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A big part of abstrack algebra mvolves properties of integers and sets.
We now mllect the properties ge need Rv future reference,

Well Ordering Primciple: Every nomemphy Seb of positive integers untains o
smallest member,

Note . Wa say o honTRpo ineger b is o divisor of aninteger § if there is

On Integer * 5.4 . |S =tuj.
We whte H|s [ie. *t divides £*). When £is not a divisor of § ye write
{;)fs. A prime (s o positive integer greater than 1 whose enly positive

divisO1s are | ond ipsele.
We Say thal an in'l'eﬂer S i & muihiple o.[aninl'eﬂer t if there is an integer

U such vhat |s = tul

f T- divisoy

mulfiple of s
of ¢

SETS AND €QUIVALENCE RELATIONS

SET THEORY

A set is o well -defined Colledtion of ohjecs ; defined tn a way that We
determine for ony given object X whether o ot A bedmgs 1o the set.

The objects that belmg 4o o set ore calldits aements: (o membecs),

Notahmm: « Capital Lebters Such as A ov X for set
eIt o is an ddement of he set A e wrile o eA.

Usual ways o specfy o. set.
@ Lst oll of ®S elements inside a pair of bvafes

3.3. X .-.ix.,x,,...,x,&

fr a ser aonim‘ninJ edements x,.Xy, .-, ®n
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® Stabethe property thak determines wheiber ov Nt an object x belongs 1o the so{:.\

% = ix: % sotisfies 7’3
if ench xeX catishes o certain pwperty T

6‘“_"_‘['9” \f s the set of even positive integers - We Lan destribe € by wviﬁnj
either E =i1,4, 6,,..3,

of E<fx: x 16 o0 cuen integer and x >o}

We wrile 2¢F to mean 2 is in the set E
-3¢ E to mean -3 IS not inthe set E,

Impovkant sets We will wnsider:
N =7n: n is o malural nomberjzi.,,.;g’m}
Z.={n:misonineger} = J.o,mn0,12, ]
Q=3 7:ris o ratonal number}-.-zf/q' : p.q e whee 970}
[R= J x: x isa red number}

C :f Z: Zis o tomplex D\)m})efg
R dations between seXs
A see Ais asuwbset of B (AcB) if cvery element of A is also an dement of @

ey f§4.58)<f2.3,4.563.8)

and NecZ<cQ<iRcC
~Eoch set is o subset of ibsel.

~ A st Bis o propersubseb of o.set A if BCA but BFA.

—'F A is not a S(&b@t‘OP 8 ve wrile A’¢B ' e-e. i‘hq"q‘} ¢ {7-0‘!:3-8 q]



- Too seis are egual (A=E) ifwewnsh fhat AcB and BCA. ~3

~ An emplyset s a set with no elements in it (). The emply set is @
Swoset of eveny set,

Oeemﬁms
~ The wnion AUB of [wo sets A and B8 is AUBﬁx:xeAw xeBJ
— The interseckim ANB of A gnd 8 is RB =5 x : xeA and xeB)

e.9.1f A=}13.5] and B=30,2.3,9) then  AUB =7 1:2.3,5,4]
A(\B=i 1.33

- We take the unlem and interseckion of more than ©00 sets
n

UAi - A|UAQ_U...VA"

(=l

s

A{ > A.ﬂﬂz N... nA’n

*
1

"

- When 1wo sets hawe No elements in wMMON, e ¢ali +hem digjoint (AnNB= Ff)

e.g. if Eisthe cet of even integers and 0 s 4pe set of odd integers then
Fand 0 ore digjoint.

Sometimes we'll work within one fixed set U « “universal set
For any set AcU, we define the complement of & (written as A’) bo be the set
A'=$x :xevand x¢ Al

The differene of two sets A and B is
ANB= AnB = f;x:xe-A and xg B)



Example - let R be the universal se-and  Suppose that

A=ixelR : otxs-ﬁ ond B=}xelR: 2 £ x<y)
_ﬁfe‘ Az
Then AOd = xeR : 2£x£3} '.\ q'._
AUB= } xelR : 0<X<4} A
ANB =fxeR 10<x<2)
A’=7 x€R: x €0 o1 X>3}

