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A big part of abstract algebra involves properties of integers and sets .

We now collect the properties we need for future reference.

Well Ordering Principle : Every nonempty set of positive integers contains a

smallest member.

N . We say
a nonzero integert is a divisor of an integers if there is

an integer i s
.t .

S = th.

We write ts (i. e . "t dividess") . When is not a divisor of s we write

ts. A prime is a positive integer greater
than 1 whose only positive

divisors areI and itself
.

We say that an integers is a multiple of an integer t if there is an integer

U such that s = th
.

↑ [divisor
multiple of S

of t

SETS AND EQUIVALENCE RELATIONS

SET THEORY

A set is a well-defined collection of objects ; defined in a way that we can

determine for any given object x whether or not x belongs to the set.

The objects that belong to a set are called its elements (or members).

Notation : · Capital letters such as A or X for sets
-

· If a is an element of the set A we write aA.

Usual ways to specify a set.

& List all of its elements inside a pair of braces

e
. g . X = EX ,, X2, ...,Xn]

for a set containing elements X,.
X

c. .... In
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② State the property that determines whether or not an object x belongs to the set.

X = Ex : x satisfies PJ

if each xeX satisfies a certain property
P.

Example. If tis the set of even positive integers , we can describe E by writing
either E = 52 , 4 ,

6....]
or E =Ex : x is an even integer and x>o]

We write IEE to mean 2 is in the set E

- 3 E to mean-3 is not in the set E
.

Important sets we will consider :

IN = En : n is a natural numberl = 51 ,
2

,
3

, ..]

7) = En : n is an integery = [ ..., -1 , 0 ,
1

,
2 ,

... ]

Q = Ev : r is a rational numberl = [P/q : p .ge where gyo]

IR = 5x : x is a real number]

C = Sz : z is a complex number3

Relations between sets

A set A is a subset of B /ACB) if every element of A is also an element of B

e . g (4 ,
5

, 83 <92 , 3
,

4 .
5 ,

6
,
7. 8]

and INCZCQCIRCK

- Each set is a subset of itself.

- A set B is a proper subset of a set A if BCA but BEA .

- If A is not a subset of Bwewrite A& B , e . g. 94 . 7 ,9) 52 , 4 ,
5

, 8 ,9)
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- Two sets are equal (A = B) if we can show that A CB and BCA.

- An empty set is a set with no elements in it (0) . The empty set is a

subset of every set.

Operations

- The union AUB of two sets A and B is AUB =SX : x= A or xc By
- The intersection ARB Of A and B is AMB = Ex : XcAand x + B]

e . g. If A = 51 ,
3

, 57 and B = 3 1 , 2 ,
3

, 97 then AUB = 5 1 , 2 , 3 , 5 ,93
AlB = 4 1 , 33

- We take the union and intersection of more than two sets

= A
, UzU ...A

= A,...

- When two sets haveno elements in common
, we call them disjoint (AnB = %)

e.g. if E is the set of even integers and O is the set of odd integers then
E and O are disjoint.

Sometimes we'll work within one fixed setUf universal set

For any set ACU , we define the complement of A (written as All to be the set

A = \X : x+ V and x A]

The difference of two sets A and B is

ALB = AlB' = \X : x+A and Xy By



-
Eample . Let IR be the universal set and suppose that

A = GX+ (R : 0 < x= 3) and B = \xfIR : 2 = x<4]

Then AnB= Xer : 2ex:33 oh
AUB = ExfIR : 0 < x<4] A

A-B = EXfIR : 0 <X(2]

A = EXEIR : x 20 or X> 3]

#oposition& Let A, B,
andC be sets.Then

1. AVA = A
,
AnA = A

,
ALA =q

2. Aud : A
, And =0

3. Au(BUC) = (AUB) UC , An(BC) = (A1B)nC
4. AUB = BUA , AlB = B1A

5 AU(B1C) = (AUB) n (AUC)
6. An(BUC) = (AnB)u(Arc)

In class we prove 1. and 3. and the rest will be given to you as exercises in your HW,

#of 1 . AUA = 5X : Xe A or XeAy
A 1A = (x : xAandx=A]

= [X : xA] and

= A
= (x: x =A]

= A

ALA = A1A' = 0

#of 3. For sets A , B ,
and C

AUCBUC) = AUEX : x (Borx+ C3
= (x : X+Aorx+B

, orx =C]
= EX : xzA or x=BJUC
= (AUB) UC

Similarly for An(B1c) = (A1B) nC
.

It
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Theorem!DeMorgan'soa b

1 . (AUB)' = AMB'

2. (AnB)' = A'UBI

A
gof . 1

. If AUB =% then the theorem follows immediately since both A and B are the

empty set

Otherwise, we must show that (AUB)'c A'lB' and (AUB)'s A'RB'
Let x= (AUB) ! Then X AUB

.

So x is neither inA nor in B
, by the definition of the union of sets. By the

definition of the complement , XeA' and XB1. Therefore
, XEA'B' and we have

CAUB') CA'MB'

To show the reverse inclusion , suppose that XeA'lB! Then XeA' and XeB'

=> XA and XX B . Thus X* AUB and so Xe(AUB)' · Hence , this shows

CAUB)'s A'MB' .

These two together imply (AUB)' = A'lB'·

I

Cartesian products and mappings

Given two sets A and B we define a new set AXB =Cartesian product
of A and B

as a set of ordered pairs.

That is : AxB = &(a, b) : af A and beB]

Example. If A = Ex ,y 3 ,
B = 1

, 2
, 33 and C = @ then

AxB = E(X,1) . (x , 2) , (x, 3) . (y . 1) . (y, 2) , (y , 3)]
and AxC = 0
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We define the Cartesian product ofn sets to be

A , x ... XAn = &(a, , . . . . an) : aitAs for i = 1, . . ., ny

Subsets of AxB are called relations .

We define a mapping or function f cAxB from a set A to a set B to be the
special type of relation where each element atA has a unique element be B such
that (a , b)ef.

Equivalently , for every element in A , f assigns a unique element in B.
ff : A -B A - B

Instead of writing ordered pairs (a ,b) = AxB we write flal = b or f : ar b.

The set A iswlled the domain off and f(A) = [f(a) : acAzCB is called
the range or image off.

[Note : We cal think of the elements in the function's domain as input values and
the elements in the function's range as output values]]

Emple . Suppose A = $1 , 2, 33 and B=a
,
b

, ch .
We define relations f and g from

Set A to set B.

A B I A B
I 9
f a I-a

-- !-> b

->3- C

"
3 C

The relation f is a mapping.
The relation g is not a mapping g is

not because I-A is not
-

assigned to a unique element in B
i

. e.g() =aqg()) =b

# A relation is well-defined if each element in the domain is assigned toa
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Unique element in the range .

· If f : A -B is a map and the image of f is B ,
i .e. f(A) = B then f is said

to be onto or surjective .

-> In other words
, if I an act for each beB s

. t . f(a) =b
, then + is onto.

· A map is me-to-one or injective if aFac implies flai) = f(z2) ·
-> In other words , a function is one-to-one if flail = f(a)) implies a =92↑ ↑ ↑-> - -9 ->

&a: ->p(a) a: ->o P(a,) :-
·
-

a- - p(az) - ·Y(92) · ·
·

.
-

↑ is one-to-one to is not one-to-one ↑ is onto

A map that is both onto and one-to one is called bijective. ↑ is not on to

=ample . Let f:-> Q be defined as f(u) = My.

Then f is one-to-one but not onto there is no n for which finl= 3/4 for example

Given two functions we can construct a new one by using the range of the

first function as the domain of the second function. Let f : A - B and g : B = C

be mappings. Define a new map , the composition of fand g from A to C by
(gof)(x) = g(f(x)

Example. Composition of maps
gof : A - C

A
f

B A C
a

i X3 Y
3 Z

Example . Let f(x) = x2 and g(x) = 2x +5
. Then (og)(x) = f(g(x) = (2x+5t2= 4x2+20x +25

and (gof)(x) = g(f(x)) = 2x2 + 5
.

*The order matters !! In most cases fog y got



However
, in some cases we could have fog : gof .

Let f(x)= X3 and g(x) =3. Then I
(fog)(x) = f(g(x)) = f(3() = (3)3 = x

and (g0f) (x) = g(f(x)) = g(x3)= 33 = X
.

Example. Given a 2x2 matrix A = (9) , we can define a map Ta : IR-> IR2 by

Ta(x ,y)= (ax + by ,
(x + dy)

for any (x.y) in 1592 . This is matrix multiplication (b)() =(
Maps from 12 to IRM given by matrices are called linear maps or linear transformations.

#ample. Suppose that S = 31 , 2 , 33. . Define a map it : S- S by

π(1) = 2
, π(z) = 1 , π(3) = 3

This is a bijective map.An alternative way of writing it is :

(ii) = (3)
For any set s

,
a one-to-one and onto mapping it : S- S is called a permutation

of S
.

Theorem 2 . Let f : A + B
, g : B+ C and h : C +D

.

Then-

1 . The composition of mappings is associative
, i . e. Chog)of = ho(gof).

2. If fand gave bothone-to-one
, then the mapping got is me-to-one

3. If f and g are both onto
, then the mapping got is into

4. If f andg are bijective , then so is got.

Part 4 . follows directly from 2. and 3.

Prof We prove 1. and 3
. again.

1. We must show that Chog)of = 60 (gof)

For aft we have (starting from the RHS)
: (ho(gof) (a) = (h(gof) (a)

= h(g(f(a))
=Chog) (f(a)
=(Chog)of) (a)



3. Assume that fandg are both onto functions. Given CeC,
we must show that

= an aeA s.t
- (gof)(a) = 9 (f(a)) = c .

However since
gis into J a beB S

. t . g(b)=
Similarly, J an at A s. t· f(a) = b

. Accordingly

(gof)(a) = g(f(a)
= g(b)
= c .

D

If Sis any set we will use idg or id to denote the identity mapping from Sto
itself. We define this map by id(s) :s ses.

A map g :B-A is an inverse mapping of f:A-B if gof : ida fog : ide-
↓

it "undoes" the function

A map is set to be invertible if it has an inverse. We use f "for the inverse off-

Example. f(x) = In(x) has inverse f "(x) = ex and viceversa (but we need to ensure
that we carefully choose the domains).
Note that f (f "(x)) = (n(ex) =x

f
-

(f(x) = enx = x

Example Suppose that A : (1) A defines a map from IR" to IR by

Ta(x ,y) = (3x +y , 5x +zy).

We find the inverse map of Ta by inverting the matrix A Ta" = Tat

A
+

= (-33") = Tn"(x ,y) =

Ta + = (2x -y ,

-5x +3y)
Check that TA "oTa(x ,y) = TaoTa"(x ,y) = (x ,y)
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Theorems A mapping is invertible if and only if it is both one-to-one andonto

.

( =)
#of . Suppose that f : A + B is invertible with inverse g : B + A. Then gof : Ida is

the identity map ,
that is g(f(a)) =a

If a
.. aztA with flail = flab then a

,
= g(f(ai) = g(f(ac)) =92 .

Thus f is
one-to-one.
-

Now suppose that beB
. To show that f is into it's necessary to find an -A s .

t.
-

f(a) =b but f(g(b)) = 0 with g(b) - A
.

Let a =g(b) .
since f and g

(E) are inverses of each other

Conversely, Let f be bijective and let beB.
Since f is onto

, J an aeAs .t
. f(a) =b.

Because f is one-to-one
, a must be unique. Define g by letting g(b) =a.

We have now constructed the inverse of f.

g(b) = g(f(a)) =a

A

Equivalence relations and partitions

Wegeneralizeequality with equivalence relations and equivalence classes.

An equivalence relation on a set X is a relation RCXXX such that

· (x , x)ER for all x+X reflexive property
· (x ,y)R implies (y,X)ER symmetric property
· (x ,y) and (y ,z) +R imply (x ,z)ER transitive

property

Given an equivalence relation R on a set X we usually write xry instead of
(x ,y)=R .

Example. Let p , gir and s be integers with g . sto.

Define F- if ps = gr.
q

Clearly- is reflexive and symmetric

& - Egif pq =pqVrifps =gif vg-s



#To show that it is also transitive , suppose that fa-5 and with gis, to

Then ps =

gr and rust
. Thus psu =q = get

multiply -> subst for
ps = gr -x = St

with z

Since to spr) = gra = st-

Dividing by s we have pu =gt . Consequently· For In

Example Suppose that f and gare differentiable functions on R
. We con define an

equivalence relation on such functions by Letting f(x)-g(x) if f'(x=g'(x).
~ is both reflexive and symmetric.

To show transitivity , suppose f(x)-g(x) and g(x) -h(x)
=> +'(x) =g((x)g'(x) = h'(x)

Then f(x) =g(x) +<
,g(x) = h(x) +2 Where,are constants.-

&

f(x) = h(x) + c +2

f(x) - h(x) = 4 +2

f'(x) - h'(x) = 0

f(x) = h(x) .

Given a nonempty set X,
a partition
-Thus f(x) - h(x) of X is simply a collection of non-

El - overlapping subsets whose union is the

original set

A partition P of a set X is a collection of nonempty sets X.,
Xz
, ... such that

X = Y eg .
the sets 203 , 51 , 2 , 3 .... and

5.... -3
, -2

, -13 constitute a partition
and Xi1Xj = 0 for itj partitionof of the set of integers

into 4 subsets
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Let~ be an equivalence relation on a set X and Let-X.

Then [x] = EyeX : yoxy is called the equivalence class of X.

Theorem Given an equivalence relation~ on a set X
, the equivalence classes of X

form a partition ofX.

Conversely , if P =EXi] is a partition of a set X , then there is an equivalence

relation on X with equivalence classes Xi.

&ofSuppose that there exists an equivalence relation~ on the set X.
For any xeX ,

the reflexive property shows that x[x] and so K] is
nonempty. Clearly X = U [x

xX

NowLe+ X , y =X .
We need to show that either [x] = [y] or [x]1[y] = 0.

Suppose that the intersection of [x] and ty] is not empty and that ze[x] ety]
Then z-xnd Ery . By symmetry X-z and yez

and by transitivity Xvy
- since[y] = 3 xe Y : x -Y]

(For [y)c[x]
, z ely]1[x]

Hence (x]c[y] since [x] = EyeX : grx3 ze[y] and z + [x]
zey zax

Stran)Similarly we have [y]c[X] and so [x] = [y]. (sym .) yez x-z => yex)
Thus any two equivalence classes are either disjoint ([X]1[y] =g) or exactlythe same ((x) =(y)

Conversely , suppose that P : EXi] is a partition of a set X. Let two elements be
equivalent if they are in the same partition. The relation is reflexive. If x is in the
same partition as y , then y is in the same partition as X so

xmy => yex.
Finally, if X is in the same partition as y andy is in the same partition as z
then x must be in the same partition as z and transitivity Golds.

It
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example Let r and s be two integers and suppose that nEI .

We say that

is congment tos modulo n
,
if r-S is divisible byn ,

i . e. U-s =nk for some keT

Cs mod n)
We write v = s (modn)

4) 1 = 17 (mod8) Since 41-17 = 24 is divisible by :

We claim that congruence modulo n forms an equivalence relation of TL.

Certainly any integer t is equivalent to itself since r-r = o is divisible by n.

=r mod n

-v

We now show that the relation is symmetric.
If v = s (mod n) then U-S = = (S-r) is divisible by n

So s-r is divisible byn and ser (mod n).

Now suppose that v = s(mod n) and s= t(mod n)
Then7 integers k and I s

.
t

. V-s = kn and s-t = In
To show transitivity , we must show that u-t is divisible by n.

u- t = r- S + s - t

= kn + In

= ( + 1)n

and so v-t is divisible by n

17

· A nonempty subset S of TL is well-ordered if S containsleast element.

NOTE: The set 7 is not well-ordered since it doesnot contain a smallest element

But the natural numbers are well-ordered.

Well-ordering principle : Every nonempty subset of the natural numbers is
well-ordered

Section 2
. 2 : THE DIVISION ALGORITHM

#eorem 2
.9 (Division algorithm) with a > b

Let a and b be integers ,
with b >0. Then 7 unique integers a and rst

-

a = log+ r

where ocrab.
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-

#of [existence -and-uniqueness type of proof)
We must first show that the numbers a and ractually exist.Then we must

show that they are unique : if q'and r'are two other such numbers , then g=g
and v =r

Existence of gandr . Let S=a-bk : kETL and a -b ko]

If OS
,
then b divides a and we can let q=b and = 0

remainder a -bk
is 0

If ofS we can use the well-ordering principle /so there must be a smallest element
-

We must showfirst that s is nonempty.

If aso then abots => atS if asota - bk > 0 & KEY-

If a so then a - b(2a) = a(1 - 2b) = S
take eg k : 0

-

↑ => a0

In either case SFP.

choose eg k
=2 => aES

So that 1-2b <0
because it satisfies the

properties of set SBy the well-ordering principle S must have a smallest member , say v = a-bq
Therefore a =bg+ r , v, o

We must now show that rab . We suppose th willuseproof by contradictionat
-

a - b(q +1) = a - bq -b =

vassumptionwork backwards &
In this case we wouldhave a -blgti) S. But then a-b(qH) < a-bq which would
contradict the fact that v = a-by is the smallest element of S .

So by contradiction,
v = b . Since ofS , uyb and so rab.

Uniqueness of q and r . Suppose J integers r
,
r

, g, andg's . t

a= bq +r,
0 = vb(t)

a = bq' + r ,
0 =v'c(t)

Then by + r = by + r' (f)
Assume r' r
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From 17) we have bq-by = r'- r

from (t) we have or<b

b(q - q)) = r' - r
- and so v' -r = r

Thus b must divider'- r and 0xr'-r = r < b
-

↑

since b must divider' r but r'-r is from the assumption that v's, r

alsobThis is possible only if r- r = 0 .

=> r- r30

Hence v= r and 1 =q !
A

↳
from (E) then bat= by +/

=> q =q/

Let a and b be integers. If bak for some integer kwe write alb .

An integer
d is called a common divisor of a and bif d) a and dlb.

The greatest common divisor of a and b is a positive integer d s .t . d is

a common divisor of a and b and if d' is any otherdivisor of a and b then dId.

We write g(d (24 , 35) = 12 and gcd (120 , 102) = 6

We say that two integers a and b are relatively prime if god (a , b) = 1.

