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1 Introduction

In this report, we apply the finite difference scheme to the Poisson equation with
homogeneous Dirichlet boundary conditions. This yields a system of linear equations
with a large sparse system matrix that is a classical test problem for comparing direct
and iterative linear solvers.

The solution of sparse linear systems by iterative methods has become one of
the core applications and research areas of scientific computing. The size of systems
that are solved routinely has increased tremendously over time. This is because the
discretisation of partial differential equations can lead to systems that are arbitrarily
large. We introduce the reader to the general theory of regular splitting methods and
present some of the classical methods such as Jacobi, Gauss-Seidel, Relaxed Jacobi,
SOR and SSOR.

Iterative methods yield the solution U of a linear system after an infinite number
of steps. At each step, iterative methods require the computation of the residual of
the system. In this report, we use iterative solution methods in order to solve

AU “ f, A P Rnˆn, f P Rn. (1.1)

Linear systems can be solved by fixed point iteration. To do so, one must transform
the system of linear equations into a fixed point form and this is in general achieved
by splitting the matrix A into two parts, A “ M ´ N . Assuming that M is an
invertible matrix, this splitting induces an iterative method as follows: Given an
initial approximation Up0q we can compute Upkq, for k ě 1, by solving the system of
equations

MUpk`1q
“ NUpkq

` f, k ě 0, (1.2)

and expect that Upkq will converge to the desired solution. It is clear that the purpose
of these iterative methods is to increase efficiency by choosing the matrix splitting in
such a way that solving linear systems with the matrix M requires fewer operations
than for the original system. In the extreme case that M “ A and thus N “ 0, we
converge in one iteration to the solution. So the choice of splitting is contingent upon
M being a good approximation of A and also Mx “ y being easy to solve.

The iteration matrix of the method is G “ M´1N , and b “ M´1f. In this re-
port, we compare the performance of the backslash command, five classical iterative
methods, the Conjugate Gradient method and finally the two-grid algorithm.



2 Finite Difference Scheme

The objective of this report is to solve Poisson’s equation on the unit square:

´∇2u “ fpx, yq in Ω “ p0, 1q ˆ p0, 1q Ă R2, (2.1)

u “ 0 on BΩ. (2.2)

We solve this elliptic equation numerically using finite difference methods [LeV07].
In general, one has grid spacings ∆x “ 1

N
and ∆y “ 1

M
in the two directions and a

mesh of the form

xi “ i∆x for i “ 0, . . . , N and yj “ j∆y for j “ 0, . . . ,M. (2.3)

Let ui,j represent an approximation to upxi, yjq. The central difference approximations
for the second derivatives lead to the difference formula

´
ui`1,j ´ 2ui,j ` ui´1,j

p∆xq2
´
ui,j`1 ´ 2ui,j ` ui,j´1

p∆yq2
`Orp∆xq2, p∆yq2s “ fpxi, yjq, (2.4)

and ui,0 “ ui,M “ 0, 1 ď i ď N ´ 1 and u0,j “ uN,j “ 0, 0 ď j ď M (so that we
do not repeat the corners). The finite difference scheme is represented by the 5-point
stencil as shown in Figure 1.
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-1
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-1

ui,j`1

-1

ui,j´1-1

Figure 1: Portion of the computational grid for a two-dimensional elliptic equation.
The 5-point Laplacian about the point pi, jq is indicated in red.

Note that instead of the classical row-wise ordering, one could use the red-black
ordering which corresponds to an odd-even ordering. Since all 4 neighbours of a
red point on the grid are black points, this means that the structure of the matrix
equation would be different. For more details on this, see [LeV07, pp. 62].

This can be rewritten as a matrix problem of the form AU “ f and for this there
are two approaches one could follow. One is to write pN ` 1qpM ` 1q equations as
above for the pN ` 1qpM ` 1q unknowns. The other approach is to eliminate ui,j
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corresponding to boundary nodes so we solve for the pN ´ 1qpM ´ 1q unknowns. For
example, when i “ 1 in finite difference equation we have

´
u2,j ´ 2u1,j `��

�* 0
u0,j

p∆xq2
´
u1,j`1 ´ 2u1,j ` u1,j´1

p∆yq2
“ fpx1, yjq. (2.5)

To simplify notation we assume that ∆x “ ∆y “ h and so M “ N . However, it
is easy to handle the general case as well. We see that the vector of unknowns is
partitioned as U “ pu1,1, u1,2, . . . , u1,N´1, u2,1, . . . , uN´1,1, . . . , uN´1,N´1q

J. We order f
in a similar way. Then we have AU “ f where A P RpN´1q2ˆpN´1q2 is given by

A “

»
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pN ´ 1q blocks (2.6)

with

B “
1

h2

»

—

—

—

—

—

—

—

–

4 ´1 0

´1 4 ´1
. . . . . . . . .

´1 4 ´1

0 ´1 4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and C “ ´
1

h2

»

—

—

—

—

—

—

—

–

1 0

1
. . .

1

0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.7)

where B, C P RpN´1qˆpN´1q.
We input the matrix A into Matlab and experiment with different ways for

constructing it as efficiently as possible. We conclude that A can be represented in a
succinct way using the sum of two Kronecker products. That is, A “ Dxx ‘ Dyy “

Dxxb I ` I bDyy, where Dxx and Dyy are one-dimensional discrete Laplacians in the
x- and y- directions, respectively, and I are the identity matrices with the appropriate
sizes. For more details see Appendix A.

