A Network of Mathematical Theorems

A.Chotai, C.Mavroyiakoumou, I.Papadopoulos, X.Wen

Imperial College London

Department of Mathematics

June 17, 2015

June 17, 2015

1 / 32

A Network of Theorems

Fig: A Weighted, Undirected Network

|--|

A Network of Theorems

Fig: A Part of Our Network of Theorems

3

(日) (周) (三) (三)

brill noether theorem

- Removal of 78 nodes and approximately 5000 edges
- We keep any nodes that the substring bug contributes less than 5% to the frequency e.g. the central limit theorem which is a substring of Lindeberg central limit theorem.

Duplicate nodes correspond to theorems that have the same name and appear in our data set with

different

ID number

Duplicate nodes correspond to theorems that have the same name and appear in our data set with

different

• ID number

but same

Frequency

Degree

Theorem IDs	Theorem Name	Frequency	Degree
118, 167	distortion theorem	295	80
143, 868	Helmholtz theorem	190	40
175, 767	Torelli theorem	82	36
191, 362	Godel incompleteness theorem	26	16
219, 698	Bertini theorem	78	42
253, 547	art gallery theorem	179	12
272, 531	Fredholm theorem	134	89
426, 1460	Chasles theorem	60	15
553, 1619	Dirac theorem	27	17
571, 749	Euclid theorem	7	5
766, 1580	Foster theorem	7	4
836, 1644	Oka theorem	8	5

Duplicate nodes correspond to theorems that have the same name and appear in our data set with

different

ID number

but same

Frequency

Degree

Theorem IDs	Theorem Name	Frequency	Degree
118, 167	distortion theorem	295	80
143, 868	Helmholtz theorem	190	40
175, 767	Torelli theorem	82	36
191, 362	Godel incompleteness theorem	26	16
219, 698	Bertini theorem	78	42
253, 547	art gallery theorem	179	12
272, 531	Fredholm theorem	134	89
426, 1460	Chasles theorem	60	15
553, 1619	Dirac theorem	27	17
571, 749	Euclid theorem	7	5
766, 1580	Foster theorem	7	4
836, 1644	Oka theorem	8	5

Action taken: Delete the 12 duplicates from our data set!

Compare initial *n* consecutive characters

Potential bugs that arise from the n = 7 case include:

Potential bugs that arise from the n = 7 case include:

- Theorems that have various spellings.
 - e.g. Pythagoras theorem, Pythagoreas theorem and Pythagorean theorem

Potential bugs that arise from the n = 7 case include:

- Theorems that have various spellings.
 - e.g. Pythagoras theorem, Pythagoreas theorem and Pythagorean theorem
- Theorems that are the same but when mentioned in a publication often have **one of the contributors' name omitted**.
 - e.g. Ascoli theorem and Ascoli Arzela theorem

Potential bugs that arise from the n = 7 case include:

- Theorems that have various spellings.
 - e.g. Pythagoras theorem, Pythagoreas theorem and Pythagorean theorem
- Theorems that are the same but when mentioned in a publication often have **one of the contributors' name omitted**.
 - e.g. Ascoli theorem and Ascoli Arzela theorem
- Nodes that describe a **general class of theorems** rather than being an actual theorem.
 - e.g. theorems on continuation, theorems on sums of squares, and theorems of Euclid

This method motivates the bug hunting.

Merging Nodes

Merging Nodes

Sum the weights of the two edges to a shared node

- Pythagoras theorem Hahn Banach theorem (2)
- Pythagorean theorem Hahn Banach theorem (3)

 $\left(1-\frac{11}{40}
ight) imes 7=5.075.$ We round this up to 6.

(日) (同) (三) (三)

3

10 / 32

June 17, 2015

Merging Nodes

Order and Strength

- The order of a node is the number of different theorems to which the node is connected
- The strength of a node is the sum of the weights of each edge incident to that node

We are interested in nodes with low degrees and high strengths.

It is helpful to consider the nodes at a local level.

We create a non-symmetric matrix P of normalised weights, where $P_{ij} = \frac{w_{ij}}{s_i}$

Mean Squared Errors

$$P = \left(\begin{array}{ccc} 0 & P_{12} & P_{13} \\ P_{21} & 0 & P_{23} \\ P_{31} & P_{32} & 0 \end{array}\right)$$

Mean Squared Errors with Green's theorem

In this graph, the shortest path from 1 to 3 is through 4.

The diameter is the longest length of the shortest paths.

Fig 1: This network has diameter 3. Fig 2: This network has infinite diameter

Theorem 1 ID	Theorem 1 name	Theorem 2 ID	Theorem 2 name
936	Karp Lipton theorem	1250	Sipser Lautemann theorem
1144	Lickorish Twist theorem	1253	Lickorish Wallace theorem
1214	Mohr Mascheroni theorem	1267	Poncelet Steiner theorem
1264	Mertens First theorem	1288	Mertens Second theorem

Fig: The four distinct pairs of theorems that we stripped off

Node Betweenness Centrality

Which theorem is 'important'?