#theorem20 Let a and b be nonzero integers.Then 7 integers rand s s .

t.

gcd(a ,b) = ar + bs .

Also the greatest common divisor of a andbis unique.

#of Left as an exercise
.

THE CUCLIDEAN ALGORITHM

Example Let's compute the greatest common divisor of 945 and 2415.

2415 = 945 . 2 + 525
E &

945 = 525 . 1 + 420
-

525 = 420 . 1 + 105
& I

420 = 105 . 4 +0
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Reversing these steps : 105 divides 420

=> 105 divides 525 Y 105 divides both 945 and 2415

105/ 945 so it's a common divisor

105/ 24/5

If d were another common divisor of 945 and 2415, thend would also have to

divide 105
.

Thus gcd(945, 2415) = 105.

Working backward through the sequence of equations , we can also obtain numbers
rands such that 945r + 2415s = 105

105 = 525 + (-1) - 420

= 525 + (-1(945 + (1) · 525)
=2 . 525 + (- 1) . 945

= 2 . [2415 + (-2) . 945] + (-1) -945

= 2 . 2415 + ( - 5) . 945

Thus v = -5 and S = 2.

Note rands are not unique , V= 4) and s = -16 would also work . 1

To compute gad(a ,b) = d we use repeated divisions to obtain a decreasing
sequence of positive integers v.<] ...> M =

=> b = aq ,
+ V

,

↓ L
a = v, qz +2
-
v = Vzz + B

i
Un -3

= Un-29n- 1
+Un-1

Un -2
= rn-18n + Un
- => Un+= Un -3

Un -1
= Man+ - Un-29n+
divisor

To find r and s s. t
.
artbs = d we begin with the last equ and subst . results

obtained from the previous equs
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d = un

-

= Vn-2
- Un+&n

=
(n - 2

- qn(Vn - 3
- qn-n2)

= - qn2n -3 + (1+ 9n9n-1) un -z

:

= ra+ sb

The algorithm we used to find the greatest common divisor of two integers
a and b and to writed as a linear combination of a and b is known as the
Euclidean algorithm.

Groups (Chapter 3)

We startwith integer equivalence classes and symmetries

*nations : Cryptography , coding theory ...

Recall that two integers a and b are equivalent mod n if n divides a -b.

The integers moda partition IL inton different equivalence classes ,
denoted

as
n

e . g. The integers mod 12 and the corresponding partition of the integers

[0] = E ..... 24 , -12 ,
0 , 12

,
24, ... 3

[1] = E ....
- 11

, + , 13, 25....3
!

[11] = E .... -13, -1 , 11 , 23 ,
35

....%

Example. Integer arithmetic mod n. Carithmetic on Kn)

~ remainder when 1
remainder when

7+4 = 1 mod 5 7 +4 is 7 .31 mod5 7 . 3 is Note here we

divided 3.57 mod 8
divided by use eg 7 instead of3+ 5 = 0 modo

by 5 5 [7] to indicate the3 +47 mod 12 3 .4=0 Mod 12

addition equivalence class
multiplication

Note that most of the usual laws of arithmetic hold for addition and multiplication in

&
n ,
but notall . e . g. It is not necessarily true that there is a multiplicative inverse.
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Example. Consider the multiplication table for Ko

· 01234567

000000000

10 12 34567

202460246 Note 2 , 4 and 6 do not
-O 6 14725 have multiplicative inverses

O

=> i.e
. for n =2 , 4 , 6 there is noi· integerk such that kn= 1 (modo)

SIMMETRIES

A symmetry of a geometric figure is a rearrangement of the figure keeping
(a) The arrangement of its sides and vertices

(b) its distances

(c) its angles

A map from the plane to itself preserving the symmetry of an object is called a

rigid motion.

Example : Symmetries of a rectangle

A B A B A B C D
-> rotation

->

D
cidentity

D
C

D
C

1800

B
A

A B
reflection

B A A B D C

-> reflection
vertical ->

D
C axis C horiz

S D D axis A B

Note : a 90 · rotation in either direction cannot be a symmetry unless the rectangle
is a square.



Example . Symmetries of the equilateral triangle DABC X9
B

B
recall permutations from earlier

identity
->

id = (c)
A C A

C

B A

- 7↓rotation 1200 in the

clockwise

A
T

C C B = (19 direction

To denote the permutation of the vertices of an equilateral triangle that
sends A to B

, B to C , and -A we write the array above

rotation

B

->

S

2 = (5) ·
A

C B A

B [

reflection
->...... across

m = (B)
A

C the
A B

dashed
B

line B

->! reflection
mc =(i)

A
C

A
C

B A

A
...... Effection My =(

C B C

A permutation of a set S is a one-to-one and onto map it : S + S.

The three vertices have 3 ! = 3 . 2 . 1 = 6 permutations

3 different possibilities for the 1st vertex
2 remaining / for the 2nd vertex

& / possibility for the 3rd vertex

=> the triangle has at most 6 symmetries .
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-

Every permutation gives rise to a symmetry of the triangle

& what happens if one motion of the triangle is followed by another?

Notation : Mig, -> first do permutation I,
example then apply permutation be,

This is composition of functions so we go right to left
↓ Vertex

(M, P,) (A) = M (e , (A)) = ( , (B) =
see where Me,

sends
Che ,
) (B) = M , <p, (B) = M , (C) = B each of the vertices

(e ,
) (c) = N , (

,
(c) = ( ,

(A) = A

Mie ,
= (B)

Now let's do the opposite and consider instead the symmetry f.N ,

(9, (,) (A) = f. (h , (A)) = e , (A) = B

(9, (,)(B) = f, (m , (B)) =

p, (c) = A (m, =( = Ms

(e. M ,) (c) = e , ( m. (()) = e, (B) = C

Thus
, Mie,

F 9. H,

If you continue this exercise for all 6 permutation combinations you can

fill in a multiplication table for the symmetries of an equilateral triangle

as follows



21
-

o id I, 82 Me . Ne Ms

id id e, 22 Me . He his
In I, 92 id has he Ne Notice how

NOT A COINCIDENCEim
orderly it looks !

fr

1. It has been completely filled wo introducing new motions

This is because any sequence of motions turns out to be the same as

one of these 6.

Algebraically this says that if A and Bare
in this "group" then

So is AB.This property is called -losure

2. If A is any element of this group then Aoid = idot =A

Thus combining any element on either side with id yieldsA back

again.

An element id with this property is called anidentity ,
and

every group must have one

3. For each element A in the group , There ismne element B in the

same group such that AB = BA = id

B is said to be theimmerse of A and rice versa

4. Every element in the table appears exactly once in each row and each

colwhen
.

5. Observe that AB may or may not be the same as BA

If it happens that AB = BA fora choices of group elements A and B
We say the group is commutative or Abelian.
Otherwise we say the group is non-Abelian.



(2The integers mod u (n) and the symmetries of a rectangle or a group
are all examples of groups.

A binary operation or law of composition on a set G is a function GXG-> G

that assigns to each pair (a , b) +G XG a unique element a ob or ab in G.

called the composition of a and b.

A group (G
, 0) is a set G together with a low of composition (a, b)- aob

that satisfies the following axioms .

· The law of composition is associative The concept of

Caob)oc = ao(boc) for all a, b
,
c G

closure says that

any pair of elements

can be combined
· There exists an element etG ,

the identity element , s .t. wo going outside

the set ! Be
e0a = aoe = a for all aG sure to verify closure

· For each atG
, J an inverse element inG denoted by a"S

.
t

.

When testing for
a group

a oa" = a - oa = e

A group G/ the property that aob =boa a ,beG iscalled abelian or

commutative. Otherwise they are said to be nonabelian or noncommutative

Example. The integers = S ... ,
- 1

,
0 , 1

, 2, ... 3 form a group under the operation of

addition
.

Binary operation on two integers m, neTL is just their sum

Identity = 0

Inverse of NETL is -pe

Note that the set of integers under addition satisfies meth = ntm and so it is

an abelian group.
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- Sometimes it's convenient to describe a group in terms of an addition or

multiplication table which we call a Covyley table

Proposition34 LetI be the set of equivalence classes of the integers moda as

(1) Addition and multiplication are commutative:

a+b = b+a(modn)
ab = ba (modn)

(2). They are both associative

(a+b) +c = a + (b+c) (modn)

(ab)c =a(bc) (modn)
(3) There are both additive and multiplicative identities

a+ 0 = a(modn)
a1 = a (modn)

(4) Multiplication distributes overaddition :

a(b+c) = ab +ac (modn)
(5) For every integer a there is an additive inverse -a

a+ ) -a) = 0 (modn)

~
a andn are relatively prime

or coprime(6). Let a be a nonzero integer.Then gcd(a ,n)= 1 if and only if there exists a

multiplicative inverse b for a (modn) . I
.c. a nonzer integerb such that

ab= 1 (modn)

Proof (6) ( =3)

Suppose that gcd(a ,n)=1
.
Then 7 integers rands s.t

ar + us = 1 by theorem 2
. 10

=> US = 1 -ar

- in divides -ar
Then ar = l (modn) thus ar = I mod n

Letting b be the equivalence class of r,
ab = 1 (mod n).
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(E) Suppose- an integer b s .tab =l (mod n)

=> n divides ab-1

Thus there is an integerk s
.t . ab-1 = nk

=> ab - nk =1

Let gcd(a ,n) = d
. Since d divides ab-nk

,
d must also divide ,

Therefore d =

A

Example Not every set with a binary operation is a group.

If the binary operation on 7n is the modular multiplication , then En is not

a group.

Group identity : 1

since 1 . k = k . 1 = k for any KEY

* A multiplicative inverse for O does not exist since 0 . K = k. 0 = 0
for every keiln

Even the set In /50% is not a group.

e . g. Let 2- Is
1 012345

Then2 has no multiplicative O

I
Inverse since

-
2

0 . 2 = 0
,

1 . 2 = 2 , 2 . 2 = 4 , 3 . 2 =0
,
4 . 2 =2

, 5 . 2= 4
3

I
By proposition 3 .

4 , every nonzero k has an inverse in En if K is relatively prime to
gcd(k ,n)= 1

Denote the set of all such nonzero elements in2 by U
group of units of In

↑ 1357

Caylya & 3for U18)
7
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Example The subset [1 ,
-1 , i,-i] of K is a group under complex multiplication

Inverse of 1 : 1 Identity is I

Inverse of -1 : -

-iii
i: - 1/

-ample The set ofpositive irrational numbers together with 1
,
under multiplication

satisfies the three properties given in the definition of a group but it is not agroup

Take B .53 = 3 for example . So Sis not closed under multiplication.
fails the closure
criterion!

Example We denote the set ofall 2x2 matrices by MM2(IR) .

Let GLz(DT) tobe the subset of IMUR) consisting of invertible matrices
1 . e. A matrix A =/b) GL(M) if - a matrix A +

s . t
. AA" = AYA

=
2x2

For A to have an inverse it's equivalent to requiring that det(A)0 identity
matrix

E) ad-bcyo

The set of invertible matrices forms a grouprolled -he general lineargoa

Identity : 1= /oi)
Inverse of AEGLz(IR) : A=

at-bc(b)
The product of two invertible matrices is also invertible. detCAB) =det(A)det(i)
Matrix multiplication is associative. =O

N In general ABBA so GG(IR) is a nonabelian group.

G(z(IR) = 5/2b)/a, b, c,
deR and ad-bc03

#
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Definition A group is finite (or has finite order) if it contains a finite number
-

of elements otherwise it's said to be infinite.

DefinitionTheorderoffinitegroupisthenumber of elements that
it containsis

e . g. Is is a finite group of order 5

The integers > form an infinitegroup under addition and we write (T) = 00 .

Note
-

We can use exponential notation for groups.
If G is a group and geG then we define go=e

For anyneIN we define

gh-g9 andg
n times

#finition The order of an element gin a group G is the smallest positive integer n

such that guze ·

If no such integer exists , we sayg has infinite order.

The order of an elementis denoted by 191 .

So to find the order of a group element , you need only compute the

sequence of products g , g2 , g3, ... until you reach the identity for the
1st

time. The exponent of this product is the order of g

Example Consider U(15) = &1 , 2
, 4 , 7 , 8 , 11 , 13 , 143 under multiplication

modulo 15 .
This group has order 8.

To find the order of element 7, say, we compute the sequence

71 = 7 , 72 = 4 ,
73 = 13

, 74 = 1 so 17 =4

To find the order of 11
,

we compute

11
1

= 11 , 11 2 = 1 , so (11) = 2
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Similar computations show that /11 = 1
, (2) = 4 , 141 =2 , 181 = 4 ,

(13) = 4 and 1141 = 2.

Do you see a trick that makes these calculations easier ?

Rather than computing the sequence 13 , 132 , 133 , ... we may observe that

13 = -2 mod 15

Thus 132 = (2)
2

=4 mod 15

133 = (-2)(4)= -8 mod 15

134 = (2)(8) = - 16 = 1 mod 15

#

Propertiesof groups

Theidentitydementinagroup is uniae g forall

#of Suppose eand'are both identities

=>
eg = ge =g

and e'g = ge =g

To show that e is unique we must show that e = e'.

If e is the identify then ee'= e'
,
and if e' is also the identity then ee' =e

Together this gives us e =e'
.

T
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Pope If gis any element in a group G then the inverse of g , written as g-

is unique.

Po Similar to the previous proof ,
assume that g'and g" are both inverses of

an element geG ,
then

(t)9g = gg = e

J from the def" of an inverse
and

(1)9g" = g"g = e

We wish to show that g=g" We know that

g= ge
= g'(gg") from (1)
= (g'g)g "

= eg'
= gl

I
Defh of inverse

#. 3
. 19 Let G be a group . If a, bed then (ab)" = ba+ is c s .t .

dc = e

cd = e

Iof Let a ,beG . Then abb"a" = dea" = aa" = e
ab(batte

Also bla +ab = b+ eb = b+ b = e (b-a
-1)ab = e

.

Since inverses are unique by prop .
3

. 18 we have that (ab)+= ba
+

↑

↑p .
3

.
20 Let G be a group. For any a + G

, (a
+) = a

↑of left as an exercise .

#3
.
22 Cancellation

In a group G
,
the right and left concellation laws hold , that is

ba = ca =>=c

and ab = ac = b = c
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Proof Suppose ba = ca

Let a ' be the inverse of a
. Then multiplying on the right by a gives

(ba)al = (a)a

b(aa) = c(aa) by associativity
be = ce by defh of inverse
b = c by defh of identity

Similarly, one com prove that ab = ac => b = c by multiplying by a on

the left.

Note A consequence of the concellation property is that in a Cayleytable foragroup
each

group element occurs exactly once in each now and column. (Search "Latin

square")

#

Theorem3.
23 For all g , heG

1 grgn = gm
+n f m , n+T

2. (gm)n = gmnfminETL
3.(gh)2 = (h +

g
-1)= fnex

. If G is abelian then (gh)"= guhh

Sion3 .
3 SUBGROUPS

#"If a subset H of a group G is itself a group under the operation of G,

we say that It is a subgroup of G.

Notation : H-G means H is a subgroup of G.

If we want to indicate thatIt is a subgroup ofa but it's not equal to G

itself
, we write H<G and we call it a proper subgroup
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Note The subgroup Sez is called the trivial subgroup ofG

In under addition modulo n is not a subgroupof under addition since

addition mod n is not the operationof.

*groutestA subset H of G is a subgroup if and only if it satisfies the following
3 conditions :

1. The identity e of G is in H .

2 If h
, hel then hihceH .

3. If hel then htt H
.

&of ( =) Suppose that It is a subgroup of G

We want to show that the 3 conditions hold.

Since It is a group , it must have an identity
, ey. But we must show that

CH = e
,
with e = identity of G

Since they are both identifies we have

erP =C let is an identity)

een-eye = er Le is an identity)

Thus
, equating them gives

242H = eCH

=> e = en (by the right-hand cancellation)

2 The second condition holds since a subgroup I is a group.

[closure property)
3 To prove the 3rd condition let helt. .

Since H is a group, there is an element

h'EH such that hh'= h'h = e .

Since the inverse in G is unique , h =ht
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() If the 3 conditions hold , we must show that I is a group under

the same operation as G .

These conditions and the associativity of

the binary operation are the axioms stated in the definition
of a group it

-prop LetHbea subsetofagroupTheH
is a subgroupofto the

& (=) Assume H is a subgroup of G .

We want to show that ghteH when g , hel.

Since hel ,
htelt from property ③ of prop . 3 .30

By the closure property of the group operation we have ghteH .

(E) SupposeH is a subset of Gs .t . H= and ght el when g,h eH .

We want to show thatH is a subgroup (i.e .
show Q - of prop . 3

.

30 hold)

We must show eeH. Since I is nonempty ,
we may pick some XH.

ThenLetting g = X and h = X also (in the hypothesis) we have

gh+ = H = XX+ H

= eeH

We must show x'EH Whenever xH . Choose g
= e and h= in the statement

Then ght = ex= = x El

We must show thatH is closed , i .e. if X
, yel then xyel

We already showed that he H whenever heH.

So letting g = h
,
and n = he" we have gh" = h

, (hc")" = h
,h H

Thus
, H is a subgroup of G

A
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Example

Consider the set of nonzero real numbers IR* with the group operation of

multiplication .

· Identify is I

· Inverse of any element a EIR
*

is to

We will show that Q*= &&: pandq are nonzers integersy is a subgroup of IR
*

· The identity of IR* is in Q*

· Given two elements in Q , e . g. &,Q*, theirproduct as
· The inverse of any element feQt is again in Q

*
since () = &

· Since multiplication in IR* is associative
, multiplication in Q* is associative

Example Let SL(IR) be the subset of GLzCIR) consisting of matrices of determinant 1
.

That is. a matrix A = (b) -> SL(IR) exactly when ad-

To show that SL(IR) is a subgroup of GLz(IR) we must show that it is a group

under matrix multiplication.

F = (b) =SL(IR) since det(1) = /

At =+(d) = (b) = SL(R) since det(At) = da - (d(-b)
= ad - bc

= / = 1

Finally ,
we must show that multiplication

is losed . In
,
the product of two

matrices of determinat I also has det 1.

det(AB) = det(A)det (B) = 1 . 1 =1

The group SL(IR) is called the special lineargroup.
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#to A subset H of a group
G can be a group without being a subgroup of G

For I to be a subgroup of G it must have G's binary operation

Example The set of all 2x2 matrices(Mc(IR) is a group under addition

G↳(IRc) is a subset of IMz(IR) and is a group under matix multiplication but it is not

a subgroup of IMz(IR).