2.1 Model Problems

The best way to test a numerical method for solving a partial differential equation is
to use it on an equation with a known analytical solution. Using the same equation to
test various numerical methods and comparing their performance, can help determine
which method is the most efficient. In this report we look at two specific model
problems and we make appropriate comparisons to draw meaningful conclusions. We
assume that the domain Ω is p0, 1q ˆ p0, 1q Ă R2.
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1. The first problem we consider is

´∇2u “ 13π2 sinp2πxq sinp3πyq in Ω, (2.8)

u “ 0 on BΩ.

The exact solution of (2.8) is given by upx, yq “ sinp2πxq sinp3πyq.

2. The second problem we consider is

´∇2u “ ´px´ 1q3p42x2 ´ 24x` 2qypy ´ 1q ´ 2x2px´ 1q5 in Ω, (2.9)

u “ 0 on BΩ.

The exact solution of (2.9) is given by upx, yq “ px´ 1q5x2ypy ´ 1q.

In order to check the convergence of the finite difference scheme we solve the matrix
problem using Matlab’s backslash command.

2.2 Solution of Matrix Problems using backslash

In this section, we invoke Matlab’s built-in function backslash “\” to solve the
matrix system we have constructed. This operator takes advantage of the sparsity
of matrix A. We record the maximum error at a node of the mesh and see how it
converges as we increase the number of mesh spacings in each coordinate direction.
From Figure 2 it is clear that the method converges for both problems with the
expected rate Oph2q.
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Figure 2: The convergence of the finite difference solutions to (2.8) and (2.9).
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3 Classical Iterative Solution Methods

In this section we include an overview of several iterative methods that are used to
solve large sparse linear systems as a result of discretising elliptic equations of the
form (2.1). We introduce classical methods such as Jacobi, Relaxed Jacobi, Gauss-
Seidel, SOR and SSOR. All these iterative methods are based on the idea that the
matrix can be split into A “M ´N . In order to be able to analyse the convergence
properties of an iterative method we first need to give the following definition.

Definition 3.1 (Spectral Radius of Matrix A). The spectral radius of A is
given by ρpAq “ max t|λ| : λ is an eigenvalue of Au.

In general, given A “ M ´ N and (1.2) we can now state a general convergence
result for iterative methods as it appears in [Saa03, pp. 104, § 4.2.1].

Theorem 3.2. The iterative method MU pk`1q “ NU pkq` f converges for any initial
guess U p0q to the solution U of the linear system AU “ f if and only if ρpM´1Nq ă 1.

We will also write
«

A

ff

“

«

L

ff

`

«

Då
ff

`

«

U

ff

where L is the lower triangular part, D is the diagonal and U is the upper triangular
part of A. We now introduce the five iterative methods and their convergence theory.

3.1 Jacobi Method

Jacobi ’s method computes new values ofU based on data from the previous iteration.

Algorithm 1 Jacobi Method
1: Input: matrix A P Rmˆm; and vector f P Rm.
2: for iterates k “ 1, 2, . . .

3: for rows (equations) i “ 1, . . . , n

4: U
pkq
i “ 1

aii

˜

´
n
ř

j“1,j‰i

aijU
pk´1q
i ` fi

¸

5: end

6: end

The Jacobi method corresponds to the splitting A “ M ´ N , with M “ D and
N “ ´pL` Uq.
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Therefore, we have the following

DUpkq
“ ´pL` UqUpk´1q

` f, (3.1)

which implies that the Jacobi iteration matrix is of the form GJ “ ´D
´1pL` Uq.

Theorem 3.3 (Convergence of Jacobi). If the matrix A P Rnˆn is strictly
diagonally dominant, i.e. |aii| ą

ř

j‰i |aij| for i “ 1, . . . , n, then the Jacobi iteration
(3.1) converges.

To simplify the notation, let us assume that we have the same discretisation in the
x- and y-direction and so we denote h “ 1

N
. The eigenvalues of the Jacobi iteration

matrix GJ can be shown to be λr,sJ “ 1
2
rcosprπhq ` cospsπhqs and so for the Jacobi

method the spectral radius of the iteration matrix is given by

ρpGJq “ cospπhq “ 1´
π2h2

2
`Oph4q. (3.2)

The convergence, thus, gets worse as h gets smaller. Note that as h Ñ 0 (N Ñ 8)
then ρpGJq Ñ 1. Since the error is multiplied by the spectral radius at each step, the
convergence slows down.

3.2 Relaxed Jacobi Method

A generalisation of the Jacobi method is the so-called Relaxed Jacobi method. A
relaxation parameter, ω, is introduced and the method is as follows:

Algorithm 2 Relaxed Jacobi Method
1: Input: matrix A P Rmˆm; and vector f P Rm.
2: for iterates k “ 1, 2, . . .

3: for rows i “ 1, . . . , n

4: U
pkq
i “ ω

˜

fi ´
n
ř

j“1,j‰i

aijU
pk´1q
i

¸

1
aii
` p1´ ωqU

pkq
i

5: end

6: end

For ωAx “ ωb, ω P R`, M “ D, N “ p1´ωqD´ωpL`Uq our iteration matrix is

M´1N “ p1´ ωqI ´ ωD´1pL` Uq. (3.3)

If Relaxed Jacobi’s method is used, then the eigenvalues of the iteration matrix are
given by

λr,sRJ “ p1´ ωq `
ω

2
rcosprπhq ` cospsπhqs . (3.4)

6



In particular, if we choose ω “ 1
2
we have λr,sRJ “

1
2
` 1

4
rcosprπhq ` cospsπhqs, and

so all the eigenvalues lie in the interval p0, 1q. The corresponding eigenvectors for
M´1N have entries vr,si,j “ sinpriπhq sinpsjπhq. Thus high frequency eigenvectors (r, s
are large), correspond to small eigenvalues. The optimal choice though is ω “ 2

3
(see

[LeV07, pp. 106]) and we will use this value when we present some numerical results.