Proposition ! let A, 8,and C be sts.Then
. AVAz=A, AnR=A, A\A=¥
2. AVG A, Ang=9

2. AuCBLC) = (AUB) VG, AnceNd= (AnB)NC
4. AUB=BUA, ANB=8Bna

5. AU(BNC) = (@UB) N (AUC)
6. AN (BYOD) = (40n8) U(ANC)

Proot 1. AVA = Fx ireAor xef]

Aﬂﬂ=ix: % eA and XGA]
‘-‘-fx:xeAj and
- A = [x:KeA]
— = A

ANA:=ANA =2

Proof 3. For sets A,8,and C

AUCBYUC) = AUTXR: xeB o xeC§
= {x: xeh or neB, o7 xeCt
= {x:xeA mxeb}Uc,

= (Avp)UC
Stmilasty fos A0BNC)=(AOB) A, o



Theorem |I.

let A and B be sets. Then
. (avB)' = A8’
2.(AN6) = A'VUR

_Pﬂ-"f-' . 1§ AUB =P Hen the dheorem follows immediakely since both Aand B are the

empty Seb.
Otherwise, we mvs} show et (AvB)' ¢ A'n8' and (AuB) > A’ 0B
let- xe (AUE). Then x¢ AUB.

So x is meither in A movin B, by the definiim of the union of sers. By the
definiion of the wmplement, xcA' and x €B'. Therefore, X6 A'NB’ and ke have

(AUB') ¢ A'NR
To show the reverse inclusion , suppose that xe A'NB'. Then x eA' and xeB'
= xdAand x¢B. Thus XF AUB and sv xe(AUB). Hence, this thows
(auB)' 2 A'neg.

These two 'boge'ﬂier imply (AUB)' = 4’08’

Cariesian products and Mappings

Given 10 sets A and B We define o hew st AxB +— (artesion prodict
. % A and 8

as a jet of ovdemd pairs.

Thal is: Ax 8 =f[a.,b) :oe A and beB3

Cumple. [F A=ix,y}, B=3u2,3) and C=@ then
AxB = § (=0 .0, (28) (3.0, 4,2 » y. 03
and AXC=p



We define the Carbesian ProdCE of n sets to be

A x... xA,‘af(o.,....anB 20 €A; fPor iz, ..., n]

Subsets OF A xB are (alled velations.

We define o ‘mapping or function f cAxB flomaset A to ouset B to be the
Spedal 1ype of rglakion where each element 0-€A has a unique tlemeny Lhe R swah
'HWt (a.b’)(‘-(:.

Cquivalently, for ewey eement in f, f assigns o unique element in B.

fip-8 o ASs

Instead of uniting odesd pairs (a:b) € AxB we wvile fla)=b w f:a—b

The set # is walled the domain of £ qpq £ = {£(a) : a.cA} cB| is alled
the range °¥ imoge of f.

Example - Suppose A= $1,2,3] and B=Fa,b,c}. We define wlalions § and g fiom

set A 1o set B.
\

K
1
2 b
3

- . e e -

The relation £1is a mappina.

The re)adivn 9 is mot o mappy <— 9 is ot becquse €A is not
assigned 40 o wnique elemenrt ’n B
5-'—-‘30) co.g 8(,) =h

Note. F relafion (s Well -defined ¢ each element jn the domain is assigned 1o o



¢
khique element in the mange .
® ¢ F:A~B (samp and the image of Pis 8,1 £(R)=8 then § is sard
1o be onto o7 Swjective.
— In other wovds, it J an aeA for each beB S-t. fp)<b, then 1 4 ombo.

* A wmap is tme-to-one or ipjedtive |- a.# Qs implies f(a,)5 Flay).
= In other wovds, o funckion is ome-to -ome If f@) =f(a,) impires a,za,.

A map that s both onto and one-b e Vs called bijective .