If we add two invertible matrices , wedonnecessarily get another invertible

matrix.

e.g . (bi) +(f) = (03) = GLCIR) .

CHAPTER4 : Cyclic groups

Sendion4. 1 . Cyclic subgroups

Sometimes a subgroup will depend on a single element of the group.

1.
2

. knowing that particular element will allow us to compute any other

element in the subgroup .

Example Consider 3eTL and look at all multiples of 3 (both + reand-re

This set is 37 = 5 ..., -6
,

-3 , 0
,
3

, 6, ....

Let's check that 371 is a subgroup of TC.

Identity : to

Inverse : at 37 = - a is the inverse

closure v

This subgroup is completely determined by the element 3 since we can obtain all of
other elements of the group by taking multiples of 3.

Every element in the subgroup is "generated" by 3.
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Theorem# Let G be a group and a be any element in E.

.

Then the set

[a7 = Sak : keTL]
is a subgroup of G.

& . The identity is inas since a" = e

· The set <a) is closed under multiplication since if am ,
ane <a) ,

for

m , n+, then aman-amthe<a)

· If g = an +(a) then the inverse g" = (al)" = a
- n

= (a)

Any subgroup H of G containing a must contain all the powers of a by closure.
-

Thus It contains<a7.
A

Note
If we are using addition ,

as in the case of the integers under addition , we write

(a) = Sua : net] .

The subgroup(a) is called the cyclic subgroup of G generated by a .
In the raise that

G =<a) ,
we say that G is and that a is a generator of G.

Notethat a cyclic group may have many generators.

Also ,
since alaj = aitj = asti = aa)

, every cyclic group is abelian.

at7n S .

t.
Example In UClo) we have the elements 31 ,

3
,
7

, 93 gcd(a ,n) = 1

This is also <37.
3 is a generator of UC10)

31 = 3
, 3= 9 ,

33 = 7
,
34 = 1 ,

35 = 34 . 3 = 1 . 3
,
36 = 35 . 3 = 3 . 3 =9

....
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Example T is cyclic

Consider the group TL , using the standard operation of addition of integers .

Since the operation is denoted additively rather than multiplicatively, we must

consider multiples rather than powers. Thus I is cyclic if and only if

= an integer a s .t = Sua : neTL] · Either a1 or a = - I will satisfy the

condition ,
soTL is cyclic with generators /or+

Example. In is cyclic

The additive groupn of integers modulo n is also cyclic generated by [1],
since each

congruence class can be expressed as a finite sum of [i]'s

Precisely . [K] = k[1].

It is interesting to determine all possible generators of 7n
.

If [a] is a generator of 7Ln , then in particular [i] must be a multiple of
[a]

.

On the other hand , if(is is a multiple of [a]
, then certainly every other

Congruence class mod is also a multiple of [a]. Thus
, to determine all of the

generators of 7Ln we only need to determine the integers a s
. t . some

multiple of a is congruent to 1
.
These are precisely the integers that are

relatively prime to n
, gcd(a, n) = 1.

The elements of TLy are 30 ,
1 , 2 ,

3,
4.53 . Tg is a group under addition.

Isa generator ofLo? < 57 = [K5 : keTL]

5) (1)=5 , 5(2) = 4 , 5(3)= 3 , 5(4) = 2
.
5(5)= 1

mod G

Is 3 a generator of Ko ? 3(1) = 3 , 3(2)= 0 . 3(3) = 3, 3(4) = 0, ... <37 = 50 .33
The cyclic subgroup generated by 3 is <37 = 50 ,33 No !



Example Sometimes (n . x) = U(8) is cyclic sometimes not.
36

First consider (5 . x) . We have [2]' = [2]
,

[2] " = [4]
,
[2]3 = 13] , [2]

"
= [1]

Thus,
each element of (5 ,

x) is generated from [2] (i. e
.
each element of

U(s) is a power of [2]) showing that the group is cyclic. We write

V(5)= <[2]

You can also show that [3] is a generator

But note that [4] is not a generator, since [4)' = [4]
,
[4]2= (1]

,

1433 = [4],
...

Thus <[4]) = < [1] , 1433 #I5.

Next , consider T = &[1] , [3]. [5] , [7]] = U(d)

The square of each element is the identity,
so we have[3]>= S[1] , [3]]

< [5]) = &[1] . [5]] and < [7]) = &[i] . [7]3 · So UCG) is not cyclic

Example S3-the groupof symmetries of an equilateral triangle - is not cyio

Let's recoll the symmetries, there are 6 of them .

I 3id = (1) The subgroups are

f. = (1 , 2 , 3) <(i) = &(1)}
Pz = (1 , 3 , 2) <(1 . 2 ,3)) = &(1) . (1 . 2 . 3) , (1 , 3 , 2)y = <(1 . 3

,2)7

m,
= (2 ,3) < (2 , 3)) = G(D , (2 , 3)3

M2 = (1 , 3) <(1 , 3)) = G(1) ,
(1 , 3)3

My = (1 , 2). <(1 ,2) = G() , (1 ,2)3 .

Since no cyclic subgroup
is equal to all of Ss , it is not cyclic.

That is , we have shown that there is permutation o in Syst . S = <+7.
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&position Let G be a group and let aeG

.

If K is any subgroup of G s .
t. at K , then (a) EK

.

&of If K is any subgroup that contains a , then it must contain all positive
powers of a since it is closed under multiplication.

It also contains ao=e and if no then antK since at = (a)
Thus <97 K .

I

Example In the multiplicative group (CI , X) ,
consider the powers of i.

-

We have it = -1 ,
i = -i

,
i4 = 1.

From this point on,
the powers repeat , since is = it = i

,
i6 = ii= -1 , etc.

For negative powers
we have it=.

E = -i ,
i2 = -1 , and i= i

. Again , from
ii

this point on the powers repeat.

Thus , we have
(i) = 41 ,

i ,
- 1

,

- i)

The situation changes when we consider (217 . In this case the powers of zi

are all distinct , and the subgroup generated by 2i is infinite

<zi) = G .... o jis -Y- i , 1
. 2i , - 4 ,

-81 ,
16 . 32i, ... 3

Theorem4 .
10 Every subgroup of a cyclic group is cyclic .

Prof We'll use the division algorithm & the Principle of well-ordering
Let G be a cyclic group generated by a. So G = <a

Suppose also thatH is a subgroup of G . If H = Sey,then His cyclic trivially, H=<e>

Suppose that It contains some element
g , gfe .

Then it can be written as

g = an for nETL .
Since his a subgroup , g = (ar)" = a -"H

, also,
(n=0)

SinceH contains both an and a-h, we can assume that If contains some power

awith 20 . Let m be the smallest natural number st amelt.
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[We know by the Well-ordering principle that such an in exists

.]
Well Ordering Principle : Every nonempty set of positive integers contains a

smallest member.

We claim that h = am is a generator for H.

thus we must show that every helt can be written as a power of h.

Since helt and I is a subgroup of G, h =akforkETL
.

since G = <a

Using thedivision algorithm , we can find numbersa and rs .

t.

k
=matr where or m

Thus a = ama +r

= amqar

= (am)gar

= hear

Thus a" = hav => ar = akh -9

Since ak and 4-t are in't
,
at must also be in H.This contradicts the

definition of an as the smallest positive power of a in Hunless v =0.

↳ from ormThus
,
k =mq = h) =

ak = ama = (am)9 = 49e < am)
Thus H = <am > and soIt is cyclic. 3

A

&p 4 .
12 Let G be a cyclic group of

order n and suppose that a is

a generator of G
.

Then ak = e) n/k.

Pot (E) Suppose that ak=e . By the division algorithm,

k = ngtr where on

Thus
e = ak = ang+r

= a49a" = eat = ar
↑

since G is of order n
,
an = e

Recall . If a is a generator of the cyclic group G then we define the over-

of a to be the smallest positive integer u S
.t . at =e

.
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Since the smallest positive integer m s.t . am=e is n ,
V = 0

(E) If a divides , then k =ns for some setL.

Thus ak = ans =(an)s = es = e

I

Multiplicative group of complex numbers

The complex numbers are D = Ea + ib : a , be 1Rz ,
where it = -1.

If z= a +ib
. a = Re(z) , b = Im(z) .

petisinoptisip
betw nea

Theorem4 .
22 (De Moirre)

Let z = r/cso + ising) be a nonzero complex number. Then

[r(coso+ isino)] n = un/cos(n0) + isin (nd)
,

for n =1 ,
2, ...

The circle group and the roots of unity

The multiplicative group of the complex numbers denoted as* has

some interesting subgroups of finite order
.

Consider the circle group F= SzK : /z1 = 13

P. 4 . 24 The circle group is a subgroup of*.
&
This is a direct result of

prop. 4 . 20 above
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Example Suppose that H =-i , -i .
Then I is a subgroup of the create

Identity : I

Inverse zE =1 => z = E .
So eg . inverse of i is - i

.

Also
,

1 ,
1 ,
i

,
-i are exactly the complex numbers that satisfy z4 = 1.

The complex numbers satisfying the equation z"1 are called the 7th roots of unity

#Theorem4 .25
. If z" = 1 , then the nth roots of unity are

z = cos(2) + isin()
for k = 0, 1

,
. . . .,

4 +

Also , the 4th roots of unity form a cyclic subgroup ofof order n .

A generator for the group of the nth roots of unity is called
a primitive nth

root of unity.

Example The 8th roots of unity
can be represented as 8 equally spaced

points on the unit circle.

wa
·
i

- i = w
· w=+ i

* &

w4
- O 1 = wo

-
w5

*

-=
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Chapter5 : PERMUTATION GROUPS

Definition A permutation of a set A is a function from A to A that is both

one-to-one and onto.

A permutation group of a set A is a set of permutations of A that forms a

group under function composition .

Eg. We define a permutationa of the set $1 . 2
,

3 , 43 by specifying &Ill = 2,

-(2) = 3
,
<(3) = 1 ,

x(4) =4 .

A convenient way to write is in array form as : < = [23
Herea(j) is placed directly below ; for each j .

e .gg the permutation B of the set 91 , 2 ,
3 , 4,

5
, 63 given by

B(1) = 5
, B(2) = 3 , B(3) = 1 , B(4) = 6 , B(5 = 2

, B(6) = 4

can be expressed in array form as
B = (53 ,3)

As we saw earlier in the course, composition of permutations expressed in

array notation
is carried out from right to left by going from top to bottom ,

then

again from top to bottom
.

3 . g . Let o = 1234) and = (5) . Then

=(
= (425)
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ExampleSymmetricGroupa one-to-one functions from [1 , 2 ,3 to itself.

Then 53 under function composition is a group with six elements :

identity
e = ( ! 2), a = (2 ?) , x2 = non =(3) B = / ! 32) /

If f : Sz- Sy is a permutation,aB =(i ? 3) , di = (3' 3 ,% then f-exists since f is one-to-one

and onto ; hence every permutation

Note that Bx = (23) = <B =&B ,
so Sy is monabelian has an inverse.

-
I

D

Note also that the relation Bx=* can be used to compute other products in S

without resorting to the arrays. For instance,

Baz = (a)a = (x-B)x = 4(Bx) = 2-(x2) = x4B = xB .

This example can be generalized to the symmetric group Sn.

Let A = 21 , 2, ...,
47. The setof all permutations of A is colled the Symmetric group

of degreen and is denoted by Sn . Elements of Su have the form

=[am]

We com also compute the order of Sn. There aren choices for <4)
-

Once <11) has been determined
, we have n-1 possibilities for < (2)

(note that since a is one-to-one, we must have <117 *C(2)
After choosing <(2)

,
there are exactly n-2 possibilities for <13).

Continuing like this , we see that Su has n(n-1) . ... . 3 .21 = n ! elements.
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Menotation As we've already briefly seen , there is another notation commonly
used to specify permutations. It is called cycle notation and was introduced by Cauchy
in 1815.

&g Consider the permutation <= /2236) . Schematically this is

-

&

·
412

E -- 6
&

L

We leave out the arrows and instead simply write x = (12) (346)(5) .

An expression of the form (a ,, 92 , ..., am) is called a cycle of length m or an

m-cycle.

A multiplication of cycles can be introduced by thinking of a cycle as a permutation

that fixes any symbol not appearing in the cycle.

Thus (4
, 6) can be thought of as representing /12345)

e
.g. Consider the following example from So .

Let <= (13)(27)(45 6)(8)

and B = (1 237)(648)(5).

What is the cycle form of <B ?

as soon as you
Going from right to left : (5) fixes I

encounter within
1648) fixes I

a cycle a diff.

1237) sends to a
Ging

element go to the

next cycle.
18) fixes 2

1456) fixes 2 3 in a

(27) sends 2 to 7

Thus we begin ap = (17 ...) ...
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Now repeating the entire process starting with 7, we have

~
(27)

=(4 1 + 1 + 1743)

Thus XB = (1 7 3 ...
)..

(a (456)

At the end we Obtain <B = (1732)(48) (56)
44 + 4+ 8 + 8

- 8

8+ 8 + 6 + 6 + 6 + 4V
* When multiplying cycles "keep moving" from one cycle to the next from right*
to left

Remark : Some people prefer to not write cycles that
have only one entry.

-

In that case , it's understood that any missing element is mapped to itself.

Definition : Two cyyes o= 19 , 192
, ..., ap) and = = (b, be

.
... , bu are disjoint

if a bj for all i and j

Example. The cycles (135) and (27) are disjoint ;
however the cycles 11 35) and

(347) are not .

Remarktheproductof twoesthatarenotdisjointmayrancetosomethinnote
e . g (135)(27) =D35)(27) stays as is

(135)(347) = (13475)

Properties of permutations

&5.
8 [Disjoint cycles commute]

Let o and I be two disjoint cycles .
Thent = To

.

#of Let o= (a ,, 92 .
... ,@r) and T = (b, bc ,

. . . , bm) .
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For definiteness
, let us say that X and B are permutations of the set

S = Ga,92 , ... , 9 , b, ba , ..., bm, , 2, .... 43

where the i's are the members of S left fixed by both o and : (there may not be

anyc's).

To prove that OT = to
, we must show that (ot)(x) =(o) (x) EXES

.

If x is one of the a elements , say ai , then

(ot)(ai) = o (t(ai) = o(a)) = ai+1

↑
SinceI fixes all a elements

.

(Note . We interpret ditias a
, if i = k)

For the same reason (To)(ai) = =(o(ai) = (ai+) = di+1 .

Therefore , the functionsOt and to agree on the a elements. A similar argument

shows that ot and toagree on the belements as well.

Now , suppose that x is a celement , say c. Then ,
since both Wand i fix celements,

we have

(02)(ci) = 0(((i)) = o ((i) = c :

and (to)((i) = T(o((i)) = T((i) = ci

This completes the proof .

D

Theorem5.9 Every permutation of a finite set can be written as a cycle or as a

product of disjoint cycles .

#of . Let o be a permutation on A = 51 , 2, .... 43 .

To write o in disjoint cycle

form , we start by choosing any member of A , say a
,
and let

az = o(a) , ag=az) =(ota,) = o-(a)

and so on
, until we arrive at a = om(9) for some m.
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We know that such anmn exists because the sequence a o (a) ,

o29,), ... must
A

be finite ; so there must be a repetition , say o "(a) = of19) for some and j
with<j .

Then a,
= om(a) where m =j-i. We express this relationship as

o = (a , a2 az ... 9m) ...

& this indicates the possibility that we

may not have exhausted the set A

in the process .

We now choose any element b , of set A not appearing in the first cycle

and proceed to create a new cycle as before. Thus , we let

ba = o(b,) , by = +(bz) = o(o(b)) = r-(b) etc

until we reach b ,
= o"(b,) for somek. This new cycle will have no elements in

common with the previously constructed cycle. For
, if so ,

then oila , ) = 55(b) for
somei and j . But then oi-j(ai = b, and thus b

,
= at for somet. &

This contradicts the way b , was chosen.

Continuing this process until we run out of elements of A
,

our permutation

will appear as

o = (a , ac ...am)(b, bc . - . bk) .
-. (42 . . . c)

Thus , every permutation can be written as a product of disjoint cycles.
A

Example . Let o=(j 45 and i =( 2345)
v= 46 248(3)(5) = (1624)
5 = (13)(2)(456) = (3)(456)
ot = (136)(245)
To = (143)(256)
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Transpositions
-

Definition. The simplest permutation is a cycle of length 2
.
Such cycles are called

-

transpositions.

-4 5. 12 Any permutation of a finite set containing at least two elements can

be written as the product of transpositions.

&roof First note that the identify com be expressed as (12)(2) and so it is

a product of 2-cycles. By thm 5
.9 ,

we know that every permutation can be
-

written in the form

(a
, az ... am)(b , b ...b) ... (4 .E ... (s)

A direct computation
shows that this is the same as

(a
, am)(a , am +) - - - (a , az)(b , br)(b , by+) . . . (b ,bz)

... (c
,Cs)(2 , (5 -1) . . . (C

,2)
I

on the right-most 2-cycle write the 2nd

Example (12645) = (15) (14) (b)(12) element &thenprocess
(1632)(457) = (12)(3)(6)(47)245)

↑
start (o/first

element of the

cyce on the right

↓mma. 14 If the identity is written as the product of transpositions ,

e = [, Ez ... In

then t is an even number.

&of
. Left as an exercise

.
Use proof by induction
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Finding inverses of permutations

Given o =:) in S it is easy to computetoe

To find o "(j) we find j in the second row of 2, say j = +(t). The inverse of

· must referse this assignment and so under j we write is giving o"(j) = i

This can be accomplished by turning the two rows ofa upside down and then

rearranging terms.

& If w = (4 23, ]) then " = (4) (iii)
In cycle notation o = (1423) and 0

+
=

(1324) = 1324D
Thus to compute the inverse of a cycle , we just reverse the order of the cycle , since

Co, ... Om(COm Om1
. . . 0

,) = (1).

#orem 5
.
15

. If a permutation o can be expressed as the product of an even

number of transpositions ,
then any other product of transpositions equaling o

must also contain an even number of transpositions. Similarly for the odd case.

&roofSuppose that

8 = 0E ... Om = [, Ez . . . In

where m is even
. We must show thath is also an even number.

The inverse ofo is Om ... % .
Since

o
-1

==In Fr ...,

u must be even by Lemma 5
. 14

.

for n+m = even when m= even

=> n has to be even.
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Definition A permutation that can be expressed as a product of an even number

of 2-cycles is called an even permutation .