3.3 Gauss-Seidel Method

Even though the Jacobi method is very slow, it is not difficult to improve it. The
Gauss-Seidel method differs to Jacobi’s method in that at the k-th step the available
values of U pkqi are being used to update the solution. The algorithm becomes:

Algorithm 3 Gauss-Seidel Method
1: Input: matrix A P Rmˆm; and vector f P Rm.
2: for iterates k “ 1, 2, . . .

3: for rows i “ 1, . . . , n

4: U
pkq
i “ 1

aii

˜

´
i´1
ř

j“1

aijU
pkq
j ´

n
ř

j“i`1

aijU
pk´1q
j ` fi

¸

5: end

6: end

This corresponds to A “M ´N , with M “ D ` L and N “ ´U to give

pD ` LqUpkq
“ ´UUpk´1q

` f. (3.5)

The spectral radius of the iteration matrix for Gauss-Seidel is given by

ρpGGSq “ cos2pπhq “ 1´ π2h2 `Oph4q. (3.6)

This means that the Gauss-Seidel method generally converges about twice as fast as
the Jacobi method. For more details, see [Dem97, Cor. 6.1].

3.4 Successive Over-Relaxation Method (SOR)

Like the Jacobi method, the Gauss-Seidel method also admits a modification based
on adjustments to the correction vector. Here, we introduce the Successive Over-
Relaxation method (SOR), which is derived from Gauss-Seidel by introducing a pa-
rameter ω. It uses an acceleration procedure to increase the rate of convergence. The
component U pkqi is computed as for Gauss-Seidel but then averaged with its previous
value.
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Algorithm 4 Successive Over-Relaxation Method (SOR)
1: Input: matrix A P Rmˆm; and vector f P Rm.
2: for iterates k “ 1, 2, . . .

3: for rows i “ 1, . . . , n

4: U
pkq
i “ ω

˜

fi ´
i´1
ř

j“1

aijU
pkq
j ´

n
ř

j“i`1

aijU
pk´1q
j

¸

1
aii
` p1´ ωqU

pk´1q
i

5: end

6: end

We use again the Gauss-Seidel iteration (3.5) but now we multiply it by ω and
add on both sides of the resulting expression p1´ωqDU, to obtain the SOR iteration
[GGK14, pp. 695]

pD ` ωLqUpkq
“ ωf` rp1´ ωqD ´ ωU sUpk´1q. (3.7)

Note that if we let ω “ 1 then we recover the Gauss-Seidel algorithm, ω ă 1 corre-
sponds to under-relaxation and ω ą 1 to over-relaxation. The choice of the relaxation
parameter ω is not arbitrary. The following theorem [GGK14, Th. 11.9] states the
condition that ω must satisfy to ensure convergence of the SOR algorithm.

Theorem 3.4 (Kahan, [Kah58]). Let A P Rnˆn and A “ L ` D ` U , where D is
an invertible diagonal matrix. If the SOR iteration matrix takes the form GSOR “

pD ` ωLq´1rp1´ ωqD ´ ωU s, then the inequality

ρpGSORq ě |ω ´ 1| (3.8)

holds for all ω P R.

Using Theorem 3.2 we conclude that for convergence of SOR we need ρpGSORq ă 1.
Together with Theorem 3.4, this implies that it is necessary to choose ω P p0, 2q.

According to [Dem97, Th. 6.7], the optimal relaxation parameter for SOR is given
by ωopt “

2

1`
?

1´ρpGJq2
“ 2

1`sinpπhq
« 2´ 2πh, where ρpGJq “ cospπhq and the optimal

spectral radius of SOR is ρpGSORq “ ωopt ´ 1 “ ρpGJq
2

r1`
?

1´ρpGJq2s2
, or equivalently

ρpGSORq “
cos2pπhq

r1` sinpπhqs2
“ 1´ 2πh`Oph2q, (3.9)

where we have used the series expansion of cospπhq and sinpπhq for small h and also
the binomial expansion. Even with this optimal ω we see that ρpGSORq Ñ 1 only
linearly in h as h Ñ 0, rather than quadratically as with the Jacobi method or with
Gauss-Seidel. This makes a substantial difference in practice.
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3.5 Symmetric Successive Over-Relaxation Method (SSOR)

It is sometimes useful to preserve symmetry. Therefore, if the matrix A is symmet-
ric (which implies that U “ LJ) then we can use the Symmetric Successive Over-
Relaxation (SSOR) method instead.

Algorithm 5 Symmetric Successive Over-Relaxation Method (SSOR)
1: Input: matrix A P Rmˆm; and vector f P Rm.
2: for iterates k “ 1, 2, . . .

3: for rows i “ 1, . . . , n

4: U
pk´ 1

2q
i “ ω

˜

fi ´
i´1
ř

j“1

aijU
pk´ 1

2q
j ´

n
ř

j“i`1

aijU
pk´1q
j

¸

1
aii
` p1´ ωqU

pk´1q
i

5: U
pkq
i “ ω

˜

fi ´
n
ř

j“i`1

aijU
pkq
j ´

i´1
ř

j“1

aijU
pk´ 1

2q
j

¸

1
aii
` p1´ ωqU

pk´ 1
2q

i

6: end

7: end

This takes the form:

pD ` ωLqUpk´
1
2q “ ωf` rp1´ ωqD ´ ωU sUpk´1q (3.10)

pD ` ωUqUpkq
“ ωf` rp1´ ωqD ´ ωLsUpk´

1
2q. (3.11)

Thus, it can be shown that M from the matrix splitting is symmetric and is given by

M “
1

ωp2´ ωq
pD ` ωLqD´1pD ` ωUq. (3.12)

Provided that ρpLUq ă 1
4
, even with ωopt “

2

1`
?