Guample . Ler f:2 —> @ be defined as [fom - m-
Then £ is one-to-me but not onto thee s no n for whih £inY=/4 for exompe

Given two fanchions we @n wonsiuet & new gne b:’ using the vange of Hhe
tirst funcion as the domain of the Second funchan. let f:4-58 and 9 B—»C
be mappings. Define & néw mop. the compositn op fand 9 flom A o C by
(3-F) = 3(foa)

Example. Gwposilion of maps

Example. let {(x)=x* and 96) =2x+5. Then -9)(x)- ;‘9"") = (2x+$)>= 4x*120% y2g
and (ge F)(9= glfex)) = 24245



&

Hmr,’h Some (ases we wv'd haye _f,s 3 9..‘. Let F(R)cxs QM 90‘):3&- 'n)en \
(Foq)tr= Flgum) = £O3(3) = (1%)3- x
and  (9°F)N = §(fo0) = 9= Yx3 = x

Example. Given a 2A2 Mmahkix A .-.[gj:),m @n definea map T, :IR*— IR* by

Ta (x Y0 (axiby, cxtdy)

(=y) in B> Thris is  matrix mutiphwhion [q b ax¥by
fov any &y ‘ 4 al)[.)y‘)e x4y

Maps from R™ o IR™ given by matries are called ‘linear maps or linear trans formations,

Grampls. Suppose thal S =§1,2,3). Defioe amap w: S~ by
D=2, W2)=| , 7"(3)=3
This & o bjjective map. AN alkernakive way of Wriking  is:

(: 2 3 =(| ?.3)
Ty "W NE) 2 ) 3

Fov any et S, a me-10 -me and onto mopping m: S8 is (alled o permubation
Of €.

Theorem 2. let £:/ ~» B, §:B-=C and h: c—D.Then

- The wmpusiion of mappings is aswciative, ., (heg)of = he(gef).
I.H-‘('and g are both are -to-one » then he mappry 9of is me~to-mme
3.16 £ and 9 @ both ento, they the mappig g ¢ b'{nto

A.|f § and 3 Qe Bij“ﬁw 1 then so is Jo,t,

Poof. e prove (. and 3. again.
[. We mvs} show that 0"3)"" = I,e('s.p)
Fov aeA we have (staviing fromshe RA) *  (he(gef)) (o) =(h(5.,c)m)
= h(g (fo))

2(b 29) (#y)
*heg) * Py



3. Assume that fand g ar both ento fenctins. Given ceC, we moust show #nt Q
3 onaeh st (30;) (a) = 3(‘:‘(«)) ~C.
However sinte gis mwo 3 o beB 5.1 gl8=c.
Shmilady, 3 on a.€h s.t. f(a) =b. Acwrdingly
(3f) () = 9 [fla)
=g W)
= c.
n]

(F §is any et we wil ws ida or id o dencte the identify mppiny flvm S0
isel® . e define This map by [4d ():¢] ¥ ses

A map 9:8>A iS an inverse mayping op :4-8 gef - idA ;‘g’#’gﬁd&
it *undoes” the fynchion

A rop is set 1 be jnvertible if it has an tverse. We vse £ oy pho mverse of f

&amgle . foasIn ® has inverse § 7'(x)=ex and vice wrsq (bu,[- we nted 9 ensupg
Hod we wouefully choose dhe d amarns).
Note that {(f-16) = In[e*)=x
£ ) =e'™* «x
Ecample Swpose that A = 3 l)' A defines amap from W 3o R by
— Z

Ta ()= (sxty. Sx 42)).

We find the inverse map of T, by inverﬁr:] the makix 4 [ ™=

T

AT (5 3-') > Ty Ta (22, ~Sx13)

Chese that T, %o Ty ()= 7, o B Grid= (xif)
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é .
ﬁﬂ':c %'uppose that { :A »8 (s inverible wih inverse 9: B —»A. Then Gefcidy is
tha identity map. that is|9(f(a)) =0

[f o..Q.eA with £@)= f@a) then @, = JHGED) = g(fa,) =a,. Thos £ ic
one-fo -ome .

Theorms A mapping 5 invertivle i f and ony if it is bolh me-to-me and anto.

Now suppose that beB. Ty show that L remb i's necessary t0 find an @ €A s-T.
fla) b bt {g(0) b with gY6A. Let 9.

&)

lonversely, Let £ be bjjectie and let beB. Sinee f is onto, J on ach s.t. f@)=b,
Becouse £ s one-to-me , a must be uniqee. Define 9 by letting 9lb)=a..

We have mow wnstcted the inverse of f.

@ui&nlm velodions and partivions

We generalive equality with equivalence relvhons and equivalence chasses.

