoniot conditions of Subsection 3.3:[
Fr2

h
+
h2

2

]∣∣∣∣
ξ=0

=

[
Fr2

h
+
h2

2

]∣∣∣∣
ξ=L

and c(ξ = 0) = c(ξ = L). (4.3)

For the solution to be unique, Zhong [3] concluded that a further condition needs to

be satisfied, in the form of a mass conservation of the suspended sediment

1

L

∫ L

0

c(ξ) dξ = 1. (4.4)

The numerical procedure must, therefore, ensure that the conditions (4.3a), (4.3b) and

(4.4) are all satisfied and that the solution passes through the critical concentration

cc = λδ(1− h−10/3
c ) + h

−13/3
c and the critical height hc = Fr2/3. At the same time, we

find a wavelength range [ξ−, ξ+]. We continually modify λ to satisfy all 3 conditions.

In the numerical scheme, we fix the wave speed λ and then we produce data, h(ξ)

and c(ξ). For the analytic expansion we substitute θ = 1 + ε and θ = 1− ε in (3.28)

and then integrate numerically using the MATLAB function ODE45. Finally, we check

that all 3 conditions are satisfied. The best values of ξ− and ξ+ are chosen for the

given λ and the error for this is recorded.

4.1 Numerical Results

Firstly, in Figure 4.1, we reproduce [3, Figure 7.29] where the parameters used were:

h0 = z0 = 0.0895 m, q0 = 0.1097 m2 s−1, n = 0.02, S0 = 0.015, g = 9.81 m s−2,

F r = 1.3077, v0 = 0.4, δ = 0.046.
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Figure 4.1: Best value: λ = 5.778, with L2-error = 0.00048 and ξ ∈ [−0.86, 12.26].

It is worth noting that the solution here, as in [3], is provided based on Manning’s

friction law but can easily be changed to use Chézy’s friction law instead.

The circle at ξ = 0 corresponds to the singularity at h = hc = Fr2/3. The blue part

of the profile corresponds to the part of the wave upstream of the singularity where

we integrate numerically. The very small red part in the circle is where we expand

analytically around the singularity. Finally, the yellow part is where we integrate

numerically for the part of the wave that is downstream of the singularity.

Furthermore, the dashed lines indicate where the conditions are satisfied. In the

h(ξ) vs. ξ plot, they correspond to the downstream height which satisfies (4.3a). In

the c(ξ) vs. ξ plot, the dashed lines indicate the downstream and upstream positions

where the concentrations before and after the hydraulic jump are equal. This is

condition (4.3b). Moreover, note that the scale on the horizontal axis corresponds to

the wavelength which satisfies the mass conservation condition (4.4).

These plots are actually the solutions for a given pair of bed slope and flow rate.

4.2 Two-Parameter Family

In this subsection, we investigate the effect of varying parameters7 that determine

how overland flow affects bed formation. From the scalings found when we non-

dimensionalised the model, we have

δ =
x0S0

h0

=
n2u3

0

v0h
4/3
0

and x0 =
q0

v0

=
u0h0

v0

, (4.5)

where δ is the bed slope and it is thus a factor of the bed geometry. Equivalently, it

can be thought of as a measure of the roughness of the bed.

If we replace u0 = q0
h0

in (4.5a) and rearrange to solve for h0, then we obtain

h0 =
n3/5q

3/5
0

S
3/10
0

. (4.6)

7Require Fr > 1 since this is the Froude range for which instabilities occur.
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This gives the two-parameter family, where the two parameters are Fr2 and δ. For

Manning’s friction law, these are given by

Fr2 =
u2

0

gh0

=
q2

0

gh3
0

=
S

9/10
0 q

1/5
0

gn9/5
and δ =

n2q3
0

v0h
13/3
0

=
S

13/10
0 q

2/5
0

v0n3/5
. (4.7)

Here note that v0 = 1 for a single size class.

If we fix q0 and n, then increasing S0 increases Fr2 as we can see from (4.7a).

If now instead of increasing S0, we increase q0 by a suitable factor, then we get the

same Fr2 but different δ. This implies that we have here a two-parameter family of

solutions instead of a one-parameter family.