2r1´ρpGJqs
« 2 ´ 2πh, the SSOR

method converges more slowly than SOR since ρpGSSORq ď 1´ πh [Axe96, pp. 294].

3.6 Comparison of Convergence Rates of Iterative Methods

We use N “ 48 and a stopping criterion in which the iterative method terminates
when ||AUpkq

´ f ||8 ă TOL. In particular, we choose this tolerance to be TOL “ 10´8.
In Figure 3, we plot the convergence of solutions computed using the iterative methods
as a function of the iteration number. Here, we used Up0q

“ 0 for all methods, and
the optimal relaxation parameters: ω “ 2

3
for Relaxed Jacobi, and ω “ 2 ´ 2πh for

SOR and SSOR [Dem97, pp. 299]. Moreover, one observes that the relative rates of
convergence of the iterative methods agree with the theory we have presented in the
previous subsections.
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Figure 3: The convergence of the iterative methods to the exact solution of the matrix
problems (computed using backslash in Matlab) using Up0q

“ 0.

Number of iterations for convergence
Model Problem Jacobi RJ1 (ωopt) Gauss-Seidel SOR (ωopt) SSOR(ωopt)

(2.8) 1892 2845 3256 275 243

(2.9) 8650 12980 4319 214 225

Table 1: Number of iterations required by all the iterative methods with TOL “ 10´8

and maxIter “ 20000 for both model problems, using Up0q
“ 0.

4 The Conjugate Gradient Method (CG)

Now we present a more efficient method called the Conjugate Gradient method, used
for solving linear systems of equations with a symmetric and positive-definite coef-
ficient matrix. CG is the starting point of Krylov subspace methods and essentially
consists of two parts: choosing a descent direction (the direction of the residual), and
picking a local minimum for f along that direction.

Before introducing the CG algorithm, we give a useful bound for the error.

Theorem 4.1 (Convergence Bound for the CG Method). Let U pkq be the
approximation at the k-th step of the CG algorithm. Then the error epkq :“ U´U pkq

satisfies the estimate

||ek||A
||e0||A

“
||u´ uk||A
||u´ u0||A

ď 2

ˆ?
κ´ 1

?
κ` 1

˙k

, (4.1)

where κ “ λmaxpAq
λminpAq

is the condition number of matrix A.

1Here we let RJ stand for Relaxed Jacobi.
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Algorithm 6 Conjugate Gradient Method (CG)

1: Initialise: Choose Up0q, p0 “ r0 :“ f´AUp0q

2: for iterates k “ 0, 1, . . . , n´ 1

3: αk “
rJk pk
pJkApk

;

4: Uk`1 “ Uk ` αkpk;

5: rk`1 “ rk ´ αkpk;

6: βk “ ´
pJkArk`1

pJkApk
;

7: pk`1 “ rk`1 ` βkpk;

8: end

4.1 CG Method on Model Problems

In this subsection we present how the CG method behaves for the two model problems
we are considering in this report. Figure 4 displays the8-norm of the error for the CG
method as applied to the 5-point equations with N “ 48, in the first 500 iterations.
For comparison we also provide identical information for the SOR method. This is
the outcome without preconditioning that we will see in § 6 and which accelerates
convergence a great deal further. The numerical results agree with the theory since
we expect the CG method to converge faster than any classical iterative method.
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(a) Model Problem 1: (2.8).
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(b) Model Problem 2: (2.9).

Figure 4: The convergence of the CG method and SOR to the exact solution of the
matrix problems (computed using backslash in Matlab) with various Up0q.

In Table 2, we observe that the CG method converges in one step when the solution
is an eigenvector of the coefficient matrix A. This happens in particular for (2.8) when
we choose Up0q

“ 0 or Up0q
“ f. This indicates that the Conjugate Gradients method

is sensitive to initial guesses. See Appendix D for more details.
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General Statement 4.2. If the solution U to AU “ f can be written as a linear
combination of s eigenvectors of A, then if the initial guessUp0q is a linear combination
of the same s eigenvectors as the solution is, then the Conjugate Gradients method
converges in at most s steps.

Number of iterations for convergence
Initial guess Up0q CG (2.8) SOR (ωopt) (2.8) CG (2.9) SOR (ωopt) (2.9)
Zero 1 328 147 265
RHS: f 1 154 80 94
Random 178 229 178 229

Table 2: Number of iterations required by CG and SOR with TOL “ 10´10.

A similar statement holds for the Jacobi and Relaxed Jacobi methods. Note that
if we use Relaxed Jacobi, then we have GRJ “ p1 ´ ωqI ` ωGJ, so the eigenvalues
are given by (3.4). In particular, λr,sRJ

`

1
2

˘

“ 1
2
` 1

4
rcosprπhq ` cospsπhqs ą 0, with

1 ď r, s ď N ´ 1. The smallest λr,sRJ

`

1
2

˘

correspond to large r and s, which in turn
correspond to high frequency eigenvectors. Thus, we get faster convergence of high
frequency components of the error. This means that the error is smoothed and we
can solve on a coarser grid. This motivates the next section.

5 The Multigrid Method

Figure 5: Nested grids, from
the finest to the coarsest. Figure
taken from [Ise09].