An equivelence relakion on a st X is a relakon Re X xX such thet

* [%,X)eR for oll xe&X vefle xive onpery

* (x.§)eR impiies (g, 0eR 8y mmetric property
() and (,%) R imply (x,2)eR Hronsitive pYoperty

Given o equivalene rglokiun R on a set X we usually wiike A~y Instead of
(. §)ER.

Example. let P g:r and s be mtejers with 4.8 #o.
Define -%—~ 5 ¢ Pps=g-

Clem{y ~ s reflexive and Symmeiric

%~%—i!—‘ P3=P§ ¥ {7'»3 (Fps=gr T~Eip vgeps v



, ~
“To Show that ib Is alsv transibive, suppose thak -F; ~Z and -~ %' with 9.8, % #o

Then [ps=qv] and [ru =st] . Thus psw =914 = g5t

mulﬂpw - Swbst. for
Ps =g TU=St
with %

S
ihte S #o L@’?’u - sﬂf_),
Dividing bJ s we have PU=9t . Qmeque»tl‘y. %,.. .

U

é‘_"ﬂ&'_ Sv"ose that £ and 9 are differentiable fundfions on R. (e win define an
equivalente reloT¥ on sudy fipctions by letting 'F(X3~9O<) if ,t'(,q-gg Itxe).

~ is both r{lexiva and symmetic.

To show transitivity, Suppose £()~900) and 90)~htx)

> ‘f,(k)gyl(&) jl(x) - ,)'(R)

Then  §¢x) 9+ 9) = h(x) tc, wher ¢, ¢ ap wWnstants

'(:Cx) - ‘9[}) T G+G
£0x) -h00) =0
£ = hex).

Thos $£ex) ~ ex)
Q

A pavtitiun Pofaset Xiso coiledin of monempty sels Xi, Xz, ... Such that

S ‘
ka= X "ﬂl])’ eq. the sets fo'j, ia,z,3, 3 and
x ﬂ % g -3.-2.'|] onstitute o partition
and Xif\)(\]"‘?’ for i¥) paviitiom of S Of the set of integers

into 4 subsets
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Let ~ bean equivalence relodion on a set X ond let xeX.
Then [x] =JyeX: :',.,,{g (s tolled the equivalente dass of x

Theanm  Given an equivalencs relatim « on a set X, the equivalsnce doses of. y
form a partition op X.

Go nversely, ¥ ?=f)(;3 is o partition of aset X, fthen there i an equivalente
oo ™ X with equivolene classes X;.

fwop Suppose thab ¥hem exists 4, equivalente relqtion ~ on the Set X
For any xe X, the refiexive propery shows the xe[x] and so ] s
nomempl . eardy Y = (J [x]

xe X

Nom et x,:’ex .lde. ﬂﬂ«ed to 8]‘)0‘0 "’h@t &fﬂ)@l [X] :.[y] oY [x]n[:‘] Q.

Svppose that the intersecHm of [x] and [3] 4 mot emply and that Zey] f\[y]
Then v~X Qn=d %"'\\j. BU 33mlﬂ6t3 x ~% anhd :j~"'\.-
and by trensitivi X%~

==sinee ” [y)=§ xS .

(Fm [9]‘[\‘], %G[’](\[x.]
Heace [x] c[y]

since [x_].-.f yex 73"'7‘.3 %G[’J and %E[x]
T EAX foron
Similarly we have [91clx] and so (x1=[y]. (sym) 'd""z Xt ‘(J”’g)

Thos any two equivalence dasses ore either disfo mt@.XJﬂfg] =¢) ar exactly
the same ([4=141)

Svppase that P=3 Xi§ is oo pavtition ofaset X. let two elements be

equivalent if they are in the same partition. ~The relation is reflexive. 1€ x is in the
Same partition os y, then § is in the same pavtiti;m as x so

~d > yvv?( .
Finolly, if x is in the same pavtitin as y ond y is in the same partition as -

then x wust be in the same partitiom as ¥ and tronsitivity holds.

0
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Example let r and § be two integers and suppose that- nEM. e say that v

13 mnsmznt 0 s modulo m, if y-s is divisible tJn. i-e.|r-§=nk for some ke7L
(S _med n)
(e writely =25 (mod )

#1217 (mod 8) since 4|-(3 = 24 is divisible by 8

We dlaim tht @ngruence modufo n fovms on equivalence pataton of 7.
Certainly any integer r i quivalent o itself since r-r=b (s dryisible by m.