In Figure 4.2, we study the effect of varying S0 with q0 fixed, or varying q0 while

S0 is fixed making sure that Fr2 matches.
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(a) Fix q0 = 0.1097 and vary S0 = 0.0115
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(b) Fix S0 = 0.0150 and vary q0 = 0.033
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(c) Fix q0 = 0.1097 and vary S0 = 0.0105

ξ
0 1 2 3 4 5 6 7 8 9

h

1

1.05

1.1

1.15
h(ξ) with λ  = 16.313, δ = 0.024, S0 = 0.015, Fr = 1.1138, q0 = 0.022

LeftNum
Analytical
RightNum

ξ
0 1 2 3 4 5 6 7 8 9

c

0.8

0.85

0.9

0.95

1

1.05

1.1

c(ξ)

LeftNum
Analytical
RightNum

(d) Fix S0 = 0.0150 and vary q0 = 0.11

Figure 4.2: h(ξ) vs. ξ and c(ξ) vs. ξ plots for fixed Froude numbers Fr = 1.1603 and

Fr = 1.1138, respectively.
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In Figure 4.2, the left hand side plots are for fixed q0 = 0.1097 m2 s−1 and different

S0 for two different Froude numbers (Fr), whereas the right hand side plots are for

fixed S0 = 0.0150 and different values of q0, always making sure that Fr is kept fixed.

Furthermore, we produce plots that show the variation of wave speed and wave-

length with the bed slope, S0, and the water flow rate, q0. In the top graph of

Figure 4.3a we fix q0 = 0.1097 m2 s−1 and vary the bed slope, S0. Note that we had

to ensure that the Froude number was Fr > 1 for our model to be valid since this

is when antidunes form. In the bottom graph of Figure 4.3a we fix the bed slope at

S0 = 0.0150 and this time vary q0. Recall that we choose the values of q0 to ensure

the Froude numbers in the top and bottom graphs of Figure 4.3a agree. The point

most on the left of the upper graph of Figure 4.3a has the same Fr as the point most

on the right of the lower graph, and the same holds for all pair of points.

Here we observe that the wave speed, λ, decreases when the bed slope, S0, is

increased or when the flow rate, q0, is increased. This makes sense since if we make

the bed slope steeper or increase the water flow rate, then the bed has to travel up

against a higher resistance to its propagation.

Bed-slope S0 [  ]
0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015

W
av

e-
sp

ee
d 
λ

 [ 
 ]

0

10

20

30

40

50
λ(S0) at constant q0 = 0.1097 m2/s

Flow-rate q0 [ m2/s ]
0 0.02 0.04 0.06 0.08 0.1 0.12

W
av

e-
sp

ee
d 
λ

 [ 
 ]

0

10

20

30

40

50
λ(q0) at constant S0 = 0.0150

(a) Effect of changing S0 and q0 on λ.
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(b) Effect of changing S0 and q0 on L.

Figure 4.3: Investigating the effect of varying the two-parameter family.

On the other hand, the wavelength, L, is proportional to the bed slope and the

flow rate, since it increases with both S0 and q0. Again, we make sure that the

Froude number matches for each pair of points and vary each parameter separately.

In Figure 4.3b we see that the wavelength of the hydraulic jump increases as either

the bed slope, S0, or the water flow rate, q0, is increased. Recall that the wavelength

must satisfy condition (4.4).
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5 Conclusion

In this project, we considered an extended HR model which includes the St. Venant

equations and the Exner equations. After non-dimensionaling the full model and

changing into a reference frame moving with the shock, we were able to produce

graphs to model the behaviour of the hydraulic jumps which occur as overland flow

acts on layers of soil. Numerical simulations were used to verify the results. In the

process, we had to make sure that the Rankine-Hugoniot conditions derived from the

leading order equations were satisfied. These were: the height of the hydraulic jump,

continuity of concentration and mass conservation over the wavelength.

Although the model we considered dealt with multiple particle size classes, through-

out this project we focused our numerics on a single particle size class. Therefore,

future work could involve generalising these to take into account multiple particle size

classes. The challenge there would be in coding the equations shown in this report

for multiple classes.

In addition, the entire wavelength of the antidune was assumed to be fully covered

with deposited sediment such that H = 1. However, it is also possible to make this

more general by letting H take the form (2.3).

Finally, we explored the effect of changing parameters such as the bed slope or

the flow rate on the wave speed and the wavelength of the hydraulic jump. While

investigating this effect, we had to ensure that the range of Froude numbers did not

fall below 1 to ensure supercritical flow – otherwise it would be uninteresting as in-

stabilities would not grow.
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Appendix A Flow over Rough Surfaces–Friction Laws

In this section, we present the derivation for the two friction laws: Chézy and Man-

ning, following [1].

A.1 Derivation of Chézy’s Formula

Consider one-dimensional flow and let A denote the cross-sectional area of the flow

and q denote the discharge. The mean velocity is given by

u =
q

A
(A.1)

and the channel depth can be approximated by h ∼ A1/2.

