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MOTIVATION AND PREVIOUS WORK MODEL STABILITY DIAGRAM (FIXED-FREE)

A membrane is a thin extensible sheet with negligible bending rigidity.
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Now we focus on the fixed-free membrane and show the stability diagram in the pretension (7j) versus mass (Ry)
parameter space. Similar to the fixed-fixed case, for large pretension the membrane is generally stable, and it
Kutta condition — F_|_ (t) becomes unstable for small pretension. The region of red triangles indicates where divergence and flutter modes
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We study how the dynamics depend on three parameters: B
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a) Membrane mass: R} = ———, (b) stretching rigidity: R3 = —— =, (c) pretension: Ty = :
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SO, f o< 1/+/Ry, where f denotes the frequency of the membrane motion.
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Recall the pressure jump equation

TIME-AVERAGED AMPLITUDE

The surface plot colors correspond to the time-averaged
amplitude of each membrane. We superpose mode shapes
at the last time step while keeping the membrane mass
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almost identical and it is only the amplitude that REFERENCES ~ 100 that as the stretching rigidity (R3) increases, the amplitude of the membrane
changes. decreases.

. . _ [Alb09] S. Alben, Simulating the dynamics of flexible bodies and vortex sheets, Journal of Computational Physics 228 (2009), no. 7, 2587-2603.

Scaling law between time-averaged amplitude and = o [AS08] S. Alben and M. J. Shelley, Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Phys. Rev. Lett. 100 (2008),

stretching rigidity (Rs3). From the governing equa- , { o no. 7, 074301.

tions, it can be shown that y(max) o 1/\/R_3 The 0 \ / 0 - el [JG12] J. W. Jaworski and R. E. Gordnier, High-order simulations of low reynolds number membrane airfoils under prescribed motion, J. Fluids and

/ ) Struct. 31 (2012), 49-66.

[Kra86] R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comp. Phys. 65 (1986), no. 2, 292-313.

[NP91] B. G. Newman and M. P. Paidoussis, The stability of two-dimensional membranes in streaming flow, J. Fluids and Struct. 5 (1991), no. 4,
443-454.

[Syg07] R. Sygulski, Stability of membrane in low subsonic flow, Inter. J. of Non-Lin. Mech. 42 (2007), no. 1, 196-202.

[TR17] S. Tiomkin and D. E. Raveh, On the stability of two-dimensional membrane wings, J. Fluids and Struct. 71 (2017), 143-163.

different colors correspond to different pretension
values Ty but with fixed mass R; = 10794,

Poster design adapted from A. Horawa’s design.