We now chow thak the refation is symmetric .
[f v=5 (mod n) then v-5-= ~(s-v) is divisible by m
So s-r is divisible byn and s=vr (mod n).

Now suppose that T 2s(mod n) and s=t (mod )
Then 3 integers k and | s.t. T-5=kn and §-1=|n
To show t;ransiﬁm'la. we must show that -t s divisible By n.
~v-t=c=-st+s-t
= kn+ln
=kt

ond so y-{ (s divisible by » n

* A nonemply Subset § of 72 is WUl -ordered it S watains 0. (east oement.

NOTE: The set Z is mot well -ovdered since it does ot wntain o Smallest element.
Byl the notuwrol nvmbers are well-ovdesed.

I/Oell—o'rdcrins pﬂndp10= G;er& nonemply SVbset f the natwrel mwmbers js
well -otdered

Section 2.2 The DIVISION ALGORITHM

Theorem 2.9 (Division odgomthm) with asb
(e a and b be imegers . with b>o.Then 3 unigque t"\'ceger«s g andr st
o :bq1-r

where Qgcyr<b.




Foog [ existence -and -uniqueness Hype of proog ]

We must first show that the numbers q and T actwally exist . Then we mysf
show that H)eg are unique: if g’ and r' are wo other such nvmbers, then 9:9’
and ver'

(et S:iq-bk: kf?L and 0'5&7/0}

[ 0eS, then b divides & ond we n lek a;=% and r=0

erainder a-blk
isO0

If 0}’5 we can Use the well -O'tderinj p¥indple

We must show irs} fhat S io nenempty,
¢ a_>_0_-)ben a-b-0e§ = qe$ if a0 o-bk=o0 & kez

I€ a<o <then a-b(20)= a(i-2b) ¢ § tate eq L:o
r =) a2 0
In eilher wse S#@. choose eq k=20 : . D oeS
0 that * 1-2b <0 e B S SHiE the ¢

By the well - ordering prindple S must hawve o smalles+ member, Say v=a-bg
Thesfore a:btpr » Y20

(e must now show that veb. [Je suppose thet r>b. Then

a-b(g+) = a~bg-bs v-b>0
Wwore  bockw ords < by osSumption
In this wse we wovld beve a-blgt) ¢ S. But then a-blgH)< a-bg Which wovid
lontredict the oy fhed = a~by is the smollest element of S.So b‘y @ntradickion,
T2b.  Since 0¢S, % b and so[7<b.

. SWPOSQ 3 iﬂl'eﬂers v, ¥'.9,and 9’ st
a=bgtr, 0 £vebh Gy)
az=bg' +v', 0ty'cb ®
Then bgtr= bg'sr’ {3’)

Assume r‘'2> 7T



R

From () we have bg -bg' =r'-r

Nl {from () we have O&Y<b
L("-%)-r r —— and ¢ 7'-rsy!
Thvs b wust divide v'~r gqnd 0< v-rsy’'<b
1

from the assumphion thal ¥ "> r

This is possible only tf y'_y =g, D r'-r%o0
Hence v'=v zq'
L) and 9:9. o
from [£) then bg 4r'=bg 7
2) q:il

let aand b be infegers. I b=ak for some integer k we write o|b.

Aninteger 9 i5 wlled oo common divisov of a and b I d)a and d]b.
The grealest ommon divsor of o ond b is o positive integer d st. drs

0. commoy diviso? of o and b and if d' is ony otherdivicor of a4 and b then 4°]d.

We wrte 3cd(14.3¢) =2 aqnd 3cc\Clzo. 102) =6
We say that +4wo inteyers & and b are relatively prime j¢ 9ed (a,b)x1.

Theoem 2.1 [el a ard b be nonzer integers Then 3 integers 7 and & 5.+
ged (ab) = v +bs.

fiso The g reakest common divisoy of o and bis unrgue.

Froof  Left as an exercise.