A permutation that can be expressed as a product of an odd number of 2-cycles
is called an odd permutation

#efinition The group of even permutations ofh symbols is denoted by An and
is called the alternating group of degreen

Theorem5. 16 The set An is a subgroup of Su

↑of Since the product of two even permutations must also be even, An is

closed. The identity is an even permutation by lemma 5
. 14 and so the

-

identity is in An .

If o is an even permutation ,
then o= 0,E ... Or where O is a

transposition and r is even
. Since o =For with the inverse

of any transposition being itself] we have off An .

D

The next result shows that exactly half of the elements of Su (n > 1) are even

permutations.

&5.
17 For2. 2 , An has order n!

I

This statement is the same as : The number of even permutations in Sn ,
n> 2

is equal to the number of odd permutations.

&of Let An be the set of even permutations in Su and

let Bn I odd Il

If we show that there is a bijection between these sets , they must contain



the same number of elements. 20

Fix a transposition o in Su . Since >2 such a o exists
.

Now define Jo : An- > Bu by to (c) = Ot.

Suppose that Jr(t) =Xr(M) .
Then by the defh of to we have

o = oh and so t = o tot = otot =

o =u

since o Sn

its inverse o is also in Su
Thus At is one-to-one.

Now we show thato is surjective . Let BEBn .
Then ot is an even

permutation since of Bu ↑

↑ odd permutationI
set of

odd permut. => even

Thus
To(0" B ) = or t (otBacts as + in So(t) = OF above

= B

which proves that to is surjective.

A

Example The group Ap is the subgroup of Sy consisting of even permutations.
There are 12 elements in An . /(Ap= = 12)
As an exercise try to write these elements down

.

Dihedral groups

Dihedral groups are special types of permutation groups.

&finition The with dihedral group is the group of rigid motions of a regular n-gon .

(i .e .
n-sided polygon) .

We denote this group by Dn
.
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We number the vertices of a regular n-gon by 1,,..., n

Note that there are exactlyn choices to replace the first
N &

Vertex. If we replace the 1st Vertex by K
,
then the 2nd !

Vertex must be replaced by either K-1 or K +1
.
Hence there 3.

are en possible rigid motions of the n-gon . Remark. A rigid
-

motion preserves

Theorem520
The dihedral group Dn ,

is a subgroupoa the side lengths
& angle measures
of the polygon

I

Example &
2

rotation I

2

3

>

7
3

8
4

G
5

4 counter- 7 5
Clockwise G

, I

& 8

3 -> 7i i
reflection

3

2

4
5

6

#theorem 5
. 23 The group Dn ,

U, 3 consists of all products of the two elements

~ and s , satisfying the relations(n =

S2 = /

Sus = r
+

&ofThe possible motions of a regular n-gou are either reflections or

rotations.There are exactly n possible rotations :

We will denoteInhe
rotation
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generates all of the other rotations. In other words

vk = k(00
We label the n reflections S

,, Sz , .... Su ,
where Si is the reflection that

Leaves vertex k fixed. There are a cases of reflections depending on whether

I is even
z n is odd

If there are ann even

number of vertices then If there are an odd number of

two vertices are left vertices then only a single vertex

fixed by a reflection is left fixed by a reflection

"
and Si . Sc . .... Sn are distinct

e
.g .-" 1

I

5
5 3i45 5 i 2

->

2

·
"

4 ,
3

n =6

and s= S +) , S = +z) , ... there are also reflections

↑ through the edges that are

this leaves Vertex
↑ combinations of reflections

this leaves

1 and 2+= 4 Vertex 3
from the vertices w/ rotations

and 6 fixed
.

fixed

In either case
,
the order of each Sk is two How many times we need to iterate

this operation to go back to the identity?2

Let s = 5
..
Then s =1 and = = 1.

Since any rigid motion + of the n-gon replaces the first Vertex by vertex k,
the and vertex must be replaced by K-1 or KH·

If the 2nd vertex is replaced by K-1 then t = suk rotation & then refl.

/ kH then t = UK
just rotation



4 4
&
53

513 4X / eg5refl. T2

(14)(23)(5)

I replaced by 4 & rotation : (13524)
2 replaced by3

otherexamples also exist. -replacedby
Thus r and s generate Dn .

1. 2 . Du consists of all finite products of r and s

Dn = 91,
r , 25, ..., 20% 5,

50
, 582, ....

Son +3 .

Think of how D4 is different than S4 .

Example The group of rigid motions of a square D4 consists of eight elements.

The rotations are v = (1234) : 900· 22 = (13)(24) : 1800

r" = (1432) : 2700

r4 = (1)
The group D4

and the reflections are s
,

= (24)

Sc = (13)
~flections through
vertices

But since (D4) = 2(4) = 8
, there are still two elements .

Those are vs, =(1234)(24) = (12) (34)

and r3s ,
= (1432(24) = (14)(23) all the reflections

that pass from the edges
rather than the vertices are

combinations of s .sand

rotations
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CHAPTER6 Cosets and Lagrange's theorem

Definitions Let G be agroup and I a subgroup of G . We define a left coset

of H with representative geG to be the set

gH = Egh : htH]
and similarly , right cosets as

Hg = [hg : heH3

If left and right cosets coincide we will use "coset" w/o specifying left or right.

#ample. Let It be the subgroup of X,
under woldition consisting of the elements

&3. We recall that the elements of Post) are 90 , 1
,
2,

3 , 4 , 57 .

these are the his

thus the left cosets are these are theg's

OtH
,

1 tH ,
2t

,
3 tH ,

4 + H ,
5th

= 50 ,3) = 91 , 43 = 92, 53 = 93 , 67 = 94 , 13 = 35 ,23

Since = 53 ,03
H = 50 , 33 since

mod G H = 20 , 33
Thus 0 +H = 3 +H = 0 , 33 G = 50 ,

1 , 2,
3

,
4

, 53
1 + H = 4+ H = 41 , 43

2 +H = 5 +H = 92,53

H =

Example Let H be the subgroup of Sz defined by the permutations &(1) ,(1 23), 1132)]
the elements of Sg are &(1) , (12) , (13), 12 3)

,
(123) , (132)]

1Szl = 3 ! = c -

Thus the left cosets of H are gES3
.

()H = &(1) , (23) ,
(132)3

(2) H = <(2) , (1)(23) , (13)}
A

so we take each element geS, and perform gH.
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(55
(123)(1)= (123)

Continuing like this we can show that (123)(123) = (13 2 23)(132) = (1)(2)()
(1)H = (23)H = (132)H = 5 (1) , (123) , (132)3 = (1)

and (2)H = (13)H = (23)H = 5(12), (13) , 123)}

We can also show that the right cosets of H are exactly the same as the left

cosets

H (13) = 5(13) ,
(1) (23)

, 112/3 etc.

* However, it's not always the cause that a left coset is the same as a right coset.
k =

let k be a subgroup of Sz defined by the permutations[11) .
(12)3. The left

cosets of K are

(1)k = (2)k = &(1) , (12)]

(13)k = (123)k = G(13),2123)3

(23)k = (132)k = 5(23) , (132)]

However , the right cosets are different.

k (1) = k((2) = 3(1), (12)]

12 (1 ,3) = k(132) = 5(13) , 11323

k(23) = k(123) = 9(23) , (123)]

Properties of cosets Let It be a subgroup of G and let g,
and g, belong to G

.

Then,

1. g= g
2. 9 ,

H = It if and only if g,H.

3. g, H = gett if and only if g, Egalt
4 . 9 ,H = g, H or g,

H 19cH =0
5. g . H = g, It if and only if gigEH
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. 19 , H) = 192H) 56

7. g ,
H = Hg

,
if and only if H = g ,Hg,

8. g, It is a subgroup of G if and only if g,eH .

Proof 1. g= g
1. q = g ,

e g ech .

2. 9 ,
H = It if and only if g,H.

2. (=) We suppose that g ,
H = H.Then g.

=g,eg .
H = H

(E) Next ,
we assume that giElf and show that g , H & H and that

H - 9 , H ,
which would imply that g , H = H .

If hEH &

9.H (by ass .)The first inclusion follows directly from the closure of H .

then giheH To show that HEg ,H ,
Let heH

.

Then since gitH and hel,

by closure we know that g ,
"H

,
and by closure g. GEH

Y by assumption

& So

9.HH Thus h = eh = gg h = g , (g ,"h) =g,
H

3. g, H = gett if and only if g, Egalt

3. (=) If g ,
H = g,It ,

then g .
= g ,

e -> g ,
H = glt

↓
by definition of coset

(E) If g ,
e gal We have gath with hel ,

and the

g , H
= (9ch)H = gz(hH) = gal hH = Ehh : h = H]

= I check !
4 . 9 ,H = g, H or g,

H 192H =0

-Theorem64Letbesubgrouofagrouat is
,

the group G is the

disjoint union of the left cosets of H in G

4. This follows directly from property 3 , for if there is an element

Ce g ,
H 19H ,

then CH = g ,H and CH = gaH
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-

5. g . H = g, It if and only if gigEH

5. Check that it's true using property e.

6
. 19 , H) = 192H)

6. To prove that Ig ,H) = 192H) , it suffices to define a one-to-one

mapping from g . It ontogelt.

Obviously , the correspondence g ,
b - + Ich maps gilt unto galt.

That it is one-to-one follows directly from the cancellation property.

7. g ,
H = Hg

,
if and only if H = g ,Hg,

7. Note that g ,H = Hg , if and only if (g ,Ht)g ,
" = (Hg)gi = H (g,g,)

=H(e) = H

if and only if g ,
Hg ,

"
= H

.

8. g, It is a subgroup of G if and only if g,eH .

8. If g ,H is a subgroup , then it contains the identity e.

Thus g .H neH #D and by property 4, We have g.lt = eH =H

Therefore , from property 2
, we have g, H

Conversely , if g , Att , then , again by property 2, g, H = H.

D

Definition Let G be a group & Hbeasubgroup of E. The index of Hin G is
-

the number of left cosets of Hin G
.

We denote the index by [G : H].

Example. Recoll from before that for G :5 = 50, 1 , 2 , 3 ,
4 , 53 and H =30 , 33 ,

We found that the cosets areotH = 3+H = 50 , 3)
1 + H = 4 +H = [1 , 4]
2 + H = 5+H = 22 . 53 .

Thus [G : H] = 3 # of left cosets)
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Example . Also from before if G = Sa ,

H = &(1) , 1123) , 11 32)) and-

k = 9(1) . D2)] , then [G : H] =2 and [G : k] = 3

Proposition 6.9 Let H be a subgroup of G With geG and define a

map p : H-gH by p(h) = gh . The map p is bijective ; thus the

number of elements in H is the same as the number of elements in gH

#of . We first showp is one-to-one .

Suppose p(hi) = P(hz) for h , hztH . We must show h,the . But phil = gh ,

(by defh of p(h) and P(hz) =ghe.
Thus P(hi) =P(he) => gh=ghz

By the left concellation property (i . e . ab = ac = b=c)
we have h= he

.

&: H+ gH

We now also show that p is onto. .
(f YegH] x= H S .

t. q(x) =y)

By definition of glt , every element of glt is of the form gh for some
heH

,
and p(h) =gh
.

Theorem 6
. 10 LAGRANGE 1

Let G be a finite group and let It
be a subgroup of G.

Then h = G : H] is the number of distinct leftclosets ofHi

In particular, the number of elements in I must divide the number of elements
in G . (i. e . the order of the subgroup H must divide the order of

the group G)
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* Since all the Left rosets form a partition of G we only need to

show that all the cosets have IH1 elements. By the definition of index,& this follows from prop . 6. 9
there are (G : H] left cosets in total , so we finish the proof.

IG) =

[H
= # of left cosets H in G

⑳ollary 6 . 11 . Suppose that G is a finite group and gEG .

Then the order ofg must divide the number of elements in G

-collary 6. 12 · If IG) = p with pa prime number then G is cyclic and any
gG S

. t, ge is a generator

#of Let geGs . t gye . Consider the subgroup <g) = G
. Its size

divides /Gl = pby Lagrange's theorem ,
so it is 1 or p. But it's larger than 1

as it contains e and g. .
So kg > ) = p. . So Kg > / = /E1 . Thus the

cyclic subgroup generated by g is equal to the group G itself
.

Hence G

is generated by a single element ground is thus cyclic.
Recall (g) = rg : n =T]

↓

any61
Let H and K be subgroups of a finitegroup-.

[G : K] = [G : HJ [H : k]

#+ [G : k]==GH
A
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#te the converse of Lagrange's theorem is false .

The alternating group Ap has order (Ap) =E = 12 .

However it can be shown that it does not have a subgroup of order s .

Lagrange's theorem implies that subgroups of a group of order 12 can have

order 1 ,
2 , 3 , 4 , 6.

However,we are not guaranteed that subgroups of every possible order exist.

To prove that Ap hassubgroup of order 6
,
we'll assume that is actually

has such a subgroup and show that a contradiction must occur .

Recall that A4 is the set of all even permutations of S4.
The 12 elements are

(1)
,
(12)(34)

,
(13)(24)

, (4)(23)
,
(123)

,
(32) , (124)

(142) , 434) , (143) , 12343 , (243)
if we take a

↓
3-cycle & combine

every 3-cycle
can be written e. g (23)(24) it w/ any otheras 2 2tycles 3-cycle we'llgetSince An contains 8 3-cycles ,

we know that I must contain a 3-cycle? 3-cycle

We'll show that if I contains one 3-cycle then it must contain more than

6 elements

#p6 .
15

. The group At has no subgroup of order G

#of We assume At has a subgroup H of order 6
.

then [Ap : H] = E = 2
, and so there are only two cosets of H in A4

.

One of the cosets is H itself. The right and left cosets must coincide.
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Thus gH = Hg , which is equivalent to gHg" = H for

every ge A4.

Since there are 8 3-cycles in Ap ,
at least one 3-cycle must be in H

#log assume (123) EH
.

Then (123)" = (321) = 1132) El also
↑

also rewritten as

Since ghg* #H XgeAq and all hel

If we use hi= <237tH and
g = (124) for example ,

then we

get
ghg + = (124)(123)(724)

-

= (124)(23)(421)
= (1)(243)
= (243)

Similarly , if we use h =(26) still but pickg = (243) we get

ghg+
= (243) (123)(246)"
= (243)(123)(3427

= (142)

We conclude that I must have at least 7 elements. Namely,

(1) , ( 1 23) , (132) , (243) , (243)" = (354) = (234)
,

I - ↑

ghg+

() +2)
, (142)

+
= (241) = (124)

↑ & contradiction
ghg +

Thus. At has no subgroup of order 6
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CHAPTER 9 : Isomorphisms

It turns out that many groups that appear to be different are actuallythe same by simply renaming the group elements. Specifically if we

demonstrate a one-to-one correspondence between the elements of the two

groups and between the group operations then we say that the groups
are isomorphic.

we use z different symbols here to show that

- I the 2 groups com have different

binary operations
Definition Two groups (G, ) and (H , %) are isomorphic of there exists a-

one-to-one and onto mapp :G-I such that the group operation is

preserved :

↑ (a . b) = P(a)op(b) - a ,
b + G

. The name comes from
Greek. ioos = equal

If G is isomorphic to H , we write G = H .
S Moppri = form

the map pis called an isomorphism .

↑

The dashed

G·arrows Orepresent the

groupoperations P

It is implicit in the definition of isomorphism that isomorphic groups have the

same order.

It is also implicit that the operation on the left hand side of the equality sign
is that of G & the operation on the RHS is that of H.

We next show the four cases involving. and+



G operation I operation
&peration Preservation ↳3

-
↑ ↑ (a .b) = q(a) - q(b)

& t ↑(a .b) = p(a) +P(b)
& &

9)(a +b)= p(a) - p(b)
t t

P(a +b) = q(a) +p(b)

* To prove that a group G is isomorphic to a group I , we must follow 4 *

Separate steps .

Sp1
."Mapping "Define a candidate for the isomorphism .

I . e. define a

function & from G to H

STEP2 . "1-1 "Prove that t is one-to-one .
I . e

. Assume P(a) = P(b) and

prove that a =b.

STEP 3
. "Outo" Prove 4 is unto . 1 . e. For any hel , find an element geG

5 . t . ↑(g) = h
.

STEP4 .

"Operation-preserving" Prove that P is operation-

preserving . I . e.

Y
show that plab) = p(a)P(b) F a ,b+ G

.

In other words ,
this requires that one be able to obtain the same result by

combining 2 elements & then mapping , or by mapping I elements and then

Combining them.

e. g. In calculus (b(f+g)dx=+ dx +Sbgdx

Example. To show that #=>
w
circle group # generated by i

= [1 ,
- 1 ,
i

,
- iy

we define a map P :- < i) by plu) = in . We must show that

& is bijective and preserves the group operation .

(4 , +) = 90 .
1 , 2 ,37

The map o is one-to-one andonto because

P(0) = i = 1

P(1) = i = i

P(z) = jz = - 1

p(3) = i3 = - i
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Since P(m+u) = im+h

= iMin = p(m)P(u) , the group operation is preserved.
↑ ↑

group operation of G group operation of (i)
is+ is X

Example. We can define an isomorphism of from the additive group

of real numbers (IR
, +) to be the multiplicative group of positive real

numbers (IRt
,
x) with the exponential map . I .

e
.

9(x+y) = eX+y = exey = q(x)p(y)

Show thatI is bijective as anexercise .

Example The integers are isomorphic to theSubgroup of Q
*
that consists of--

elements of the form I"

We define a map p: -> &* by p(n) = 24. . Then

↑ (m+) = 2n+n
= 2mzn = q(m)P(n)

↓ 2 EQ *
7 neX S. t . P(n) =22 by definition of the map. Thus

the map t is onto the subset 52 : neT] of Q*

Now we must show that I is also one-to-one.

We assume that my n .
So we must show that (m) =P (n) · Suppose

that myn and assume that P(m) = p (n) [then we want to arrive at

a contradiction]

Then P(m) =P(u) gives <M =2 = 2m
-m

=1

Since by assumption > => M-2> 0
,

2 m-2 =1 is impossible

Thus
, if m = n , then P(m) = P(m) and ↑ is one-to-one .

↳
#
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Example. The groups (g ,+) and (T2 , i) cannot be isomorphic because
they have different orders.