We will assume that the flow is slowly varying, so we will ignore accelerations.

Slow corresponds to a small Froude number

Fr =
u√
gh

=
q

h
√
gh

=
q

g1/2h3/2
=

q

g1/2A3/4
. (A.2)

If Fr < 1 then we say that the flow is tranquil and if Fr > 1 then we say that the

flow is rapid. Therefore the Froude number is a measure of the tranquility of the flow.

The force balance within a cross-section is given by

τ l = ρgA sinα = ρgAS, (A.3)

where S = sinα, and α is the downstream angle of slope, l is the wetted perimeter of

a cross-section, ρ is the density, g is the gravitational acceleration and τ is the shear

stress.

Shear stress can be parameterised by

τ = fρu2, (A.4)

where f is the friction factor which depends on the Reynolds number and it has

magnitude f ≈ 0.01.

Let us define the hydraulic radius by

R =
A

l
. (A.5)

If we substitute (A.4) in (A.3) we get after rearrangement and substituting (A.5)

u2 =
gAS

lf
=
gRS

f
. (A.6)
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Therefore, we obtain that the mean velocity using Chézy is given by

u =

√
gRS

f
= CR1/2S1/2, (A.7)

where C =
√

g
f

is the Chézy roughness coefficient.

We can also define the discharge formula as

q = uA =

√
gRS

f
A =

√
gAS

lf
A =

√
g

lf
A3/2S1/2. (A.8)

The Froude number in terms of the hydraulic radius is

Fr =
u√
gR

=

√
g
f
R1/2S1/2

√
gR

. (A.9)

Thus, the Froude number becomes

Fr =

√
S

f
, (A.10)

which means that the tranquility of the flow is essentially determined by the bed

slope, S and the friction factor, f .

A.2 Derivation of Manning’s Formula

Alternatively, we can use a different friction correlation which was found by Manning.

The difference with Chézy is that the shear stress is parameterised in this case by

τ =
ρgn2u2

R1/3
. (A.11)

Using similar arguments to before, we substitute (A.11) and (A.5) in (A.3) and, we

obtain

u2 =
R1/3SA

ln2
=
R4/3S

n2
. (A.12)

So the velocity for Manning’s law is given by

u =
R2/3S1/2

n
. (A.13)

If we compare (A.7) with (A.13) then we see that C = R1/6

n
.

Taking everything into consideration, we can provide a relationship between dis-

charge and cross-sectional area q = uA if we substitute for Chézy’s (A.7) or Manning’s
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(A.13) velocity formula. This relationship includes the hydraulic radius, which itself

can be related to the cross-sectional area through R = A
l
.

We write

q =
cAm+1

m+ 1
, (A.14)

where for Chézy’s law m + 1 = 3
2

for canal shape cross-section or m + 1 = 5
4

for

circular shape cross-section and for Manning m+ 1 = 5
3

or 4
3
, respectively.

Appendix B Froude Number and Type of Flow

The magnitude of the dimensionless number called the Froude number which is given

by Fr = u√
gh

determines the type of flow. The different types of flow are listed below.

1. Fr < 1 corresponds to subcritical flow. The ripples on water,
√
gh, propagate

faster than the flow speed u of the stream, meaning that those ripples can move

both up and down the flow. Characteristics will travel both upstream and

downstream.

2. Fr = 1 corresponds to critical flow. This is the intermediate case.

3. Fr > 1 corresponds to supercritical flow. The water flows faster than ripples

can propagate, and so they can only propagate downstream. The characteristics

only travel downstream.

Appendix C Summary of Constants in HR Model

Summary of HR model constants

F : fraction of excess stream power effective in detachment

J : specific energy needed for detachment

H ∈ [0, 1] : protection factor of cohesive layer due to deposited layer

τ : shear stress on the soil

Ω = uτ, Ωcr : stream power on the soil and critical power, respectively

ρ, ρs : water and particle density, respectively
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Appendix D Deriving Equation (3.23)

Using (3.12) we can write

dc

dξ
=

I∑
i=1

dci
dξ

=
I∑
i=1

[
Ω
H

h

ψi − ci
ψ − c

− vici
]

= Ω
H

h
−

I∑
i=1

vici =
H

h13/3
−

I∑
i=1

vici, (D.1)

where in the last equality we used that Ω = 1
h10/3

.