After discussing simple iterative methods and Krylov
subspace methods such as the CG method, we are now
ready to introduce multigrid methods. In this section,
we will discuss the main ideas behind the multigrid
algorithm, starting from the two-grid algorithm, and
then outlining the multigrid one. A picture of the
multigrid work-flow is given in Figure 5.

The multigrid method converges much faster than
the classical iterative methods. The key idea is to
switch to a coarser grid to estimate the error. The
advantages are that iterating on a coarser grid takes
less work, and the convergence rate for some error com-

ponents is greatly improved by transferring the error to a coarser grid. We can rapidly
damp all of the error modes using the smoother computational benefits associated
with frequent visits to coarse grids.
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5.1 Two-Grid Algorithm

y

x

Figure 6: Schematic of the grid
used for the two-grid algorithm.
Also extends to multigrid.

We start by introducing the simplest version of
multigrid algorithms, namely the two-grid algorithm.
Note that it is important to choose an appropriate
smoother, as well as restriction and prolongation op-
erators. Before outlining the algorithm, let us first
introduce some notation. We define two meshes: Ωh

(fine grid) and Ω2h (coarse grid), the restriction oper-
ator, R2h

h : Ωh Ñ Ω2h, and the prolongation operator,
P h
2h : Ω2h Ñ Ωh. In Figure 6, blue points correspond

to coarse grid points and all points correspond to fine
grid points.

The simplest way to define the prolongation op-
erator is by linear interpolation; see [Saa03, Chap. 13]. Note that for the re-
striction operator we normally take R2h

h “ αpP h
2hq

J where α P R is such that
αpP h

2hq
JpP h

2hqe “ R2h
h P

h
2he “ e, with e “ p1, 1, . . . , 1qJ. Thus, we have Uh

“ P h
2hU

2h

and U2h
“ R2h

h U
h. The loss of accuracy is small if Uh is a ‘smooth vector’, i.e. a vec-

tor of coefficients representing a non-oscillatory function. There are two possibilities
for the coarse grid operator A2h: the 5-point formula on the 2h-mesh or the Galerkin
coarse grid operator A2h “ R2h

h A
hP h

2h “ αpP h
2hq

JAhP h
2h. The latter is more commonly

used in finite element methods.

Algorithm 7 Two-Grid Algorithm

1: Initialise: Choose Up0q

2: for two-grid iterations i “ 0 until convergence
3: (Pre-smooth) ν1-times on Ωh

4: Calculate the residual rh “ f h ´ AhUpkq and restrict it on Ω2h: r2h “ R2h
h r

h

5: Solve A2he2h “ r2h to get coarse grid correction e2h

6: Prolong the coarse error e2h: Uh
“ Uh

` P h
2he

2h

7: (Post-smooth) ν2-times on Ωh

8: Update the solution: Upk`1q
Ð Upkq

9: end

In Figure 7, we see that the two-grid method converges much faster than the CG
method for any Up0q. Here we used 4 pre-smoothing and 4 post-smoothing Relaxed
Jacobi

`

ω “ 2
3

˘

iterations. See Table 6 in Appendix E for more details on the results.
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Figure 7: The convergence of the CG and two-grid method to the exact solution of
the matrix problems (computed using backslash in Matlab) with two Up0q’s.

5.2 Multigrid Algorithm — Motivation

The main components of the multigrid method are: a hierarchy of levels along with
restriction and prolongation operators to move between grids, as well as a smoother.

Algorithm 8 Multigrid Algorithm: Upkq
h “ MGγ

pAh,Up0q, f h, ν1, ν2, γq

1: Initialise: Choose Up0q

2: (Pre-smooth) ν1 times on Ωh

3: if ph ““ h0q

4: Solve the problem
5: else
6: Restrict residual on Ω2h: r2h “ R2h

h r
h, where rh “ f h ´ AhUpkq

7: Set initial iterate on the next coarser grid: e2h “ 0
8: if p2h ““ h0q

9: Solve A2he2h “ r2h to get coarse grid correction e2h

10: else
11: Recursion: e2h “ MGγ

pA2h, 0, r2h, ν1, ν2, γq
12: end
13: Prolong the coarse error e2h: Uh

“ Uh
` P h

2he
2h

14: (Post-smooth) ν2 times on Ωh

15: Update the solution: Upk`1q
Ð Upkq

16: end

14



A smoother is any scheme that has the smoothing property of damping quickly the
high-frequency components of the error. We seek the solution to AU “ f defined on
Ωh. In the algorithm, we embed the two-level method into itself [Vol14]. We assume
there exist l` 1 grids, l ě 0, where Ωh is the finest grid and the grid spacing for each
coarser grid doubles. Let L “ 2l and h0 stand for the coarsest mesh-size. Note that
the implementation of the multigrid cycle is of recursive nature.

In Algorithm 8, there is a new parameter γ, which determines how many times
MG is iterated. The case γ “ 1 corresponds to the multigrid V-cycle and γ “ 2

corresponds to the W-cycle. For an illustration of these, see the diagrams in Figure 14
and Figure 15 of Appendix E. Some tools of analysis for the multigrid would be the
smoothing and approximation properties. The reader is referred to [ESW14, § 4.3.2]
for more details.

6 Preconditioning Techniques

The convergence rate of iterative methods depends on the spectral properties of A.
Thus, one may attempt to transform the linear system into one that has the same
solution but better spectral properties. This captures the essence of preconditioning.
Preconditioners replace the original problem Au “ f by a new system with a smaller
condition number or a better clustered spectrum. Good preconditioners improve
the convergence of the numerical method, sufficiently to overcome the extra cost of
constructing and applying the preconditioner.