However U(8) = U(z).

Revoll that U(8) is (o ,
+) but with aUCo) satisfying god (a , 8) = 1 .

Thus U18) = 5 1 ,
3 , 5 , 73.

Similarly , U(12) = 91 ,
5 , 7

, 115 .

We must find an isomorphism p : U(8) -> U42) .
One is given by

1 + 1

3r 5

51 7

7- 11 .

Other possibilities also exist. SayP S
.

t. 1 - /

3 % 11

575
7 7

Example The symmetric group So and To have the same number of elements

but 7 is abelian whereas So is nonabelian

Thus, one might suspect that the two groups are not isomorphic.

To show this is actually the case
, we suppose that $ :% -E is an

isomorphism .

Let a, bess be two elements St
. aby ba.

Since o is an isomorphism , 5 m
,ne S .

t.

P(m) = a and q(m) = b.

Then ab = P(m>P(n)= pimtn) =dince
is

abelin(m) =ba

by defh of ↳
isomorphism

However , this contradicts the fact that a andb do not commute is
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Example There is no isomorphism from (Q ,
+ to Q *, the group of

nonzero rational numbers under multiplication
.

IfI were such a mapping there would be a rational number a
,

s .

t.

↑ (a) = - 1 (since P is onto)

But then
X
operation of group G is+

- = p(a) = Pla +Ea)Pa=a
m

However , no rational number squared is equal to
-1.

Example LetG:Sthegroup matrices
with determineis

Then we can define a mapping from G to G itself by

↑m(A) = MAM- (since M has det 1 its

inverse M- exists)
& matrices AEG .

To verify that Pm is an isomorphism we follow the 4 steps outlined

above.

Sp1
. Om is a few from G to G . We must show thatIm (A) is

indeed an element of G Whenever A is.

From the properties of determinants we have

det (MAM-1) = det (M)det (A) .det(M-
~

= 1 . 1 . H =
= I de+ (M)

Thus MAM" E G
.
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sp2 Om is one-to-one .

Suppose that Pm(A) = Pm(B)
.
Then MAM" = MBM-

By left and right cancellation we obtain A = B
.

STEP3 . Om is onto
.

Let BeG . We must find a matrix AtG s. t . Om(A) = B.

If such a matrix A is to exist , it must satisfy that MAM" =B
.

But this tells us what A should be .

We can solve for A to obtain A = M+ BM and verify that

Pm(A) = MAMY = m (M+BM)m" = B.

# 4 . Om is operation - preserving .

equal to identify
Let A , B -G. Then

~

↑m(AB) = M(AB)MT = MAM"MBMT

= (MAm-1) (mBm -1)
= Pm(A)Pm(B)

The mapping Pm is calledconjugation by M.

Theorem 9 . 6 Let P : G- I be an isomorphism of two groups. Then

the following statements are true.

1) &- : H+ G is an isomorphism .

2) (G) = (H)

3) If G is abelian , then I is abelian

4) If G is cyclic,
thenIt is cyclic

5) If G is a subgroup of order n , then H has a subgroup of order n.



68
-

#of . 1) Since o is a bijection ,
pl exists and it maps from H to G.

2) Sincea is bijective , IG) = IH)
.

3) Suppose that h, , he H
.

Since o is onto
,

=> g.. 92 G S
.t . P(g)= h ,

and P(92) =ha
.

(*)

= by (x)
Thus hikz = P(g)P(g2) = P(g ,92) = P(929 ,

) = P(gz)P(g ,) = hah
,

↑ 4 ↑
since a is
&

by the fact thatby (*) by the fact abelian ↑ is an
that I is 9.92 = 9291 isomorphism

an isomorphism

Theorem 9 .7 All cyclic groups of infinite order are isomorphic to Th

&of Let G be a cyclic group with infinite order and suppose that a is

a generator of G . Define a map b:-G by P : n + a "
Then

plmtu) = amth = aman = p(m)P()↑

·perationou
by desh ofa

&
operation of G

To show that o is injective , suppose that m ,
n+ where myn .

We assume man . We must show that plmit pin) , i
. e

. amea ?

Let's suppose instead that am-a"

This gives am-n = e where m>n Es m-n>0 which contradicts the
fact that a has infinite order.

Thus amyan and o is therefore injective.

The map o isto since any element in G can be written as am

for ntXL and Plnl= a"
D
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#eorem 9.

8 If G is a cyclic group of order m ,
then G is isomorphic to kn.

#of Let G be a cyclic group of ordera generated by a and define a map

P:n + G by (k) = ak where 0:k < n.

The proof that of is an isomorphism is similar to the proof of thm 9.7

but for showing P is 1-1 , p(m) = P(k) => am = ak = am -k = e

implies n)(m-k)
T

order of G
This implies that m =k because M ,KEYn

- In
group theory , the main goal is to classify all groups.

Instead of classifying all groups , we want to classify all groups
up to isomorphism

That is
,

we consider two groups to be the same if they are isomorphic.

Theorem 9 . 10 The isomorphism of groups determines an equivalence
relation on the class of all groups.

CAYLEY'S THEOREM If G is a group ,
it is isomorphic to a group of

permutations on some set
. Hence , every group is a permutation group

This is what we call a representation theorem

The goal of representation theory is to find an isomorphism of some

group G that we wish to study into a group that we know a lot about,

eg a group of permutations or matrices.

&of Let G be a group .

We must find a group of permutations [that is isomorphic to G.

For any geG ,
define a function &g : G + G by Agla) = ga FaeG.
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We claim that Jg is a permutation of G.

We first show that the map Jg is one-to-one . Suppose that Sg(a) : Xg(b)
Then ga

= gb , which implies n=b by the left cancellation property
To show thatSg is on to we must show that for each at G - a b S . t .

Xg(b)= a.
. We use gb= a

b = g-a

Now we define the group E .
Let = = 94g : geG] .

We must show thatI is a group under composition of functions
and find an isomorphism between G and E.

We have closure under composition of functions. For atG

(3g04p)(a) = ag()p(a)
= bg (ha) by def "of Sg : G- >G above

= g((a) Sg(a) = gafa =G

= (gh) a

by associativity
= 4gh(a) closure

We also have 3, (a) = ea = a identity
and (g-10xg)(a) =

Xg + (3g(a)
=xg- (ga)

= g
+ (ga)

= (g+

g)a
-ea

= d

= Xe(a) inverse
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We define an isomorphism fromG to E by p : p + &g
.

·o is one-to-one because if p(g)(a)= (h)(a)

then
Sg(a) = Xp(a)

ga =ha

g = h by the right cancellation property
P : G- E

· p is onto become P(g) = Sg for any Sgt.

· The group operation is preserved since for giheG
~ by

deth of qp(gh) =gh = gh =

xg)n = p(g)P(h)
by def" ofa 1

The isomorphismg Jg is known as the left regular representation of G.

Example Consider3. The Cayley table for PLz+) is

This suggests that it's the samis3 the permutation group

G = S(0) , (012) , (021)]
↑ ↑ ↑

Cayley Irownow so
table I ↑-14

The isomorphism is

· 1012) = 10) i (8) = 1012) , a (4) = 0021)
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Example Let's compute the left regular representation UT) for U(12) = 91 , 5 ,
7 , lig

(2 . +) with

Writing the permutations of U(12) in array form , we have g(d(u , 12)=1

= (iii) , 35 :( *) . 47 =(i) , : =/"(
↑

45(1) = 5 mod 12
recall that xx

* j(5)= 5(5) = 1 mod 12
isjust multiplication

by x 4 j(z) = 5(7) = 11 mod12

Yg(a) = gafa +G *=(11) = 55 = 7 mod12

where 35 (g) = 59 With geG

We next compare the Cayley table for U(z) and its left regular representationUT2)
remember it uses addition
↓

V(2) 15711 Uliz) &, 35 ba Sil

! 15711 A,
4 , 65%771

b 5111 7 45657 , %1147
7 7 11 5 x7b77113

, 65
11 11751 -

, bix7 457 ,

The tables show that U112) andU are only notationally different.

-Section9. 2 DIRECT PRODUCTS

Given two groups G andH ,
it is possible to construct a new group from the

Cartesian product of G and H
,

GXH

Conversely , given a large group it is sometimes possible to decompose the

group . 1 ..e .
A
group is sometimes isomorphic to the direct product of two

smaller groups.



External direct products
173

If (G ,
.) and (H , 0) are groups ,

then we can make the Cartesian product
Of G and H into a new group. As a set , GxH is just the ordered
pairs (g ,h) Gx H where geG and hel

We define a binary operation on EXH by

(g ,, hi) (g2 . hz) = (9..92 ,
h

,
ohal

operationoperation
in G in I

We will usually denote it simply as 19.92 , hihz) but it implied that
We multiply elements in the 1st word as we do in G & elements in the
2nd word as we do in H

.

&9 . 13 Let G and I be groups.The set GXH is a group under the

operation (g .. hi) 192 · ha) = (g .92 , hinz) where gi .92 EG and hi, hi H
.

&of .
The operation defined above is closed

Identity : If eg G and CHEH are the identities of each group

Ceg , eH) is the identity of GxH .

Inverse : The inverse of (g ,h)eG is (g+ ht).

The operation is associative since G & H a re associative
.

D

Example LetIR be the group of real numbers under addition .

The Cartesian product IRXIR = IR2 is also a group .

The
group operation is addition in each coordinate , i . e.

(a , b) + (c , d) = (a +c
, b+ d) closure



The identity is 10 . 0) 24
The inverse of (a , b) is (-a ,

-b) .

Example Consider Tax z = [10, 0) ,
10, 1) , 11 , 8) , 21, 173

and (p .
+) = 0 , 1

,
2

, 33.
↳ xz = 30 , 17 and so ThXT/ = < (a ,

a) , (a ,b) , (b ,
a) , (b ,b)

ab

They both have order 4 but they are not isomorphic.

Every element (a ,b) + Xzx* has order 2 since (a ,b) + (a , b) = 10,
0)

But 74 is cyclic and so one of its elements
· (0, 1) + (0 , 1) = 10, 2)= (0,0

mod2
.has order 4 etC

3+ 3 = 6 = 2 mod 4
· (1 , 0 + (1 , 0) = (2 , 0) = 10 ,

0)

3 + 3+ 3 = 9 = 1 mod 4 #

N The identity is 10
,0

mud 2

3+ 3+ 3+ 3 = 12=0 mod 4

Example U(8) X V(10) = G(1 . 1)
, (1 , 3) , (1 ,7) , (1 ,9),

(3
, 1) ,

(3 , 3) , (3 , 5) , (3 ,7) ,
(3 ,9)

v(8) = 51 , 3
,
5

, 7] (5 , 1) , (5, 3) , (5, 5) , (5 , 7) ,
15, 9)

(7 , 1) , (7 , 3) , (7 , 5) , (7 , 7) ,
(7 ,9) y

U(10) = 91 ,
3 , 5 ,
7

, 9]
since the first components are combined by
multiplication mod 8 whereas the 2nd comp.

are combined by mult , mod 10

Example CLASSIFICATION OF GROUPS OF ORDER 4

& group of order 4 is isomorphic to T4 or TC2 XTL2 both are abelian and

To verify this , let G = Se ,
a ,

b
, ably. Tpic of order 4

& by closure

A key difference between the two groups is that the cyclic group T4
has an element

of order 4 but 7 XT only has elements of order2

If G is not Cyclic , then from Lagrange's theorem (a) = (b) = lab) =2

Then the mapping es 10 . 0) , a- 1 1 , 0) , b- 10 , 1) ,
and ab+ (1, 1)

is an isomorphism from G onto KzX&2 D

Check as an exercise
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The group GxH is called the external direct product of G and H

.
We could

also have more groups : G, G2
, . . ., An and then their external direct product

would be defined in the same manner

Gi = G
,xG2x ...X

gr= e and hS= e

Torem9 . 17 Let (g ,
h) = GXH· If g and h have finite orders rands

, respectively
then the order of (g ,hi GxH is the least common multiple of rands

&ofSuppose that m is the least common multiple of rands and let

n = /(g ,h) = the order of the element (g .h) = n

(g , h) m = (g, h)(g ,h) ... (g , h) = (gm , nw) . Recall the binary operation
for GXH is (g .. hi) (g2 , ha) =/9 ,92 , hinz) for g ..ge & hihzH

then 19 ,hi = (gm ,
hm) = (eq ,e)

since m = emus
hencen must divide m and num

(g , n4) = (g , h)" = (eq , e,) by defh of the order of an

element (smallest #)
However since rands are the orders of elements g and h, respectively , we have

gr =G

gs-epy = w must dividen

&s must dividen as well

So n is a common multiple of rands .

Since m is the least common multiple of rands,
men .

Thusm must equal n

#

#

GaryLetorder of (9, ...,92) +Gi is the least

common multiple of r,, , . . ., In



if gcd (u,a)+ 1 then gcd(n, a) = d and order(a) w/5
at7

n
is An = n

gid(n,a) I

#umpelet =3 inmenta
in kn

Similarly, gcd (56 , 60) = 4 . the order of 56 is 20 = 15 inLoo

Thus
,
the least common multiple is 15

, which implies by theorem 9
. 17 that

18 , 56) has order 15 in 722 x700.

Example . Consider T = 50 , 17 and T = 50 , 1 , 23. Then
order is 6.

7 xTy = 3100) ,
10

, 1) , 10 ,
2) , (1 ,01 , (11) ,

(1
,2)]

~ ~ ~

In this case
, TLXTLy To (unlike that of TX not being

isomorphic to <(4)
isomorphic

Here we have to show that Tax is cyclic

Let's consider the element (1 , 1).

2(1 , 1) = (1 , 1) + (1 , 1) = (2 , 2) = (0, 2)
↑ [mod 3

mod 2

3 (1 , 1)= (1 , 1) +(, 1) +(, 1) = (0 , 2) + (1 , 1) = (1 , 3) = (
, 0)

mode "mode
44 , 1) =(1 ,

1) + (1 , 1+(1 , 6 +(6 , 1) = (1 , 0 + (1 , 1) = (2 , 1 - 10 , 1)

5(1 , 1) = (0 ,
1) + (1 , 1) = (1 , 2)

6 (1 , 1) = (1 , 2) + (1 , 1) = (2 , 0) = 10 , 0) order of (1, 1) is 6.
least common multiple
of 2 and 3

TexTLz is cyclic

(1 , 1) is a generator !
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The next theorem tells us exactly when the direct product of two cyclic

groups iscyclic.

Theorem
The groupmx is isomorph tom if and onlya

*roof () We want to show that If Tmx7n=mn then gcd (m . n) = 1

We prove the contrapositive. 1 ..e. if g(d (m , n) = d > , then

7m XYn cannot be cyclic

Note that
is divisible by both m and n ,

hence for any element

(a , b) e 7m x 72n
operation of 7mxn

is addition

(a , b) + (a , b) + ... + (a , b) = 10
, 0)
- identity

A times

Thus no la ,
b) can generate all of 7Lm X7Ln

(E) This follows directly from theorem 9 . 17 since (cm (m , n) =mn

if and only if gcd (m , n) =



CHAPTER 10 : Normal subgroups & factor groups
78

We already saw that if I is a subgroup of a group G , then right cosets are

not always the same as left cosets . 1 . e . it's not always the case that gH =Hg

#g +G
.

The subgroups for which this property is true allow for the construction ofa new

class of groups called factor or quotient groups

#nition A subgroup H of a group G is normal in G if gH = Hg #geG.

A normal subgroup of a group G is one in which the right and left cosets are

the same. Sometimes we denote this by H * G.

⑫ample Let G be an abelian group . Every subgroup H of G is a normal subgroup .

Since gh = hg for all geG and hel ,
it will always be that gH = Hg.

Example let I be
the subgroup of So that is &(1) , (12)) · not normal in 3

Sz = &(1) . (12) , (23) , (13), (123) . (132) ?

Since (123) H = (123)9(1) , (12)] and H (123)= &(1) , (12)3 (23)

= 3(123) , (13) 7
= 5(123) , (23)]

I cannot be a normal subgroup of S3 .

However , the subgroup N , consisting of the permutations (1) , (123) , and

Cl 32) , is normal
since the cosets of N are

N = 5 (1) , (123) , (132)] normal in S3

(12)N = 5(12) ,
(13) , (23)3 = N(12).

(23) N = S(23) , (13) , (12) y = N(23)
2 + c

...
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The next example shows a way to use a normal subgroup to create new

subgroups from existing ones.

Example LetIt be a normal subgroup of a group G andK be any subgroup
-

of G .
Then HK = Shk/he H and ke K] is a subgroup of G .

To verify this , note that e-ee is in HK .

Then for any a-hik , and b = bake where hihzeh and k, kaek

there is an element h'H S
.t . ab = hik

,
Cheka)

= hik , ki h

= h , (k ,
ke) hi

=(h , h') (k ,hz)
-

chetK which makes

So ab-E HK
.

ab -1 tH(n = \hk)h=H& k +k]

Theorem 10
.
3 Normal subgroup test

A subgroup H of G is normal inG if and only if gHgt & H FgeG

&

roof ( =) If H is normal in G
,
then for any geG and heH Jh-H

s . t . gh = h'g.
(since by def of normal subgroup gh = Hy & gH =Egh : heH]

Hg = Shg : heH]
Thus ghg" = h =) gHg+ &H

(E) If gHg"CH EgeG then Letting g = a , we have alta H

or al Ha
.

On the other hand , letting g
= a " , we have gHgt = a H(a-1) +

= a
+ Ha2H

=> Hafalt .

This implies that alt-Ha and soH is normal in G .

D
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Definition If N is a normal subgroup of a group G , then the cosets of

N in G form a group E/N =PgN :g+ G] under the operation (aN) (bN)= abN.

This group is called the factor or quotient group of G and N.

read as "G mod N"

Theorem 10 .4 Let N be a normal subgroup of a group G
.
The cosets of N

in G form a group G/N of order [G : NJ.
index=of left cosets

&of The group operation on G/N is (aN)(bN) =abN .

We must show that the group multiplication is independent of the choice of

coset representative. -This shows that the operation is well defined
,
i . e .

the correspondence above from G/NxG/N into

Let aN =bN and cN = dN
.

GN is actually a function.