THe €UCLIDEAN ALGORITHM

Example let's ompvte the areal:est ommon divisoY of 945 and 2415,

a4)s = 945-2 +525

45 S 5259+ 420
&~ e

525 ‘./420‘:’1_: )

f20 = j05.4 +90



~¢é

Reversing these steps: 10§ divides 420

= 195 divides 525 105 divides both 945 and 2415
105 2 a5 S0 it'Ss oo common divisor
108 v/ 2.4'5

|6 d were anvther common divisoy op 945 and 2415, thend wovld also have 1o
divde los,‘rhos 3cd(q45, 2415) =105,

Woking badkward fhrough the sequence of equatimg, we N also bbtain numbess
v anhd § Ssuch that ﬁofs r+245s =)o s

105 = 525t (-f)- 420
525 +C-O(945+ D529
= 3-525 + (-0)-945
> 2 [24154 (-2)-945] +(-D 945
T 2.415+ (-5) - 945

Thos %<-9 and 3=12.

Not¢ 7 and s aye wot unique , Y= 4 amMd g:=-)p wovuld also Woyle . o

To wompute ged(pb)=d  we e repeated divistms to obtain o dearvasing
Sequence of positive fntegers 7,7 %>...>h=d

= bsag,tT,
v

/
Q= 1'121'73_

/
Y . = Tn-3= Y""q"“"@
n-2 - Yn-,ﬁ,,,“'r,,

A/' l___-—/ = <Yh-
Yo = g -)rh.,—;s
= rnti divisov n-‘-q,n-i
To tind r and s s.t. ar+bs =d We begin with the (ast eqn and cubst. resulbs
obtained from the previovs eqns



Ae 'r,,

= Vh-z ~Taq q'n

S =90 T3 + (13 1 9n) Tn-2
= ra+sb

The algorithn (e ysed 10 find the 9ratest common divisey d of two (nteg ers

@ and b and 10 wiite d as o [pear tombinakion of a and b S known os the
Euclidean olgovithm-

GRouPs  (Chopter 3)

We stavt with integer equivolence dasses and symmeiries

Applicattons - Gryptography, wding theory ...
Rewll that b0o integers o and b are equivodent mod w if n divides a-b.

The integers Mod m pattifion 72, intom di{ferent, equivalence dasses, denoted
oS Zh
e.g.The integers mod (2. and the corresponding partition of the integers
[ol=13%...,.24,-12,0. 12,24, ..}
03 zf.0 ~n413, 25,..3

.

fl’]: { veey, ""31 ", “, 23’35‘ ,"}

Eample. Integer arithmetic mod = .

It4=\ mod S .32l mwodS
34550 mod® 3-55% mod @
3143 o I 3:4=0 mod (2

Note that wost of he usual Laws of arithmetic hold for addition and multiplicaHon in

4, ,but notall. e.3-1t {3 not mf.mm;g te thats Were is o muniptiotive inverse .



€xample:  Gopgider the mMUlbiplicakion table for Uy

|01 23 4 56 %

o|lo 000 O 000

I'jo 123 & §6 ¢

110246 024G¢6 Note 2,&and 6 do ot
3103 ¢ 4 325  hove mukipiicative inverses
499040 40%

) 35 2 34 | ¢ 3 D ie for 2,4, thers is no
6196 4 206 4 2 integer k -
3lo3 ¢5a3 2 ? g such that knz | (mod 8)

SYmmemies

k symmety of a 9eometric Figars is o reavrangement of the fgwre koeping

(a) the arrangement of Ibs sides and verhites
(6) {bs distances

) its angles

A map From the plane to itselt preserving the symmetwy of on Object (s called o

&xample *  Symmetries of O rectangle

K 8 f 8 P 8 c D
rotakiom
Ty —
reflechion retiection
c ve:::a(:' horty
b (& D b c Oeis A £}

Note: o. 90° rotation i either direction cannot be o Symmehy unless Hhe reckangle
S o square.



Example . Symmetries of the equilatern) brigngle AABC.

8 ] 8
ldenﬁfy
- 2 d - (A B C
A d = (2 8 S
A 3 C A c
A

/ \ rotation )20° In the
> { dockwise
8 8 C A direction

To denote phe Fcrm\d:a-hon of the vertices of an equilatero) -brmngle that

eends A o B, B toC, and C2A we wrike ﬁ,eam{yobove
=} (o

if rotation A C
R* (c A B>
A c 8 A

A reﬂccﬂonA (A ¢ B
LN A - (28 5)

i t V'eﬂedmﬂ i t P?:(A 8 C)
B A GC
A C 8 C

A permutation of a set S is a one-lo-one and omto map F:S = S,
The three verticas have 3! = 3:2:1<G permutations

3 different possibilities for the I8t vertex
2 remainn yy for the 2" verbex
[ 7 possibility Foc the 3Md vertex

P the friange has ot most 6 Symmetnes,



Fveny permutetion gives vise to o Symmety of the trrangje

& (hat happens If one wotion of the triongle is followed by another?