If P is a symmetric, positive-definite matrix (P is referred to as a preconditioning
matrix or left preconditioner), then the preconditioned CG method (PCG) consists
of applying the CG method to the preconditioned system

P´1Au “ P´1f. (6.1)

Similarly, if AP´1v “ f , where v “ Pu, then P is called a right preconditioner and
finally, if P is available in split form P “ PLPR, such that P´1L AP´1R “ P´1L f , where
v “ PRu, then we have centred preconditioners. If we let P “ HHJ then (6.1) can
be written as

pH´1AH´J
qpHJuq “ H´1f. (6.2)

Note that even if the matrix product P´1A is non-symmetric it is still possible to
use P as a preconditioner whilst preserving symmetry of the preconditioned system.
Because of the similarity transformation

H´J
pH´1AH´J

qHJ
“ P´1A, (6.3)
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this CG method with preconditioner P is called the Preconditioned Conjugate Gradi-
ent method. This involves solving for zpkq given rpkq of Pzpkq “ rpkq at each iteration.

6.1 Choices for the Preconditioner P

In devising a preconditioner we have to find a matrix P that approximates A, and for
which solving a system is easier than solving one with A, or we could even approximate
the inverse of A. A complete and detailed discussion of preconditioners can be found
in [Axe96], or in [VdV03, Chap. 13]. Requirements of the PCG method include:

1. κpP´1Aq ! κpAq for fast convergence,

2. the solution of Pzpkq “ rpkq should be cheap in terms of computational memory
and operation counts.

One could take P “ I which corresponds to unpreconditioned CG and leads to
simple ideas like P “ diagpAq, P “ triagpAq, or P consisting of part of A with
bandwidth f . P “ I satisfies Requirement 2. Similarly, one could choose P “ A,
leading to consideration of incomplete triangular factorisations of A. Notice that this
case satisfies Requirement 1. In this section, we present some standard choices for
preconditioners largely following [Wat15].

Diagonal Preconditioners

One commonly used preconditioner which can be implemented easily is the Jacobi
preconditioner in which P is P “ diagpAq. This is in general effective when A is a
symmetric, positive-definite matrix. If it is non-symmetric then a standard choice is

pii “

˜

n
ř

j“1

a2ij

¸1{2

. More details can be found in [QSS10] and in [BBC`94, §3]. Block

diagonal preconditioners can be constructed in a similar way.

Polynomial Preconditioners

One could also attempt to estimate the spectrum of A, find a polynomial p such that
1´ zppzq is small on the approximate spectrum and then define the preconditioner as
P´1 “ ppAq. This is known as polynomial preconditioning. The preconditioned system
takes the form ppAqAu “ ppAqf and we expect the spectrum of ppAqA to be more
clustered near z “ 1 than that of A. Suppose that A is of the form A “ I ´B, where
ρpBq ă 1. Using the Neumann series we can write the inverse of A as A´1 “

ř8

j“0B
j.
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So an approximation may be derived by truncating this infinite series [BBC`94].
Another example is to express the residual polynomial qpzq “ 1 ´ zppzq in terms of
Chebyshev polynomials [Riv74].

Incomplete Cholesky Factorisation (IC)

Another approach is to apply a sparse Cholesky factorisation to A. If A is a sym-
metric, positive-definite matrix it is sometimes possible to carry out the incomplete
factorisation LLJ “ A ` R, where L P Rnˆn has a given sparsity pattern. In this
method we choose to discard small elements that fall outside this pattern. So, if R
is a small remainder, then the preconditioner is P “ pLL´Jq´1 and its action on a
vector is done by two sparse triangular solves. If we replace Au “ f by

L´1AL´JpLuq “ L´1f (6.4)

and note that L´1AL´J “ I ´ L´1RL´J, then since R is small, we can expect the
eigenvalues of L´1AL´J to be clustered around 1.

We wish to confirm whether an Incomplete Cholesky factorisation preconditioner
leads to faster convergence of the CG. If our domain is Ω “ p0, 1q ˆ p0, 1q then
κpAq “ Oph´2q. See [ESW14, § 1.6] for a detailed explanation of this. Therefore,
(4.1) implies that the number of CG iterations needed for convergence of the CG
is Oph´1q. If we choose the sparsity pattern of the factor L to be the same as the
lower triangular part of A then κpP´1Aq “ Oph´2q. One modification to IC is the
modified Incomplete Cholesky (MIC) [BBC`94, § 3.4]: If aika´1kk akj ‰ 0, instead
of simply discarding this quantity, subtract it from the diagonal element aii. This
reduces to κpP´1Aq “ Oph´1q and bound (4.1) implies that the number of PCG
iterations that are needed for convergence are Oph´1{2q.

Sparse Approximate Inverse Preconditioners (SpAI)

In SpAI preconditioners we are constructing a sparse matrix M to approximate A´1,
see [GS95, CDG92]. Specified sparsity patterns on the approximate inverse are im-
posed. More specifically, let N :“ t1, . . . , Nu and S be a given set of index pairs pi, jq,
with i, j P N , then GS is the space of all N ˆ N matrices with entries in positions
indexed by S. Similarly, if we define Sj :“ ti : pi, jq P Su then GjS is the space of all
N -vectors with entries in positions indexed by Sj. In particular, for a non-singular
matrix A the approximate inverse is defined as P “M´1 that solves

M “ arg min
MPGS

||AM ´ I||2F . (6.5)
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For an explanation on why we choose to minimise the Frobenius norm, see [HG94].
We find the non-zero entries ofM by solving the unconstrained least-squares problem

min
MPGS

||AM ´ I||2F “ min
mjPGj

S

N
ÿ

j“1

||Amj ´ ej||
2
2 “

N
ÿ

j“1

min
mjPGj

S

||Amj ´ ej||
2
2, (6.6)

where mj represents the j-th column of M , ej is the j-th column of the identity
matrix I, || ¨ ||F is the Frobenius norm and || ¨ ||2 is the 2-norm. Notice that this choice
leads to parallelism since the columns mj of M can be computed independently.
Indeed, the solution of (6.6) separates into N independent least-squares problems:

min
mjPGj

S

||Amj ´ ej||
2
2 with j “ 1, . . . , N. (6.7)

The main advantage is that the least-squares problems are cheap to solve given that S
is sparse and the residuals can be improved by enlarging the space S.