We must show that (aN)(N) = acN = bdN = (bN(CdN)

since aN = bN
since CN = dN Left coset def: cN = Scn : neN3

Then a =bm
,
and c = dnz for some n , nEN

Thus acN = (bu ,)(drc)N aN = 3 an : neNY
= bu

, (dN) bN = < bh : neN]

= bn
, (Nd) =since N is a normal subgroup dN = Nd

n .
N = N Since n, "gets

= bNd absorbed "in N
//

= here we used
= bdN

associativity a lot
Note

The identity is eN = N
We also used one of the properties of cosets ;

that gH = H iff geHt.
The inverse of gN is g"N. (gN)(g+N) = (gg-) N = eN =Nz identity v

The order of G/N is the number of cosets of N in G which is the

definition of index [G : NJ .

#
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Emple Consider the normal subgroup of Sg ,

N = S(1) ,
(123) , (1327]

The cosets of N in Sg are N and (12) N. Sy = &(1) . (12) , (13) , (23) ,
(123) , (152)]

The factor group Ss/N has the following multiplication table

N (12) N
Note that ifyou complete (13)N you will

N N (12) N get that it's equal to C2)N . So the distinct
-

(12)N (12) N N cosets of Nin S are N & C12IN.

index [G : N] =

& = 2 cosets

Where1127N = (12) 3(1) · (123) , (132)]

= G(2) ,
(23) . (3) =

(13)N

and indeed <2)N(2)N is (12) &(12)
,
(23), (13)]

-
= &(1) , (123) , (132)] etc

butalso youget
this from (12)NC2)N = G2)(I2)N = (1)N = NV

This group is isomorphic toz
= 50 , 13 (S/N = The

Consider P : Ss/N +71 defined by PIN) = 0 and P((12)N) =1.

↑ is bijective .

#) ow about operation -preserving ?

P(NN) = p(N) = 0 = 0 +0 = P(N) +P(N)
-T Toperation in 72operation in from multipl table

S3/N

Also, p((2) NN) = p((12) N) = 1 = 1 + 0 = q(((z)N) + P(N)

and P((2)N(I2SN) = P(N) = 0 = ( + 1 = p(((2)N) + P(((2)N)↑
mod 2

Note also that Ss/N is abelian and cyclic , Sy/N =< (12) N)
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Notice that Ss/N is a smaller group than S3
.

We note that N = As = alternating group , i .e .
the group of even permutations

and (12) N = (12) <(1), (123) , (1323]
= &(12) , (23) , (13)] is the set of odd permutations.

product of odd number of 2-cycles

God
So the information captured in G/N is parity2 even

~

-> multiplying two even or two odd permutations results in an even permutation

-> multiplying an odd permutation by an even permutation yields an odd permutation .

(2)N

Ample Consider the normal subgroup 372 of TL
. (3TLDTL)

37 = 50 ,
13 , E6, ... 3 = < 37 w/ addition

we note T1/37 = Ty = 50 1
1 , 23. We have (T/371) = [1 : 371) = 3

order
(distinct cosets)of group

The cosets of 37 in7 are gN = Sgn : neNz where

g ,
N = 0 + 37 = 5 ....

- 3 , 0 , 3 , 6
.... ) G = 7 and N = 37

92N = 1 + 3% = ....
- 2

, 14 , 7.... 3

93N
= 2 + 37 = S

.... - , 2
,

5, 8, ... ]

9yN
= 3 + 37) = 5 ..., 0 . 3 , 6 .... 3 = 0 + 37) and it keeps repeating
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The group TL/37 is given by

+ 0 + 37 1 + 372 2+37L

0+370 +37h 1 +37 2+37

1 +371+3772+3720737

2+372+370t37 e
.g (2+ 371)+ (2+37)

= 4+37 = 1 + (3+37)
= 1 + 37

Note , TL/37L is cyclic . Consider for example TL/37 =<1 + 37).

Generally ,
the subgroup n of XL is normal. Elements of TL/UX are cosets :

-

nT
,

1 +nY , 2 + nY ,
.

. . , (n-1) + RTL

and TLINTL En

multiplicative group Tz2
Example Let G = 0 (32) = & 1 ,

3
,
5 . 7 , 9 . 11 ,

13
,
15 , 17 , 19 ,

21 , 23
,
25 ,

27
,
29 , 31]

and H = 91 ,
173. Then HOG since G is abelian . Con pg78 we show that

When G is abelian all subgroups are normal).

(G/H) = [G : H]= 8
.

So we have 8 distinct cosetso

H in G.

Elements of the group U(32)/H are :

1H = H = 91 , 17]
3 H = 53 , 193 z to compute this 3H = 391 , 17] = 33 , 513 = 53 , 193

5H = 45 , 213 d 32

7H = 57 , 23]
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9H = 59 . 25]

11H = 511 , 27} by closure all combinationsof elements

should give other elements
in the group

13H = 213 , 29]
15H = 915 , 313

Note : The operation is aHbH =abl
. So , for example

11 H 13H = (11(13) H =143H = 5143 , 24313 = 54(32) + 15 , 75(32) +313
= [15, 313 = 15H

Note

5metimes we use the terminology "G mod H" for G/H.This arises from the

analogy c) modular arithmetic . When we work in mod 5
, we sory

8 = 3 mod 5 because 8:3+ 5 = 3 mod 5 because the 5 "gets absorbed "

into the modulus. That is , 8 mod 5 = (3+5) mod 5 = 3 + (5mod5)= 3 mod 5

Similarly , if we look at gl and if gigh then gH = gihH = g'l because

the 4 "gets absorbed" by the H .

CHAPTER 11 HOMOMORPHISMS

This is a generalization of an isomorphism.
If we relax the requirement that an isomorphism of groups be bijective ,

we have
a homomorphism.

Section 11 . 1 : Group homomorphisms

Definition: A homomorphism between groups (G, .) and CH ,
0) is a map b :G- H

such that P(992) = P1g ,)00192) for g ..92EG
.

The range of pin I is called the homomorphic image ofa
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Nee : This suggests that two groups are strongly related if they are isomorphic
but a weaker relationship can exist between two groups.

Example. Let G be a group and geG . Define a map p:- G by Plu=g
Thena is a group homomorphism since

↑ (m +n) = gm+ n
= gmgn = P(m)p(n).

This homomorphism maps ( onto the cyclic subgroup of G generated by g.

Example .
Let G = GL(IR) · If A =(b) is in G

,
then the determinant is

nonzero detCA)= ad-bc =70. For any A ,
B -G

,
det(AB) = det(A)det (B).

Using the determinant , we define a homomorphism : Ghz(IR) -> IR* by

A det (A).

Examplee We define a homomorphism of from (IR ,+) to (the circle

group consisting of all complex
numbers -s .

t
. 17) = 1)

,
as

↑: 0 - coso + isin@

P(c+ B) = cos(+ B) + isin(x+B) using the addition formulae of cos

& sir
1

I
= (cosa cosB-sindsing) + i (sin a cosp + cosxsinB)

binary

operation of
= (Cosa + isina) (cosB + isinB)

could also use ein.
CIR , # = P(x)p(B)

&
binary operation of

Comple The map P(x) = X2 from IR*, the nonzero real numbers under

multiplication to itself is a homomorphism since

↑ (ab) = (ab) = arbz = P(a)P(b) fa , beIR*
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ExampleThemapfromtitself
is u a homomorphisis

= al+b2.

When defining a homomorphism from a group in which there are several ways

to represent the elements ,
we must ensure that the correspondence is a function.

(i . e . a well-defined mapping)

2
. g . Since 3(x+y) = 3x + 3y in Kg , one might believe that the correspondence

X + < 37 - 3x from /(37 to 76 is a homomorphism.

But it is not a function ,
since of <3) = 3 + <3) in /3) but

30 + 3 . 3 in Ty

The following proposition lists some basic properties of group homomorphisms

Prop. 11 . 4 Let p : G
,
-G be a homomorphism of groups. Then

1 If e is the identity of G. then ple) is the identity of G2
2 For any element geG.. P(g") = [p(g)]
3 If H , is a subgroup of G,,then PCH) is a subgroup of G
4 If He is a subgroup of Ge , then

" (H2) = 59 : G: P(g)EH2} is a subgroup of G.

Also ,
if H2 & G2 , then &" (H2) & G

,

(normal)

Pot Suppose e and are the identities of G,
and G2 , respectively.

Then ep(e) = P(e) = p(ee) = p(e)p(e) P(9,.92) = P(9 ,)0P(92)
↑ j

B.0. Of G2

By right cancellation e' = Ple) .
Since o is a B. P. Of G,

homomorphism P(ee) = p(e)

2 For any geG,

P(g)p(g -1) ="since isanon e
↑ from property,



#7Thus p(g-) =+ e = (P(g) + e = (p(g)))"
P(g) ↑

since e' is the identity of G2

3 P(H , ) is a nonempty set since the identity of G is in PCH,)
.

from prop.

Suppose that It ,
is a subgroup of G, and let x

, yep(H .).

- ab = H , s . t
. P(a) = x and +(b) =y.

Since x y
+= p(a)(p(b)

= P(a) P(b-) by property
= p(ab -) since is a homomorphism.

Ep(H) since a.bel , and H ,
is a subgroup , abeh ,

Thus p(Hi) is a subgroup of G2 by prop .
3

.
31.

-
1 . e

. Let It be a subset of a groupG. Then It is

a subgroup of G if and only if H*P and whenever

g ,
hel then ght is in H.

4 Let He be a subgroup of G2 and define H , to be "CH2)

That is , Hi = EgeG,: /(g) H23
e is inIt ,

since Ple) = e =He

· The identia t
,
then Plab") = p(a)p(b+)= p(a)(P(b)"EHz Since He isa

subgroup of G2
.

-> Plabi) = Hc => ab+ = P" (H2)
-

Thus ab"eH , and I ,
is a subgroup of G,

this implies &
"CH2)

is a subgroup but
since by deft of H , ab"EH: ↑(ab-1) E He this is the defh of H,

so It, is a subgroup
· If He is normal in Ge ,

then we must show that gihge H,
for

hel
, and geG,

Theorem 10
.
3 Normal subgroup test

read A subgroup H of G is normal inG if and only if gHgt & H FgeG
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But pigthg) = p(g+ )$(h) P(g)

= (P(g))+ P(h)p(g) = Ha

↓ by defn of He
since He is a normal subgroup of G2 .

Thus gthg H ..

= EgeG P(g)Hz]
D

-

Let & : G + It be a group homomorphism and suppose that e is

the identity of H.

From Prop .
11 .4 (4) we know that if it is a subgroup of Ge then

↑" (H2) is a subgroup of G, (where P : G
, -G2) .

Thus , in this raise,

↑ (Sez) is a subgroup of G
.

This subgroup of G is called the

Kernel of p ,
denoted by Ker · fanivalently : Ker p = [geE : P(g) = ey.

Theorem 11 .
5 Let p : G - # be a group homomorphism.Then ker &

is a normal subgroup of G.

Ne This says that with every homomorphism of groups we can naturally
associate a normal subgroup.

ple Let P : GLy(IR) -> IR* defined by P(A):det(A) be a

homomorphism.

Identity of IR * is 1.

Thus ker p is all 2xe matrices having determinant 1.

i. e. kerp = q
+ (3e]) = 59 G, . P(g) = [e])

This implies that Kerd = SL(IR)
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Example. The kernel of the group homomorphism P : IR- > &* defined

by pla = cos Otising is Gain : neTL].

This is because :

P (2Th) = COS(25Tn) + isin(aith) = 1 and I is the identity of*

We note that since Ker p = Sain : neR] we have that kerp is
isomorphic to X.

kerpET

Example How do we find all possible homomorphisms & :+7 ?

Since kerp must be a subgroup of T7 , there are only two possible
kernels : Goz and all of 77

The image of a subgroup of The must be a subgroup of 7112
This implies that there is no injective homomorphism.
Otherwise TL2 would have a subgroup of order 7 which is not possible.

Therefore , the only possible homomorphism P:7 + Th2 is the one

that maps all elements to 0.

Example . Leta be a group . Suppose geG and $: + G
, given by

↑ (2) = g2 is a homomorphism

- If the order of g is infinite , then the kernel of this homomorphism is 20]
since o maps onto the cyclic subgroup of G generated by g.

- Ifg has finite order , say n
, then kerp : n%.



&0

Section 11 .2 : THE ISOMORPHISM THEOREMS

Factor groups correspond to homomorphic images and we use factor groups
to study homomorphisms.

We just learned in theorem 11 .5 that with every group homomorphism p
: G-H

we can associate a normal subgroup of G , Kerp.

The converse is also true : every normal subgroup
of a group G gives rise to

homomorphism of groups.

Refinition : LetIt be a normal subgroup of G. The natural or canonical

homomorphism p : G + G/H is defined as p(g) = gH.

This is indeed a homomorphism ,
since

↑ (9 ,92) = g .92H = g , H g2H = p(g , )p(92)

↑
↑

E
by defn

by defi
of Q since

of P

It is a normal

group this is the (Recall
that if N is

binary operation
a normal subgroup then
the cosets of N in G

form a group G/N

kerp =H
. under CaN)CbN) = abN)

TheoremFirstisomorphismtheoreeith K = kerp , then K is normal in G

Let p :G-G/k be the canonical homomorphism ↑ (g) = gK .

Then I aunique

isomorphism 2 : G/k -4(a) such that 4
=14.
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&of One of the assumptions is that K is normal in G.

Define 7 : G/k -> + (G) by y(gk) = ↑(g)
We first show thaty is a well-defined map.

-

If g.K = gak then for some keK
, 9,

k = g2.
g .
k = gat = g, =92

~
since ↑ is a homomorphismThus

y(g ,
k) = p(g) = 41g,)e= 4(g))4(k) = +(g ,k) = 4(92) = y(92k)Y

since K =Kertsince g ,
k =g

=> ↑(k) = e

This shows that
y does not depend on the choice of coset representatives

and the map y : G/k-4(G) is uniquely defined since 4 = np.

How do we know p =up ? Because p : G = G/k is the canonical homomorphism

we know that p (g)= by defh of canonical hom.

4
Thus since y(gK) =↑(g) , we have np(g) = 41g) . => 74 : 4

We must also show that y is ahomomorphism , but

7 19, k92k) = 49 ,92k) operation of normal group K

= 4(9 ,%2) by defh of y

= P(g)4192) byp being a homomorphism

= y (g,k)4(92k) by defhof

operation preserving

We have that y is onto P(G) since ↓(g)4(c) - gK = /k S .t

y(gk) = ↑(g) (by definition)

To show that y is one-to-one , suppose that n/g ,k) = 4192K) . Then (g) = P(92)
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This implies that ↑ (g) (4192)" = e => 4(9))4(92) = e

=> 4(9 ,92") =e

or g .92 Ekert
Hence g. 92k = K

This implies gak = gik .

Therefore y is an isomorphism.

#

Note We use diagrams called commutative diagrams to describe such theorems

The following diagram "Commutes" since 4 =p.

G
↑

> H

7

↑ V Y
G/k

(Based on the website Math3ma)
The first isomorphism theorem , intuitively

Suppose 4 : G - I is a homomorphism of groups (let's assume it's not the map

that sends everything to the identity ,
otherwise there's nothing interesting

to say) and reall that KerfcG means "You belong to kerf if and only if

you map the identityef in H".

Now we want to understand why it's helpful to think of the quotient /ker4
as consisting of all the stuff inG that doesn't map to ef

E/kery my "things in G that

don't map to the

identity"
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First notice that every element of G is either

① inKerY
② not in Kery

There's only one way to satisfy D - you are simply in the kernel

This is why we have exactly one "trivial" coset , Ker 4.

On the other hand , there may be many ways
to satisfy & and it's why there

may be many "nontrivial" cosets.

But justh might an element get satisfy ?

p(g) + H

Butnoticetherecouldbeany elementsbdesgwhoman.
For instance , every element of the form gg' where gltkert works.

So we group all those
elements together in one pile ,

one coset , and denote

it gkert. The notation for this is quite good : the little greminds us

"These are all the elements that map to the value ofat thtg"

And multiplying g by kert on the right is suggestive ofwhat we just

observed : we can obtain other elements with the same image (g) by

multiplying g on the right by things in kert.

Let's imagine the elements of G as starting off as dots scattered everywhere

S -
/

...
S &

which we can organize into little piles according to their image under↑

We color-code them as follows



⑨ · ⑨
&4

⑧
· ⑧

.....

....

8 8 8 G
· · ·

ea 9 . 92939495
↓ ↓ ↓ ↓ ↓ ↓ ↓+
195) It

Note that I isn't necessarily surjective. Now here's themobservation.

We get one such pile for every element in the set N(G) =ThtH/N
The idea then behind forming the quotient /Kert is that we might as well

consider the collection of green dots as angle green dot and call it the coset

Ker t .
And we might as well consider the collection of orange dots as a

single orange dot and call it the coset g, kert , and so on. So we get this

picture :

·
Kert 9, kert 9: kergkery gykert 9sker4

↓ ↓ ↓ ↑ ! ↓
en 4191) pagu) 4195) +194) 4195)

Intuitively ,
then

, we should expect a one-to-one correspondence between the

cosets of G/ker4 and the elements of 4(G) .

That's exactly what the

first isomorphism theorem means when it tells us there is a bijection

/kery = P(G)
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We should also notice that there are exactly IH(C)(en) ways to "fail" to be

in kert and exactly I : /den3) way to be in ker4

Typically 14(G)\Se3/1 and so the interesting part of the quotient E/kert lies
in its subset of nontrivial cosets g,kert . gaert, ..

The first isomorphic theorem implies that this is the same as viewing the interesting

part of PCG) as lying in all the elements of that don't map to the identity
in H.

Closing remark : Theorem Let u : G- I be a group homomorphism
and

Let p : G + G/kerp be the canonical (surjective) homomorphism gregker 4.

Then 7 a unique isomorphism y : E/kerp + ↑(c) So that 4 = 44.

......
- P

·uor&

.... -> 9: kerp
-

&

....
: G .. "G
& -

-

·.::
Eskert

gekert
9skert

&

Y in
CH

419T
Example Let G be a cyclic group with generator g. We define the map p : 7-G by

↑ (in) = g" This map is a homomorphism since Pim+n) = gmth =gmgh = plm)p(n).

It is actually a subjective homomorphism since gug-neT S . t . P(n)= g 2.

If 1g) = m then gm = e. · This implies that ker p = gm = my.

-since in theorem 11 . 10 (1st isomorphism thm)Also /kerp=/MILEG
↑

we showed that : G/k-p(a) is an

by def" ofKer & isomorphism = H
in the line above
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If the order of g is infinite , then ker op = 0 and ↑ is an isomorphism of G andL.