Notation: |up —> first do permutation g
examp le then opply permutation |,

This (6 wwposition 04 Funcions §0 wWe go right 10 Left
¢ vertex
CM.)(A) = M(P,CA\)= “‘(3) =C

(ip)(®) = fuiCp,(B) = ()= B
(i) () = i lp,(C)) = fe.CAY= A

A B c
}"'Pn (C. 8 A>
Now let's do the opposite and consider instead the Symmetry p fs,

(e p)CAY = R (1A = p.CA) - B
(BB b (k) g - a  BM (5 § ¢
((“. P,.)CC) = P,lhn (C)) =P (B): C

Th\’S, P‘Pl % Pnkl

If you wntinue thie exercise forall 6 permutafron combinatims you can

£id in o mullip)ccation table forthe sy mmetries of an equiluterg| (:n’anyle.
as $ojlow S



o id ¢ P ke | Jra
cd id P\ G }‘l }‘3 Pg
O B T I M Y ™
I N VR
fefbo o by o o
bl ba g b B i P,

"'8 ka "'l "‘* Pu P;, id

1. It has been wmpletely filled Wo introducing new mations
This is becxuse any sequence of motions tums out b be the same o5

one of these 6.
ﬁlgebrar(all s says that i¢ A and B are n this “groups then

S0 is AR.This property 6 culled closure

2. [F A s any element of this grup then Aoid =id oA =A
Thvs wmbining any element on either stde with id yields A bock.
a.gal'n.
An element id with rhis ,omPerf;J is coalled an Mcn’n‘! ,and
ey gmup musk have me

3. for each element A in the group, There is me eement B in the
Same gwoup sud) that AB =84 =id
B is sard to be the loverse of A and vice versa

4. Cy ey edement in the table appears exacﬁ‘y wee in each ow and each

coluimn.
5. Observe the+ AB naY °F May not be the same a8 g4
tf it happens that Ag=pa for @ choraes of group elements A and B

We soy the group is wmmutative oy Abelian.
Dihenwise we say 1he goup is 7 on-Abelran.
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The in l:eﬂer: mod W (Z.,,) and the SYymwetres of a rectangle or a grwup X
are all examples of groups.

A binary operation or law of wmpssilion on o et G s a fundion G xG—> G-
that assigns each pair (a.b) € G xG o unfque element o ob or @b ing,
colled the composition of a and b.

A snﬂlp (G)°) (s a “tG l'nge‘l‘ber' b"‘") Q law o{ ampos‘ﬁo” (a’b)"-’&‘b
that  satisfies &he foltowing axioms.

e The law of composition is qssociative The concept 04—

closure says that
(“Ob) oC = ao(boc) Foral @b ceG 3"3 pair O:H:lfmmts

Can be combined

o Thewe exists on element ec G, the idem:.'ly exement , s.t. Wo going outside
the set. A\ Be
€oq =a.°€ =0 foralacG Sure ¢o ,m‘r@ Aasure
- When t,
* For each a6G, 3 an inverte efement In G denoted by 2~ S.F. 0-3::2;"9 ~

& oa~'=qloq =g

A group G oy the property that aob=boa. V¥ a.beG is called abelion oT
cwmmubetive. Otherwse they are %id tobe nonabelion oy M oM emmukative

e_ﬁa_ﬂel_e. The integefs z :f..., -1, 0, ,2,...5 form & qroup under the bperafion of
a.d dition,

g.mma operotion o oo im:eﬁms mneZ s Josf their sum
IdQﬂi“’d =0 ,

Note that the set of Integes under additin satishes [EN=PEM] and <o it is
an abelian group.




—  Sometimés it’s wpvenient 1o descite o group in temme of an addition or
mu fiplitation ole wpidh we cay a

Pmposlhon 3.4  Lev Zn be the gt of equivalen® classes of the integers mod n and
a,b,c ez, .