6.2 The Preconditioned Conjugate Gradient Method (PCG)

We compare the preconditioned CG method with the regular CG method. Figure 8
shows how various preconditioners improve the convergence rate of the CG method.
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Figure 8: The convergence of unpreconditioned CG and preconditioned CG using
Jacobi, SSOR, IC and the modified IC, with Up0q

“ randn(N-1).

Number of iterations for convergence
Model Problem CG PCG (Jacobi) PCG (SSOR) PCG (IC) PCG (MIC)
(2.8) & (2.9) 197 178 & 180 77 62 44

Table 3: Number of iterations required by CG and the four PCG methods with
TOL “ 10´12 and maxIter “ 5000 for both model problems, usingUp0q

“ randn(N-1).
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We observe that the Jacobi preconditioner P “ diagpAq does not improve CG
since the diagonal elements of A are all identical. It is essentially the identity matrix
multiplied by a constant which corresponds to the regular CG method. Thus, the
Jacobi preconditioner would only work if the diagonal elements were not all the same.
Moreover, the CG method with an SSOR preconditioner performs sufficiently better
than unpreconditioned CG. However, it is clear that Incomplete Cholesky precondi-
tioners are still more effective, with the modified version being the most effective out
of the preconditioners tested in this report. This result again agrees with the theory.

7 Conclusion

The approach in this report was to focus on a number of numerical methods and
present some of their most important properties. We considered two model problems
to validate the implementations we carried out and give a sense of how the various
algorithms perform for each of these model problems.

We investigated the classical iterative methods for solving general, large and sparse
linear systems, together with their convergence theory. We concluded that SOR is
the most efficient out of the five classical iterative methods tested; however, it is still
slower than the CG or two-grid method. Moreover, we concluded that the CG method
with IC preconditioning was more efficient than the regular CGmethod. Various other
preconditioners were suggested to improve the convergence of the algorithm.

Finally we noticed that there are no major differences between problems (2.8)
and (2.9) when applying the numerical methods. An exception is the CG method,
whenUp0q is an eigenvector of A, since the solution is also an eigenvector of A for (2.8).
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Appendix A Sparse Storage in Matlab

In this report, we were working in Matlab with a sparse matrix arising from the finite
difference method. Note that the sparse matrix commands store only the nonzero
elements and so if a matrix contains many zeros, converting it to sparse storage saves
memory. In particular, we construct the matrix A in the following way:

Listing 1: Constructing the coefficient matrix A using sparse storage in Matlab.

1 function [A] = Laplacian(N,M)

2 n=N-1;

3 m=M-1;

4 Ix=speye(n,n);

5 Iy=speye(m,m);

6 Ex=sparse(2:n,1:n-1,1,n,n);

7 Ey=sparse(2:m,1:m-1,1,m,m);

8 Dxx=Ex+Ex'-2*Ix;

9 Dyy=Ey+Ey'-2*Iy;

10 A=kron(Dxx,Iy)+kron(Ix,Dyy);

11 end

Graphic visualisation of the structure of the sparse matrix A is sometimes a useful
tool and so we investigate the sparsity pattern of A using the spy(A) command. In
Figure 9, we see the structure of A, the number of nonzero elements of the matrix
and the time it takes for it to be constructed for the case N=M= 48 (as used in the
implementations of our numerical methods).
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(a) Sparsity pattern of matrix A.
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(b) Zoomed-in part of sparsity pattern ofA.

Figure 9: Plots of the sparsity pattern of the coefficient matrix A with N=M= 48

using Matlab’s spy command.
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The backslash command in Matlab can be used to solve systems using sparse
storage by implementing some very efficient direct methods which depend on the
structure of matrix A, i.e. whether it is tridiagonal, banded, or symmetric and
positive-definite. In Appendix B we present some results obtained using backslash.

Appendix B More Graphs using backslash

Figures 10a, 10b show the mesh plot of the analytical solution and the numerical solu-
tion vs. px, yq for N=M= 25, respectively and Figures 10c, 10d show the error at each
mesh point computed by subtracting the exact solution from the numerical solution
obtained through backslash for N=M= 25 and N=M= 50, respectively. Experi-
menting with the number of mesh points we noticed that the greater the number of
mesh points, the smaller the error. Figure 10b shows that the numerical solution is
smooth and zero at the boundaries as expected.
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(d) Numerical error with N=M= 50.

Figure 10: Mesh plots produced by Matlab using the backslash command for (2.8).
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We proceed in a similar way for (2.9) in Figure 11. We can see that the numerical
solution is smooth and that as we increase the number of mesh points the numerical
error, which is the difference between the numerical solution and the analytical solu-
tion of the Poisson problem (2.9), decreases. Notice in particular how the scales in
the error axis compare in Figure 11c and Figure 11d.
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Figure 11: Mesh plots produced by Matlab using the backslash command for (2.9).