If we now substitute this into (3.20) then we obtain

λδ +
Ωc

hc
−

I∑
i=1

vic
c
i −

λδ

h
10/3
c

= 0. (D.2)

Furthermore, we can substitute these into the coupled system for c and h

dh

dξ
=

h3

h3 − Fr2

(
δ +

1

λ

dc

dξ
− δ

h10/3

)
(D.3)

to obtain the following

dh

dξ
=

h3

h3 − Fr2

(
δ +

1

λ

H

h13/3
− 1

λ

I∑
i=1

vici −
λδ

h10/3

)

=
1

λ

h3

h3 − Fr2

(
−Ωc

hc
+

I∑
i=1

vic
c
i +

λδ

h
10/3
c

+
H

h13/3
−

I∑
i=1

vici −
λδ

h10/3

)

=
1

λ

h3

h3 − h3
c

(
I∑
i=1

(cci − ci) +
1

h13/3

[
H −

(
h

hc

)13/3
]
− λδ

h10/3

[
1−

(
h

hc

)10/3
])

.

(D.4)

Note that we used λδ = −Ωc

hc
+
∑I

i=1 vic
c
i + λδ

h
10/3
c

, that Ωc = 1

h
10/3
c

and finally Fr2 = h3
c .

We can write this also in terms of θ, where recall that θ = h
hc

, and so dividing

(D.4) throughout by h
13/3
c and noting that hc

dθ
dξ

= dh
dξ

, yields (3.23).

Appendix E Finding the constants a0, a1, b0 and b1

We assumed that we have a series expansion of the following form∑I
i=1 vi(c

c
i − ci)

θ − 1
= a0 + a1(θ − 1). (E.1)

Therefore, (3.24) can be written as

h16/3
c λ

dθ

dξ
=

h
13/3
c θ3

θ2 + θ + 1
[a0 + a1(θ − 1)] +

1− θ13/3

θ4/3(θ3 − 1)
− λδhc

(
1− θ10/3

)
θ1/3(θ3 − 1)

. (E.2)
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Note that the Taylor series expansion for θ3

θ2+θ+1
about θ = 1 is given by

θ3

θ2 + θ + 1
≈ 1

3
+

2

3
(θ − 1) +O(θ − 1)2. (E.3)

Additionally, the Taylor series expansion about θ = 1 for 1−θ13/3
θ4/3(θ3−1)

is

1− θ13/3

θ4/3(θ3 − 1)
≈ 13

9
− 26(θ − 1)

27
+

338

243
(θ − 1)2 +O(θ − 1)3, (E.4)

and the Taylor series expansion about θ = 1 for θ10/3−1
θ1/3(θ3−1)

is

θ10/3 − 1

θ1/3(θ3 − 1)
≈ 10

9
− 5(θ − 1)

27
+

5

243
(θ − 1)2 +O(θ − 1)3. (E.5)

Thus, if we combine all these we obtain

h16/3
c λ

dθ

dξ
=

[
h

13/3
c

3
a0 −

13

9
+ λδhc

10

9

]

+

[
2h

13/3
c

3
a0 +

h
13/3
c

3
a1 +

26

27
− 5

27
λδhc

]
(θ − 1) +O(θ − 1)2. (E.6)

Comparing coefficients of the same order of (θ − 1) we get expressions for b0 and b1

O(θ − 1)0 : b0 =
h

13/3
c

3
a0 +

10

9
λδhc −

13

9
, (E.7)

O(θ − 1) : b1 =
h

13/3
c

3
(a1 + 2a0)− 5

27
λδhc +

26

27
. (E.8)

Similarly, we need to obtain expressions for a0 and b0. To do that, we first consider

dci(ξc)

dξ
=

1

h
13/3
c

ψi − cci
ψ − cc

− vici (E.9)

and take the derivative of this to obtain

d2ci(ξc)

dξ2
= − 13

3h
13/3
c

dθ(ξc)

dξ

(
ψi − cci
ψ − cc

)
− 1

h
13/3
c

dci(ξc)

dξ

(
1

ψ − cc
− ψi − cci

(ψ − cc)2

)
−vi

dci(ξc)

dξ
.

(E.10)

At this point we use (E.1) and the Taylor expansion of ci around ξ = ξc

−
I∑
i=1

vi(c
c
i − ci) = (ξ − ξc)

I∑
i=1

vi
dci(ξc)

dξ
+

(ξ − ξc)2

2

I∑
i=1

vi
d2ci(ξc)

dξ2
. (E.11)
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This gives

a0(θ − 1) + a1(θ − 1)2 =
λh

16/3
c

b0

(θ − 1)
I∑
i=1

vi
dci(ξc)

dξ
− λb1h

16/3
c

2b2
0

(θ − 1)2

I∑
i=1

vi
dci(ξc)

dξ

+
1

2

(
λh

16/3
c

b0

)2 I∑
i=1

vi
d2ci(ξc)

dξ2
(θ − 1)2 +O(θ − 1)3, (E.12)

where we used (3.28).