Therefore , two cyclic groups are isomorphic exactly when they have the same order

Up to isomorphism ,
the only cyclic groups are <L andIn

.

#APTER13 The structure of groups

In group theory we already said we want to classify all groups up to an isomorphism.

Given a particular group , we want to match it with a known one through an

isomorphism.

e .g. We already saw that any finite cyclic group of order his isomorphic to In.

Thus we "know" all finite cyclic groups.

Here we will characterize all finite abelian groups

If a group has a sequence of subgroups G = Hn > Hn +
> ...H

,
THo = he]

where each subgroup Hi is normal in Hit

· each of the factor groups Hit is abelian
then G is a suble group.

Solvable groups allow us toO distinguish between certain classes of groups
② study solutions to polynomial equations

Section 15 . 1 : Finite Abelian Groups

Things we already determined :

D Every group of prime order is isomorphic to TLp

② knn = YmXYLn where ged (m .n)=

But more things hold.
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③ Every finite abelian group is isomorphic to a direct product of cyclic

groups of prime power order . I
. e. Every finiteabelian group is isomorphic

to a grouppdX -.. Tan where each Pr is prime (and not

necessarily distinct) .

Slight generalization of finite abelian groups

Suppose G is a group and let Egiz be the set of elements in G Where i is

in some index set E (not necessarily finite) .

The smallest subgroup of G containing all of the gi's is the subgroup of G

generatedbythegithissubgroup ofGisfact all of
then G is generata

If there is a finite set Eg;: itI] that generates G
,
then G is finitely generated.

Example All finite groups are finitely generated. Eg the groups Sz is

generated by the permutations (12) and (123)

Check :
0= &(12) , (23))

S3 = &(1) , (12) . (23) , (13), (23) . (l 32]
(12)(12) = (1) (Sz) = 3 ! = 6

(12)(123)= (1)(23) = (23)

(123)(123) = (132)

(123)(12) = (13) ~

--

thus So is finitely generated by the set [C12) ,1123)

Proposition 13.3 Let I be the subgroup of a group G that is generated by

EgitG : if13 .
Then hell exactly when it's a product of the form

h = g...g
where the gips are not necessarily distinct.
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P Let k be the set of all products of the form g". -g where

the gip's are not necessarily distinct.

This K is a subset of I /recall that It is generated by giG : it l)

Is K a subgroup of G ?

· If yes ,
then K =H Since It is the smallest subgroup containing all thegi's.

· The set K is soged under the group operation since it's of the form ga -.gi
· Since gi =1 the identity is in K

· g = (g ...g) = igg) is theo a

D

#te Powers of a fixed g ; may occur several times in the product if we havea

nonabelian group.

I the group is allian then the gi's need occuronly once

e
. g. A product

a-3ba7 in an abelian group could be simplified to a465

FINITE ABELIAN GROUPS

Any finite abeliangroup can be expressed as a finite direct product of cydicgroups

* Letting p = prime we define a group G to be a p-group if every element in G

has as its order a power of p.
identity =1

2. Both TL2XL, andp are 2-groups elements of cyclic group TLp = 50 , 1 , 2 ,3)
order of o is ↑

elements of 72x7z =E 10 , 03 , 10 , 1) , 21 ,
03 ,4 .1) order of 1 is 4 addition

order of 2 is 2

Every element (a , b) in 72XT2 has order 2

order of 3 is 4

Since (a , b) + (a, b) = (0 ,0)
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Theorem 13. 4 [FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS]

Every finite abelian group G is isomorphic to a direct product of cyclic groups of

the form Writing a group ine this

74d , x7pX ...XT form is called

"determining the
Here the Pi's are primes that are not necessarily distinct isomorphism class of G "

-

Let's look at a few examples to see how powerful the fundamental theorem is

Reminder : It can be used as an algorithm for constructing all abelian groups ofanyde

Let's look at groups whose orders
have the form pk , where p is prime and K?4.

Generally there is one group of order pK for each set of positive integers
whose sum

is k (such a set iscalled a partition of K) .
That is , if I can be written as

k= n, +nz + ... +ht

where each u ; is a positive integer then

pr ,XpX ... The

is an abelian group of order pk

Order of G Partitions of K Possible direct products for G

P I
7

p

pa 2 7pz
1 +1 7px74p

p3 3 Xp
2 + 1 7p2x7p
1+ 1 + 1

Xpx7px7p



Goo
p4 4 7p4

3 + 1

7p3x7p
2+2

2 +1 + 1 Y(p2x]p2
1 + 1 +1 +| kp2x7pX7(p

7pXT(pXTLpXTLp

NoteThe number of terms in the product and the orders of the cyclic groups

are uniquely determined by the group.

This guarantees that distinct partitions of k yield distinct isomorphism
classes.

For example . KaX7 is not isomorphic to Tz x7z XTL

A mnemonic for comparing external direct products is the cancellation property :

-

* If A is hite then AXB = AXC if and only if BE

Thus TpX74 is not isomorphic to 14 XT2XTL because 74 is not

isomorphic to TzX7L

Example. Objective : Classify all abelian groups of order 540 !

First We note that 540 = 22 . 33. 5.

The FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS tells us we have 6 possibilities

7 xzXTx
2

540 = 22. 33 .
5

2
. TzxThzxTyXTLg xTh5

3
. 722x72x427x7L5

4. Th4X TLzx7LzXTLzXTj

5
. 744x7x7qxThy
6

. 74XT27x7L5
#



Constructing all abelian groups of acertain order n wherea has 2 or more distinct
XP

prime divisors.

SEEP1 Write n in the prime power decomposition form u = p. p ...p

Ep2 : Individually form all abelian groups of order P, then P2
,
...

Sp3 : Form all possible external direct products of these groups

Example Let n = 1176 = 2
3

. 3 .72

Then the complete list of the distinct isomorphism classes of abelian groups

of order 1176 is

1 . TL2XTLaXTh2 xThy X ThaxThe

2. 7644 Th2 x ThgxThax7z
3

. TL8 x 73x77x747

4
. 74x72x7LzxThyX7249

5 . 744X Th2 x TLyX7249
6. 71x7L3x7249

If we are given any particular abelian group E of order 1176 ,
the question we

want to answer about G is :

-> Which of the preceding six isomorphism classes represents the structure ofG?

We can answer this by comparing the orders of the elements of G with the orders of
the elements in the six direct products , since it can be shown that two finite
abelian groups are isomorphic if and only if they have the same number of
elements of each order

We could determine whether G has any elements of order 8 . If so
, then G
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must be isomorphic to the 3rd and oth groups above , since these are the
only ones with elements of order 8.

To narrow Gdown to a single choice we now need only check whether or not
G has an element of order 49

,
since the oth group above has such an

element whereas the grd not.

CHAPTER16 RINGS

So far we studied sets with a single binary operation satisfying certain axioms
Often

, we are interested in working with sets that have two binary operations.
E.g. think of the integers with the operations of addition and multiplication.
These are related by the distributive property.

If we consider a set with two such related binary operations satisfying certain

axioms
,

we have an algebraic structure called a ving.

Section 16 . 1 : Rings

Definition : A nonempty set R is a ring if it has two closed binary operations,
addition and multiplication, satisfying the following conditions :

1 . atb = bta for a. be R

a ring 2
. (a+b) + c = a + (b+ c) for a , b ,

CER
is an

abelian I 3. There is an element O in R such that a to = a for all ER
group
under

4. For every element at R
, there exists an element - a in R such that

addition a + (-a) = 0

5
. (ab)c = a(bc) for a ,

b
, cER

6. For a ,
b

,
CER

a(b+c) = ab+a) distributive axiom

(a+b)c = ac + bc I
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In 3 .
We have not assumed that 0 . a = a . 0 = 0 VaER

. What 3
. says is that

O is an identity with respect to addition.

we do not assume that multiplication is commutative and we have not

assumed that there is an identity for multiplication , much less that elements
have inverses with respect to multiplication.

In4-a is the additive inverse of a. Subtraction in a ring is defined by the

rule a - b = a + (-b) fa ,bER
.

the multiplicative identity is not the-

additive identity
Ref : If there is an element IER such that and la = al=a for

each element GER we say that R is a ring with unity or identity.

Leth : A ring R for which ab =ba Fa
,bER is called a commutative ring

Note that the addition in a ring is always commutative but the multiplication

may not be commutative

De : Aving R is said to be an integral domain if the following conditions
hold :

1. R is commutative

2. R contains an identity 170
3. If a,beR and ab =o

, then either a = 0 or b =0

Def : A division ving is a ring R with an identity ,
in which every nonzero

element in R is a unit . That is
,
for each atR witha0

. - a unique

element a"Such that a - a = aa" =1

De: A ring R is said to be a field if it satisfies the following properties

1. R is commutative

2. R contains an identity If

3. For each XtR such that X*0 JyeR such that xy = 1.

1 . e
. a field is a commutative division ring.
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TYPES OF RINGS

Rings

Commutative Rings with
Rings Identify

(commutative) Integral Division
lit is not commutative

Domains Rings

Fields

lit is commutative

Example the integers form a ring , since they satisfy axioms 1-6.

7) is also an integral domain. I . e
. it is a commutative ring with identity.

Recall that this means there is an element It such that I 0 and

1 a = al =a
,
for each atT

. (more succinetly for every a. beTL such that

ab = 0 either a=0 or b = 0).

7) isn a field. There is no integer that is a multiplicative inverse of 2

since 1972. The only integers with multiplicative inverses are1and -

Example. Under the ordinary operations of addition and multiplication

all of the familiar number systems are rings :

- the rationals Q

- the real numbers IR

- the complex numbersI

Each of these rings is a field.
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Example We can define the product of two elements a. bekn by

ab (mon)

e . g. in T2 :
5 . 7 = 11 mod 12

- This product makes the abelian group -n into a ving .
(check that it satisfies

the 6 axioms of a ving).

-In is a commutative ring

- 7 might fail to be an integral domain

c. g. Consider 3
. 4 = 0 (mod 12) inT. 2. A product of two nonzero

elements in the ring can be equal to zero.

Recall for an integral domain for every a ,
beR such that ab = 0

either a = 0 or b= 0.

Definition .Anonzeroelementa inaring
is called a zerodisa

e
.g.
In 3 . 4 = 0 (mod 12) in 742 : 3 and 4 are zero divisors in 72.

Example In calculus the continuous real-valued functions on an interval
-

[a , b] form a commutative ring.

Explanation : We add or multiply two functions by adding or multiplying
the values of the functions. If f(x) = X2 and g(x) = cosX

,
then

(f+g)(x) = f(x) +g(x) = x2 + cosX

(fg)(x) = f(x)g(x) = X(sX
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Example. The 2x2 matrices with entries in IR form a ring under

the usual operations of matrix addition and multiplication.

However , thering is noncommutative , since usually ABBA.
Note that we can have AB =0 when neitherA nor Bis zero

(thus the 2x2 matricese .g . A = (18) and B =(08)
are not an integral domain)

example Example of a noncommutative division ring

Let 1 = (bi) · I =(i) · j =(j) · k = (0) where it

We can check that these elements satisfy the following relations :

= (96)(20) = (62) =+ =j = k

ij = (b)(6) = (0) = 1

+ =

(i)(i) =(b) = =

ki = (0 % )(96) =(00) =j

+ = (5)(i) =(2) = -1

↓j = ((i)(i) =(
,05) = -i

ik =(b)(2) = (iv) = -
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Let It consist of elements that have the form abi + cj+de
where a ,

b
, c ,de IR.

Equivalently .
It can be considered as the set of all 212 matrices of

the form

(E) where =adie

B = b +ci = ⑰

=Latdi b)=

We can define addition
and multiplication on I either by the usual

matrix operations or in terms of the generators 1 : 2 . j :.

Addition (a+ b , 2 + (j + a , (2) + (a) + b2i + (j + da(z)

= (a ,
+az) + (b ,

+bz)i + (4+2)j + (d ,
+dz)

Multiplication (a , +b , 2 + cij +d , k)(a+bi+2j + dyk)

= (a , ac
- bibz -42 -d , dz)

When doing this calculation
+ (a

, bz +azb , + c ,d - d ,q)] recall the relations between

↑ (a , k - b
, dz + C

, az +d
, bz)] the generators I ,j and &

+ (a , dz + b, c - 4bz + d ,az)k

i = x + B2+yj + S

The ring I is called the ring of quaternions

& show that the quaternions are adininring.

1 . e . show that for each atR witha0
. - a unique element a"Such that

a+a = aa+ = 1 (find an inverse for each
nonzero element
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A : Notice that (a + bi + cj +d()(a- bi - c - de)
= a2 +br+ c+d2

+ (ax-b) +(b + xx-d) -xX-c)2
+ (aX-c) -(d) + c)+ dX(b)))
- (a(-d) + xx-x) -c(b) +(a)k

= az +bi +c + d2

This element can be zero if and only if a ,
b

, c , d are all zero.

So if a + bi + cj + dk + 0

l) = 1

-
at R this is a"ER

satisfying aa
=aa = 1.

#

Proposition168:
Let R be a ring with abenis

②al - b) = (-a)b= -ab

③ (-a)(
-b) = ab

distributive property alb+c) = ab+ ac

Po O Note that Otao = aloto) =Yao +a0

↑
Thus 90 = 0.

(by the right cancel .)
R is a group under addition with additive identity

Similarly 0a = (0 +0)a = 0a + 0a = Da = 0.

↑
distributive property (b+c) a = batca
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② We have ab + al -b) = a(b -b) = 20 = 0 (froma)

=> a(-b) = -ab

a) -b) + ab

Similarly ab + (-a)b = (a -a)b = Ob = 0
= a) -b+b)

=> (- a)b =
-ab

.
= 90

= O Adding-ab
Thus al -b) = (-a)b = -ab to both sides gives

a(- b) = - ab

③ This follows from & since (-a)l-b) = - (a)-b) = - (- ab) = ab .

A

e Some have the mistaken tendency to treat a ving as if it were a group

under multiplication. But it isn. The two most common errors are the

assumptions that:

-> ring elements have multiplicative inverses - they need not
-> a ring has a multiplicative identity - it need not.

For example , if a , b ,
c ER , a to and abzac ,

we cannot conclude that b=c.
-

(the right might not have a multiplicative cancellation)

Similarly , if a = a . we cannot conclude that a =0 or a = 1 (as is the case/it

Ithering might not have a multiplicative identity

Similar to subgroups of groups , we have subrings for rings.

Example If R is any ving , then the set Mr (2) of nxn matrices with

↳efficients in IR with the usual addition and multiplication of matrices forms

a ring. Here the additive identity is the zero matrix and the multiplicative

identity is the identity matix (hence the names).

MnCIR) is a non-commutative ving.
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Prition A subring S of a ving R is a subset S of R such that

& is also a ring under the inheritedoperations from R.

Just as was the case for subgroups , there is a simple test for subrings

SUBRING TEST

& nonempty subset S of a wing R is a subring if S is closed under subtraction
and multiplication ; that is, if a - b and ab are ins whenever a and b

are in S
.

of Since addition in R is commutative and S is closed under subtraction

we know by the subgroup test that S is an abelian group under addition.

T
why?

Recall that the subgroup test stated : LetG be a group and I a nonempty subset

of G . If abtelt whenever a , belt ,
then It is a subgroup of G.

In additive notation , if a-b H Whenever abelt ,
then It is a subgroup of G.

&

Also
,
since multiplication in R is associative as well as distributive over addition

the same is true for multiplication in S.

5

. (ab)c = a(bc) for a ,
b

, cER

Axms 6 . For a ,
b

,
CER

a(b+c) = ab+ac

(a+b)c = ac + bc
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alb-c) = ab-act H whenever ab ,
acelt

Thus , the only condition remaining to be checked is that multiplication is a binary
operation on S but this is exactly what closure is.

Example. The ring n is a subring of K. Notice that even though
the original ring might not have a multiplicative identity,

we do not

require that its subring has an identity.

Recall 2EXL , does not have a multiplicative inverse [TL)
The multiplicative identity would be It a 1 = a

EmpeLebetheringofmaries
with entriesna

T = ((9b) : a ,
b

, ce IR]

then T is a subring of R . If A =(9b) and B:ab) are in T theo

A -B = (a -a bb) ET also

Similarly , AB =(b)(b) =Jaa' abitb)Tals

Thus T is a subring of R.

Example Given two rings R ,
S

.
the product ring RXS is defined as a set by

RxS = &(V,S) : veR , seS] with operations of addition and multiplication

performed component wise.

The additive identity is given by 10p , 0s) and the multiplicative identity is
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given by (12 . 1s) . If Risa ring and A
, BCR are two subrings , then

using the subving test one can check that AlB is another subring of R.

Integral domains and fields

Remembering some of the definitions we have already seen...

- If Risaring and is a nonzero element in R , thenris said to be a zedivisor

if there is some nonzero element seR such that us =0.

- A commutative ring with identity is an integral domain if it has no zero divisors.

1 . e. If for every vistR such that Us = 0 , either + =0 or 5= 0
.

- If an element a in a ring R with identity has a multiplicative inverse , we

say a is a it . I . e
. for each acR with a70 7 a unique a"S. t

a
+

a = aa" = 1.
.

- If every nonzero element in a ving R is a unit , then Ris called a division
Ling -

- A commutative division ring is a field.

Emple If i=1 . then[i] = Emini : m .ne] forms a ring known as the

Gaussian integers

The Gaussian integers are a subring of the complex numbers since They are

closed under addition and multiplication.

Say mtnie[i] form ,
ne and +sitk[i] forg,seT) .

Then

(m+ ni)+ (g +si) = (m+q) + (n+s)i = x[i]
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Similarly (m+hi)(q+si) = mq + insituqi-ns

=(mq - ns) + (ms+ nq)i = T[i]

Let a = a+bi be a unit in[i] .

Then = a-bi is also a unit since

->if ⑬ then by def" of a unit : for each aeR with ato

multiplicative = a unique a"s.t a"a = aa" = 1.

identity In this case for each a X [i] J B S . t . &B = 1.

Then J= 5 = /
If B = C+di then 1 =(B) (b)
"

= (a+bi)(c+di)(a -bi)(c -di)

= (a +by (c +d2) since[i] = Em+ni : m ,ne]

When can this happen? Say atbi = 1 and c+ di
=1

=> (a2+ b4(c +d) = 1

If at bi =1 and ( + di = +1 => (a2 +bi)(c +&2) = 1

If at bi = [ and ( +di = i => (a2 + b2)(c2 +dz) =

If atbi = - i and c+di = -i => (a) +bt)(c +d2) = /

Thus
,
units of this ring are #I or Il.