Appendix C More on the Comparison of Classical

Iterative Methods

First we give a summary of the M and N splittings for the five classical iterative
methods in Table 4. In the table, ω corresponds to a relaxation parameter, L is the
lower triangular part of A, D is the diagonal part and U is the upper triangular part.
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Matrix Splittings of A “M ´N

Method M N

Jacobi D ´pL` Uq

Relaxed Jacobi D p1´ ωqI ´ ωD´1pL` Uq

Gauss-Seidel D ` L ´U

SOR D ` ωL p1´ ωqD ´ ωU

SSOR 1
ωp2´ωq

pD ` ωLqD´1pD ` ωUq
“

I ´ 1
2´ω
pD ` ωLqD´1

‰

”

U ` p1´ωq
ω

D
ı

Table 4: Summary ofM and N splittings for A for the five classical iterative methods.

In this appendix, we compare again the rate of convergence of the five classical
iterative methods as introduced in § 3 but this time using a different initial guess to
the one chosen in §§ 3.6.

Comparing Figure 3 with Figure 12, we notice that the iterative methods converge
much faster when we take as an initial guessUp0q

“ 0 rather thanUp0q
“ randn(N-1).

This is because the zero vector is closer to the true solution, and so it takes less
iterations until it converges. Iterative methods are also sensitive to initial guesses.
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Figure 12: The convergence of the iterative methods to the exact solution of the
matrix problems (computed using backslash in Matlab), usingUp0q

“ randn(N-1).

In Table 5 we notice that there is no big difference in the number of iterations
required for the five iterative methods to converge between the two model problems,
or no difference at all.
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Number of iterations for convergence
Model Problem Jacobi RJ (ωopt) Gauss-Seidel SOR (ωopt) SSOR(ωopt)

(2.8) 9970 9191 3096 191 243
(2.9) 9970 9191 3096 191 225

Table 5: Number of iterations required by all iterative methods with TOL “ 10´8 and
maxIter “ 20000 for both model problems, using Up0q

“ randn(N-1).

Appendix D Convergence of CG in One Step

In this appendix, we include more details on why the CG method converges in just
one iteration when Up0q

“ 0 or when Up0q
“ f.

First note that the solution for (2.8) is U “ Vp2,3q, where this is the eigenvector
of A with index p2, 3q. This means that the solution is an eigenvector of A. Since
U “ Vp2,3q then we have that AU “ AVp2,3q

“ λp2,3qVp2,3q
“ f, with f also an

eigenvector of A.
Let us now choose as an initial guess the vector Up0q

“ cVp2,3q. Note that here the
scalar c can either be c “ 0 which implies that Up0q

“ 0, or c “ λp2,3q which implies
that Up0q

“ f. Then we write

p0 “ r0 “ f´ AUp0q
“ λp2,3qp1´ cqVp2,3q, (D.1)

where ||p0|| ą TOL presumably. Calculating the rest of the components of the CG
method we obtain

α0 “
||r0||

2
2

pJ0Ap0
“

1

λ
, (D.2)

Up1q
“ Up0q

` α0p0 “ cV`
1

λ
λp1´ cqV (D.3)

and finally

r1 “ r0 ´ α0Ap0 “ λp1´ cqV´
1

λ
Aλp1´ cqV “ 0. (D.4)

This shows that the CG method for (2.8) converges in one step ifUp0q
“ 0 orUp0q

“ f.

Appendix E More on the Multigrid Method

In Table 6 we see that the two-grid method converges in just a few iterations for both
(2.8) and (2.9). It is in general much faster than the unpreconditioned CG method.
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The only occasion where this does not hold is when the choice of Up0q is such that it
favors the CG method, i.e. if we choose Up0q to be an eigenvector of A just like the
solution of the problem.

Number of iterations for convergence
Initial guess Up0q CG (2.8) Two-Grid (2.8) CG (2.9) Two-Grid (2.9)
Zero 1 18 147 13
Random 179 8 179 5

Table 6: Iteration number required by CG and Two-Grid method with TOL “ 10´10.

However, we can also compare the two-grid method against the preconditioned
CG method to test which of these converges faster. The results for N “ 48 with
TOL “ 10´12 and maxItN “ 5000 are presented in Figure 13.
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(a) Model Problem 1: (2.8).
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(b) Model Problem 2: (2.9).

Figure 13: Comparison of convergence of the various PCG methods and the Two-Grid
method to the exact solution of the matrix problems (computed using backslash in
Matlab), using Up0q

“ randn(N-1).

Number of iterations for convergence
Model Problem Two-Grid PCG (SSOR) PCG (IC) PCG (MIC)
(2.8) & (2.9) 11 & 7 77 61 44

Table 7: Number of iterations required by Two-Grid and the four PCG methods with
TOL “ 10´12 and maxIter “ 5000 for both model problems, usingUp0q

“ randn(N-1).

We mentioned in §§ 5.2 that if we iterate the MG once (γ “ 1) then this cor-
responds to a V-cycle multigrid. The name becomes apparent when one looks at
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Figure 14 and the way we move through the different levels of grids. The V-cycle
consists of going down through the grids from fine to coarse, performing a relaxation
sweep on each grid, then coming back up from coarse to fine, and again performing a
relaxation sweep.

Figure 14: V-cycles in multigrid methods. Figure taken from [Saa03].

But other patterns of visiting grids are also possible. For instance, if one iterates
the MG twice pγ “ 2q then this corresponds to a multigrid W-cycle. Here, one uses
two V-cycles at each of the coarser levels, resulting in a pattern like the one shown
in Figure 15 for four grid levels.

Figure 15: W-cycles in multigrid methods. Figure taken from [Saa03].
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