Node Betweenness Centrality

Which theorem is 'important'? Look at its node betweenness centrality

Node Betweenness Centrality

Which theorem is 'important'? Look at its node betweenness centrality

Definition

$$BC(n) = \sum_{s \neq n \neq t} \frac{\sigma_{st}(n)}{\sigma_{st}}$$

where $\sigma_{st}(n)$ is the total number of shortest paths passing through node n and σ_{st} is the total number of shortest paths from node s to node t.

In this graph, node 2 has the highest node betweenness centrality.

MVT most 'important' intermediary

Theorems with the highest node betweenness centrality.¹

¹Diagram produced in *Gephi*

Normalised Node Betweenness Centrality

Normalised BC(n)

$$BC(n) = \sum_{s \neq n \neq t} \frac{\sigma_{st}(n)}{\sigma_{st}} \div \binom{N-1}{2}$$

where N is the total number of nodes.

Normalised Node Betweenness Centrality

Normalised BC(n)

$$BC(n) = \sum_{s \neq n \neq t} \frac{\sigma_{st}(n)}{\sigma_{st}} \div \binom{N-1}{2}$$

where N is the total number of nodes.

278 nodes have zero node betweenness centrality, which means that they lie on the boundary of the network of mathematical theorems.

275 250 200 175 100 75 50 25 0 0 Value

Betweenness Centrality Distribution

Edge Betweenness Centrality

Edge betweenness centrality indicates the 'importance' of a edge.

Definition

$$BC(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}}$$

where $\sigma_{st}(e)$ is the total number of shortest paths going through edge e and σ_{st} is the total number of shortest paths from node s to node t.

The edge connecting 1 to 4 has the highest edge betweenness centrality.

Most 'important' pair of theorems

This pair of theorems has the highest edge betweenness centrality

This edge lies on most shortest paths between other theorems.

Most 'important' pair of theorems

This pair of theorems has the highest edge betweenness centrality

This edge lies on most shortest paths between other theorems.

Pair of theorems with high edge BC

Reveals community structure of the network

Algorithm 1 Girvan – Newman Algorithm

1: Calculate the edge betweenness centrality of all the edges.

Reveals community structure of the network

Algorithm 1 Girvan – Newman Algorithm

- 1: Calculate the edge betweenness centrality of all the edges.
- 2: Remove the edge with the highest edge betweenness centrality.

Reveals community structure of the network

Algorithm 1 Girvan – Newman Algorithm

- 1: Calculate the edge betweenness centrality of all the edges.
- 2: Remove the edge with the highest edge betweenness centrality.
- 3: Recalculate the edge betweenness centrality for the remaining edges.
- 4: Repeat step 2 and step 3 until all the edges have been deleted.

Community Detection

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Community (3.#)	Count	Percentage
0	492	37.70%
1	735	56.32%
2	55	4.21%
3	2	0.15%
4	13	1.00%
5	2	0.15%
6	2	0.15%
7	2	0.15%
8	2	0.15%

Normalised Laplacian after deleting central limit theorem, h theorem, divergence theorem, mean value theorem, bayes theorem, implicit function theorem, fluctuation dissipation theorem, gauss theorem and characterisation theorem

Theorem ID	Theorem name	Frequency
84	final value theorem	483
208	initial value theorem	165
240	gershgorin theorem	111
369	gershgorin circle theorem	90
424	gerschgorin circle theorem	111
506	gauss lucas theorem	40
544	bauer fike theorem	65
736	poincare separation theorem	29
944	gershgorin disc theorem	30
1108	bisectors theorem	6
1132	gerschgorin disc theorem	12
11169	perpendicular bisector theorem	2
1266	sylvester determinant theorem $\triangleleft \square \rightarrow \triangleleft \square \rightarrow \square \rightarrow$	2 ≣ ∽۹0

Community Results

Community (4.#)	Count	Percentage
0	66	5.06%
1	18	1.38%
2	49	3.75%
3	9	0.69%
4	10	0.77%
5	17	1.30%
6	18	1.38%
7	48	3.68%
8	7	0.54%
9	4	0.31%
10	973	74.56%
11	15	1.15%
12	19	0.54%
13	4	0.31%
14	23	1.76%
15	19	1.46%
16	10	0.77%
17	2	0.15%
18	2	0.15%
19	2	0.15%
20	2	0.15%

Theorem ID	Theorem name	Frequency	
9	fubini theorem	1008	
319	sklar theorem	31	
633	savitch theorem	6	
820	perpendicular bisector theorem	14	
Inverse Laplacian Waiting Time			
Dynamics			

Image: A matrix

Communities

June 17, 2015 28 / 32

э

Minimum spanning forest

- A spanning forest of our network H includes all the nodes of H and contains no cycles
- We use Kruskal's algorithm to create a spanning forest

Maximum spanning forest

Maximum spanning forest

-

Maximum spanning forest

イロト イヨト イヨト