& Are the Gaussian integers a field ?

1 No, they are not a field.
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Proposition 16.
15 Cancellation Law

Let D be a commutative ring with identity .
Then D is an integral domain

if and only if nonzero elements atD with ab = ac we have b=

Proof ( =3) let D be an integral domain.-

Then D has no zero divisous. (by definition)

Let ab = ac with a 70 .

Then ab-ac = o = alb-c) = 0 from the distributive property.

Since D is an integral domain then for every VISED S .t
.

US = O
,
either

u = 0 Or 5=0.

In this case since ato ,
b -c= 0.

Therefore b= c.

(E) Let vs now suppose that cancellation
is possible in D .

1 . e . suppose that ab= => b = c
.

cas in the assumption in the proposition)
Let ab= o

.
If ago then ab = ap or bo.

Thus a cannot be a zero divisor
.
(recall VFO ,

VER is said to be a

zerodivisor IfI sto ,
SER S .t .

us =0).



115
-

Example Field with 9 elements

let z[i] = Smini : m
,
n + ]s]

= 50 , 1 . 2 ,

i, I + i , 2 + i ,

2i , Itzi . 2 + 2iz , where iz=

This is the ring of Gaussian integers modulo 3.

Elements are added and multiplied as in the complex numbers ,
except that

the coefficients are reduced modulo 3.

Note that - 1 = 2 =

This means that the additive inverse of 1 (i . e.
-1) is 2. . 12 = 0 mod3

↑

additive identity

Example Let CQ[v] =GarbE : a . beQ3 . Check that it's a ring !

& : Is it a field ?

# : This means that every nonzer element must be a unit (f a mult . Invere)

The multiplicative inverse of any nonzer element of the form atbr is

-
. We rationalize this togetbatbi

=2262
=(2) + (a2b)

Thus the inverse of at br is c+dEQIE]
.

= C +dr

Note that atbiz fo guarantees that abi Fo.
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Wedderburn's theorem

Theorem 16 . 16 : Every finite integral domain is a field.

&of Let D be a finite integral domain.

Let D* be the set of nonzero elements ofD .

We must show that every element in D
* has an inverse

.
(this is precisely a field

For each atD* we can define a map Ta : D
*
- D * by Xald) =ad.

=

If a to and do then ad fo why ? Because for an integral domain

for every a ber s .+ ab = 0 either ato or b =0.

1 neither a = 0 nor b=0 then at 0
.

The map Ja is one-to-one since for d .,d ED
*

3a(d ,) = Sa(dz)

=> ad
,

= ad

which by-cancellation gives d=d2
.

Recall that by proposition 16 . 15 the multiplicative cancellation law holds

When D is an integral domain.

Since D* is a finite set (look at the statement of theorem 16
. 16) ,

the map

4a must also
be onto

. Hence for some deD*, Ja(d) = ad = 1.
↑

We know IEDY
Thus a has a right inverse . because D is an

Since D is commutative ,
a also has a left inverse ,

which is a integralan in
which means it's

Therefore ,
D is a field. a ring with

an identity
#
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For any nonnegative integer n and any element v in a ring R

we write + ...+r i times as nr. order of theI I
&

underlying group

DefinitionThecharacteristicofvingRis
the least positive internate

-

If no such integer exists ,
then the characteristic of R is defined to be 0.

We denote the characteristic of R by charR.

Example. For every prime p , Yp is a field of characteristic p.

By proposition 3
.4 every nonzero element in 7 has an inverse ,

hence

#p is a field.

/Remark : In property (6) of prop .
3

. 4 we had the following :

LetIn be the set of integers modn . Let a be a nonzero integer. Then

gcd(a , n) = 1 if and only if I a multiplicative inverse b for a /mod n).

1 ..e
. a nonzero integer b

S . t
. ab = l (mod n) J

If a is any nonzero element in the field ,
then pa = 0 ,

since the order of any

nonzero element in the abelian groupp is p.

By the definition of the characteristic of a ving R , we know that Tp is

a field of characteristic p.
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Lemma letbeavingwithidentit,aR is n

#of If I has order n
,
thena is the least positive integer such that

n1 =0 . Thus , for all VER ,

nu = n (Ir) using the definition of identity
lu = u) =r

= (u))r by associativity laxium 5 of rings)
= Or since I has order n => 1 = 0

=O

If no positive n exists such that 21 = 0 then the characteristic of R

is zero.

Theorem16 .
19 The characteristic of an integral domain is either prime or zero.

&of Let D be an integral domain .

Suppose that the characteristic of D isn with no.

· If n is not prime then n =ab where Iach andban

By lemma 16 . 18 , we need only consider the case H1 = 0
·

Since 0 = ul

= (ab)I
& we can do this by defh ofan identity

= (a))(b)
al = a and bi =b.

and an integral domain has no zero divisous, we have either

al = 0 or bl = 0
.

L
↳ these imply that the characteristic of D is either a orb and

both are less than n.
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Thus , the characteristic of D must be less than n ,
which is a contradiction.

]
Thus

,
n must be prime.

#

Section 16 .3 RING HOMOMORPHISMS AND IDEALS

If you recall from
back when we were doing groups , a homomorphism is a

map that preserves the operation of the group
.

Similarly ,
a homomorphism between rings preserves the operations of

addition and multiplication in the ring.

Definition : If Rands are rings , then a ving homomorphism is a map
-

p : R-S satisfying

P(a+b) = p(a) + p(k)

↑ (ab) = p(a)p(b)

fa , be R
.

Definition : If P : R + S is a one-to-one and onto homomorphism , thena
-

is called a ving isomorphism.

Definition :Foranyvinghomomorphism
P :-S

,
we define theea

-

kerp = Ev = R : p(r) = 03
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Example For any integer n we can define a ring homomorphism P :+7.

by P(a) =a(modn) . Let's check that this is actually a ring homomorphism

Platb) = a +b (modn)
= a (modn) + b(modn)

= p(a) + P(b)

and (ab) = ab (modn)

= a (mod n) · b (mod n)

= P(a) -p(b) .

① : What's the kernel of this ring homomorphism?

# : kerp = nTLintegers that are multiples of n . i . e
.
nTL = Enx : x =73

Example Let Cla ,b] bethering of real-valued ,
continuous functions on an

interval [a .
b].

This is a (commutative ring) . (f+g)(x) = f(x)+g(x)

and (fg)(x) = f(x)g(x)J

For a fixed x[a . b] ,
we can define a ring homomorphism Pa : Chab] -> IR

by ba(f) = f(x)

Let's check this is indeed a ring homomorphism :

↑x(f +g) = (f+g)(x)
= f(x) + g(x)
= Pa(f) + P

,
(g)
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Pa(fg) = (fg)(x) -

= f(x)g(d)
= Pa(f)Pa(g)

In fact ,
this type of ring homomorphism&(f) = f(x) is known as

evaluation homomorphism.

Proposition 16 .22 Let p : R-s bearing homomorphism.

O If R is a commutativering , then PCR) is also a commutativering

② 410) = 0

③ Let Ip andIs be the identities for R and S. respectively.

If p is onto then P(1p) = Is

① If R is a field and P(R) #503 , then PCR) is a field.

#

Recall that several sections ago when we were learning group theory
we saw that normal subgroups are interesting to study.

The corresponding objects in ring theory are special subvings known as ideals.

Definition : An ideal in a ring R is a subring I of R such that if a l

and veR
,
then both areI and ratl

That is , a subring I of a ting R is an ideal of R if I "absorbs" elements from

R . I . e . if rI =GralatI] ? I and Ir =Ear/acI]eI FreR

Eple Every ring R has at least two ideals : Soy and R
.

We will these ideals the trivial ideal
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Let R be a ring with identity and suppose that I is an ideal inR

such that ItI
.
Since for any reR ,

Ul = reI by the definition of an

ideal
, I = R. ~If I and Irel

but by def"of identity
ri = 1 = r => VEI

Example If a is an element in a commutative ring R with identity,

then the set(a) = Sar : reRy is an ideal in R.

<a> 0 since
a = al-multiplicative identity is in <a)

(since R is a commutative ring with identify

The sum of two elements in<a> is again in <a) Since

ar + ar" = a(r +r")

by the distributive property

Inverse of ar is-ar = al-r) E <a) .

If we multiply an element art<a) by an arbitrary element SER

we have s(av) = (a) r associativity
= (as) v commutative (since R is a comm . ring)

= a (Sv) associativity
Therefore

, <a) satisfies the definition of an ideal .

Defn If a1 and reR then both ar EI and rat I

A
-> In our case areI and seR = CarS El

and s(ar)EI
would mean that I is an ideal.
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Definition : If R is a commutative ring with identity , then an idea

of the form (a) = Sav : veR] is called a principal ideal .

Theorem625 Every ideal in the ring of integers T is a principal
Ideal

.

# The zero ideal zoy is a principal ideal since <07 = 50% ·

If I is any nonzero ideal in 7 .
Then I must contain some positive

integer m.

By theWell-ordering principle J a least positive integer nel.

Now let a be any element in I.

Using the division algorithm , we know - g ,rest.

a = uqt with ocuar

= v = a - nqEI

Buta must be zero since u is the least positive element in I.

=> a = n9t
=) a =nq

and I = <n]

A
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Example The set n is ideal in the ring of integers.

why ? Because if naenT and be] ,
then Haben]

↑
as required. ideal Fing
By theorem 16 .25 (that every deal in the ring of integers 7) is a

principal ideal) , these are the only idealsof

frecall that a principal ideal is an ideal of the form (a) = sav :

re)

Proposition 16 .27 The kernel of any ring homomorphism p :R-S is

an ideal in R
.

&of From group theory , we know that kery is an additive subgroup

of R
.

(Check this for practice)

Suppose that a ekerd and reR .

For kerd to be an ideal in R we must show
that are kerd and

racker b.

We have plan) = p(a)p(r) by defh of homom.
= 0p(r) atkerp = P(a) =0

= O

and
, similarly , p (ral = P(u)p(a)

= p(r)0
=O
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Thus Plarl = 0 => arckerp and piral =-racker p.

D

Remark In the definition of an ideal we have required that rICI
-

and Ir CI for all reR .
Such ideals are sometimes referred to as

two-sided ideals

But there are also one-sided ideals that only require
that either

rICI or Ir c I For veR hold butnot both
-

-

left ideals right ideals

· In a commutative ving any ideal
must be two-sided.

For the scope of this class you only need to know about two-sided ideals.

Theorem 16
.29 Let I be an ideal of R. The factor group R/I is a

ring with multiplication
defined by

(r +1)(s +1) = vs +I

#of We know that R/1 is an abelian group under
addition.

Let VIER/I .
We must show that (r +=)(s + 1) = rs + I

& stIE R/I Y is independent of the
choice of coset.

This is equivalent to showing that if r'EUF
and s'estI , then

r's' eUS +I.
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Since v'EU +I I an element atI such that I' = r+a.

Similarly , since s' : st] - bel s .
t

.
S =Stb

.

=>r's" = (r + a)(s +b)

= rs + vb + as + ab
-

the ideal I
"absorbs" these elements

Since I is an ideal we have that rbtastabel
Since atI and be I

for reR , rbel ydethofTherefore r's'Eus + I SER
, aSEI

ideal

To show that R/I is a ving with multiplication we must
(and abo

yas
also prove the last two axioms of a ring. Namely that associativity and
the distributive property hold. Please check this !

Definition: The ring RII with multiplication defined as

(u +1)(s + 1) = rs + I

is called the factor or quotient ring

Just as with group homomorphisms and normal subgroups , we have a

relationship between wing homomorphisms and ideals.

Theorem 16
.
30 Let I be an ideal of R . The map p : R+ R/I defined by

pcr) = v +I is a ving homomorphism of R onto R/I With Kernel
].

&of . P : R-RII is a surjective abelian group homomorphism

P(r +s) = (r +s) +I = (v + 1) +(s + 1) = p(r) + p(s)
*

definition of addition binary operation



↓7

We must now show that I is a ving homomorphism, so it works

correctly under ring multiplication.

Let r
, SER ,

then

p(r)p(s) = (r+1)(s+ I) 2 for the factor group
R/I the ring multiple

= rs + I is (r+1)(s + 1) = rs + I.

= q(rs)
A

Example/47) = 30 + 477 , 1 + 472 , 2+477 , 3+ 47].
Recall from pg83 of these notes that elements of 7/nTL are the cosets :

nX , 1 +HTL , 2 + UTL, .... (n+) + nTL

To see how to add and multiply consider the elements2 +47 and 3 +47

(2+ 472) + (3+47) = 5+47 = 1 + 4+ 472= 1 + 47

(2+472)(3+ 472) = 6 + 472 = 2 + 4+ 472 = 2+47

Thus ,
the two operations are essentially modulo 4 arithmetic.

2k +67 God G

Example 27/67h = 30 + 67,
2 + 672

,
4 +67L]

Let's look at the addition and multiplication operations again.

e . g. (4 +67)+ (4 +67) = 8+ 67 = 2+6+67) = 2 +67L

(4 +674(4 +67) = 16 + 67) = 4 + 12 +62 = 4 +67

So here the operations are essentially modulo Garithmetic
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Example Noncommutative ideal and factor ring

Let R =<(a) (ai] and let I be the subset of R consisting of maricsa

with even entries. It can be shown that I is indeed an ideal of R .

I = 9/22) I kit
Then for AER and BEI ,

AB = (a)Lake
=Gakzank Gate
=

(a) kI
since every

entry is anBA =

(2)(a)
can be shown in a similar manner to above

even one

Now consider the factor ring /I .

* The interesting question about thisring is : What is its size?

We claim R/I has 16 elements
.

In fact R/I =&() + = : vieg0, 133

An example illustrates the typical situation.

Which of the 16 elements is (5) +I ?

Observe that (7) + I = (i) + (b) + 1 = (, ) +7
in general an ideal

all even entries absorbs its own

so it can be absorbed elements.
in the ideal I
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Examples Consider the factor ring of Gaussian integers R=[i] /< 2-1)

What does this ring look like ?

The elements of Rall have the form atbit <2-1) where abet

What do the distinct cosets look like?

The fact that 2-i + <2-1) =0 + <2- i) means that when dealing with coset
mod (2-i)

representatives we may treat 2-i as equivalent to 0Zi.

For example , the coset 3 + 4i + (2-i) = 3 + 8 + (2 - i) = 1 + <2 - i)

↑
represed i with2) so 4 : became 8

Similarly , all the elements of R can be written in the form at (2-i) , a f7L.

We can further reduce the set of distinct coset representatives by observing that
When dealing withcoset representatives a = : impies by squaring both sides that

4 =- 1

Of 5 = 0

Therefore ,
the coset 3 + 4i + (2-1) = 11 + <2 - i) = H5+5

+ (2-1) = p+

⑧ O

under the coset representatives

This way we show that every element of R is equal to one of the following cosets :

0 + <2 -i)

1 + <2 - i)

2 + (2- i)

3 + [2 -i)

4 + <2 -i)

since 5 =0 then 5+< 2 + ) = 0 + <2-i

Is any further reduction possible ? OK ... enough

To demonstrate that there is not , we will show that It2-i) has additive order5
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Since 5 (1 + (2 -i)) = 5 +<2 -i) = 0+ (2-i)

1 + < 2-1) has order , or order 5.

If the order is actually( then 1t2-i7 = 0 + <2 - 1) so lt (2-i)

Thus 1 = (2 - illa +bi) = 2a + zbi - ai +b = Ca +b + (-a +2b) i for a ,be7

But this implies that /29th =
a= zb and 2(b)-

b = 5 (7
Contradiction

.

So the ring R is essentially the same as the field <5.

Example Let 1R[X] denote the ring of polynomials with real coefficients and let (x+1)

denote the principal ideal generated by x2H.

(x2+ k = 3 f(x)(xz+1) : f(x) EIR[x]]
Then R(x] /<x+1 = Sg(x) + <xi+1 : g(x) EIR[x]]

= (ax +b +<xz+k = a , bER]

To see that this last equality is true note that if g(x) is any member of
IR[X] ,

then we may write g(x) in the form

g(x) = g(x)(xz +1) + r(x)
u ~

quotient
remainder upon dividing g(x) by x

*
H

In particular , v(x) = 0 or the degree of r(x) is less than 2 so that r(x) = ax +b

for some a , beIR.

&
(*)(x2H) gets "absorbed" by the ideal (x2+1

Thus g(x) + <x*+1) = q(x)(x2 + 1) + r(x) + (x2+1)

= r(x) + <X - H ]
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How is the multiplication done?

Since X2H +X+K =0 + <X+1) one should think of x+ as

=> X2 =-
any two elements of IR[X]/<X*- 17

So for example : (x +3 + (x2+k) . (2x + 5 + <x2+1)

= 2x2 + 5x +6x + 15 + <x*+ 1)

= 2x
-

+11x+5 + <x+17

= 2(-1) + 11x + 15 +(x+ 17

↑

Using x= +

= ((x + 13 + <X +17

CHAPTER 17 : POLYNOMIALS

I'm sure you are already familiar with polynomials. If you are given two polynomials

e .g. p(x) = x3 - 3x +2

q(x) = 3x2- 6x +5

then it's clear what p(x) +q(x) and p(xg(x) mean. We just add and multiply

polynomials as functions :

(p +q)(x) = p(x) +q(x)
= x + 3x2 -9x+ 7

and (pq)(x) = p(x)q(x)
= (x3 - 3X +2)(3x2 -6x+5)
= 3x5 - 6x4 -4x3 + 24x - 27x + 10

It's not surprising perhaps that polynomials form a ring /especially since we've
already seen that

This brings us to the next section of the textbook.
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Section 17 . 1 Polynomial rings

In this section we'll assume that R is a commutative ring with identity

Definitions :

- Any expression ofthe form fex= aix" = aota ,Xta ...an

where aiEIR andfo is a polynomial over IR with indeterminate x

- The elementsao ,
9 , . . ... an are called the coefficients of f.

- an = leading coeff.

- A polynomial is called mic if the leading ceff. is I

- If n is the largest nonnegative number for which an to we say that the degree
of is n

, deg(f) = n.

* The set of all polynomials withcoefficients in a vingR are denoted by 1R[X]
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