Again, comparing coefficients of the same order of (θ − 1) we get expressions for

a0 and a1

O(θ − 1) : a0 = −λh
16/3
c

b0

I∑
i=1

vi
dci(ξc)

dξ
(E.13)

O(θ − 1)2 : a1 =
λh

16/3
c

2b2
0

b1

I∑
i=1

vi
dci(ξc)

dξ
− 1

2

λ2h
32/3
c

b2
0

I∑
i=1

vi
d2ci(ξc)

dξ2
(θ − 1)2.

(E.14)

We choose λ and this fixed the value of cc in

cc = λδ(1− h−3
c ) + h−4

c , (E.15)

so we can find dci(ξc)
dξ

= h−4
c − cc.

Furthermore, we can solve simultaneously

b0 =
h4
c

3
a0 + λδhc −

4

3
and a0 = −λh

5
c

b0

dci(ξc)

dξ
, (E.16)

to get first a quadratic for b0 given by

b2
0 +

(
4

3
− λδhc

)
b0 +

λh9
c

3

dci(ξc)

dξ
= 0. (E.17)

Solving the quadratic yields

b0 =
1

2

(λδhc − 4

3

)
±

√(
λδhc −

4

3

)2

− 4

(
λh9

c

3

dci(ξc)

dξ

) . (E.18)

Having determined b0 we can now find a0.

In a similar manner, we can substitute

b1 =
h4
c

3
(a1 + 2a0) +

2

3
(E.19)
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into the equation for a1 that is given by

a1 = −b1λh
5
c

2b2
0

dci(ξc)

dξ
− λ2h10

c

2b2
0

d2ci(ξc)

dξ2
. (E.20)

Solving for a1 yields

a1 =
1

1 + λh9c
6b20

dci(ξc)
dξ

[
−λh

5
c

2b2
0

dci(ξc)

dξ

{
2a0h

4
c

3
+

2

3

}
−−λ

2h10
c

2b2
0

d2ci(ξc)

dξ2

]
. (E.21)

All the constants in the expression for b1 are now determined.

Appendix F Deriving Equation (3.27)

We start with the differential equation

h16/3
c λ

d(θ − 1)

dξ
= b0 + b1(θ − 1) (F.1)

and we rearrange it to get

d(θ − 1)

dξ
− b1(θ − 1)

h
16/3
c λ

=
b0

h
16/3
c λ

. (F.2)

This is a first order differential equation that can be solved using an integrating

factor (I. F.). We take the integrating factor to be

I.F. = exp

(
− b1

h
16/3
c λ

ξ

)
. (F.3)

If we multiply now the differential equation (F.2) by the integrating factor (F.3) then

we obtain

d

dξ

[
exp

(
− b1

h
16/3
c λ

ξ

)
(θ − 1)

]
=

b0

h
16/3
c λ

exp

(
− b1

h
16/3
c λ

ξ

)
, (F.4)

and integrating (F.4), the equation becomes

exp

(
− b1

h
16/3
c λ

ξ

)
(θ − 1) = −b0

b1

exp

(
− b1

h
16/3
c λ

ξ

)
+ C, (F.5)

where C is the constant of integration. At this point, we multiply (F.5) by exp
(
− b1

h
16/3
c λ

ξ
)

to obtain

θ − 1 = −b0

b1

+ C exp

(
b1

h
16/3
c λ

ξ

)
. (F.6)
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To determine the constant of integration we need to use the fact that at θ = 1 we

have that ξ = ξc. This yields

C =
b0

b1

exp

(
− b1

h
16/3
c λ

ξc

)
. (F.7)

Substituting the constant found into (F.6), gives

θ − 1 = −b0

b1

+ exp

(
b1

h
16/3
c λ

ξ

)
exp

(
− b1

h
16/3
c λ

ξc

)
b0

b1

= −b0

b1

+
b0

b1

exp

(
b1

h
16/3
c λ

(ξ − ξc)
)

= −b0

b1

+
b0

b1

[
1 +

b1

h
16/3
c λ

(ξ − ξc) +
b2

1

2h
32/3
c λ2

(ξ − ξc)2 + . . .

]
=

b0

h
16/3
c λ

(ξ − ξc) +
b0b1

2h
32/3
c λ2

(ξ − ξc)2 + . . . , (F.8)

where in the third equality we used the series expansion of the exponential function.
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