(‘) Addition and mUHipUation are Commutative -

ath = bto (mod n)
ab = bo. (modn)

&)} They ar both assouative

@+b) +cT a +(b+c) (mod 1)
@b)c =albd  (mod n)

(3) There are both o daitiye and muliiplicative identities

0+0za (modm)
Q= o (modn)

(4} Mottiplication distrbules sveraddition :

o (btc) = ab rac (mod )
(‘5) For every integer a thew is an additive inverse -
at+(-a) =0 (mod n)

©) Let a be o mmero integer . Then ged Caym)=1 iF ond only
molbiplicadive wmversc b for o. (mod D) - T.e. @ nonpen in bege-

ebo=V (mod )

if ther existy o
b swch that

Proof @) (=)

Suppoce Hhat gcd (ain)=1.Then 3 integers rand s 5.t
ar+ ns =1 by theorem 2.10
? ns:|-qv

“\yn divides I-ar
Then ar =) (med n) thos arz=\ mod n

[Amha b bathe equvglene dmss of r, ab s (mod n).



X
(€) Suppsse 3 on ineger b st abs) (mod )

= n dwides ab -|
Thus there Is an Integer k s . ab-c nk
D ab-nks|

Lt gedlam) =q . Since d divides ab -nk., d must also divide |
Thexhmm d =t

A

Example Not exwry set with oubihara opergtion (s o.qroup .

(+ the binary operation om Wn Isthe modular multiplication, then Z,, s mot
o group.

Group identity - 3

stnce  |-k=k-) <k £or any kez,,

4 A mvultplicative Inverse for O Joes ot exist gine 0-lk=k-0

-0 tor evtry kez,
€ven the seb Z.,\{0j is not agrup.

e.q. let Y/ o 12395

Then 2 has mo muitipiicadive
Inverse  Since

0-:2=0 , (.22, 2-2=4, 3.2:0, 4-2°2, 5.2=¢%

Opwwe-o

B}, propositin 3.4.e%Y Noner k e an inverse InZ, 1t Kk is Mloi'ivela prime to m
Denote the =t of all suchmmaen dements in 2, by Um

l:-gmupa(-' units o 7

11 35 3
Cayley Il 351
babje 3(313s
'PO\‘U(S) 5'5?,|3

1|3 53
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Example The subset §1, -, i,-i§ of L is a group under Lomplex muItipication

Invese of £ - 4 lden*-iiu W1
Inverse of -y
V72NN L

,, ‘:-‘

Gxamgle The set Sof posifive irationa] numbers Dogether aith 1 | under mytiplitabion
Saltsfies the three preperHes given ih the définyhion of @ group kvt it iS wop agroup

Take 5343 -2 f0fexampl €50 Sis not closed wunder muitipiietior -Fm'l.s. the clasure,
crikerion!
€xample | denote the st of all 2¥2 malrices by ™, (IRY.

Let GL,(R) toloe the subset of ITV1, (IR) amsls)-ir{y °F {nvertible matrice 5

]6‘ A mati X A:(:-S) G@Lz(R') ir 3 e mainx A e.¢+. AA-' = AA

=
T
T
. . o n
For A t have aninverse it's equivolent o roquinyng hat det-(A)ro ' mm’?l
S ad-keyo
The st of jnvertble ynamices $ovwE a $roup talicd e general Jinear grap
Identiy : I (9
Inwrseof A€ GLLIRY: AL /g9 _p
ad-bc cC o
The prodict o two Invertible matncas (s also Ivertible.  de E(AR) =det(A) det(d)
Matix mutigiottion 5 assoaative. 70

Note In general Ap 7 pA so GL(IR) 150 nonabeliad gwup.



A

Defini Hon A qroup if finite [or has finite order) i i¥ wntains a finite aumber
of elements ofhemlee it s saiq to be Infinite.

Definitign The orderof 5 finikegroup 1s jhe number of elemenis that it Contalns
If the & sFelements 4 gntains is mihen we write [[G]=n

8.9, % is o finife qroup of oder 5
The integerS Z form an Infiniegroup under additin and we wite Y 77| =c0.

Note
We can use expmentiol motation gor roups.
£ Gis & group and eeG then (e define 3°=c

For any ne (N e define

3'\:.9 .3 PR 'J Md ﬂ—l\pgiﬂ, g-'. ... ‘a-l

v Hmes N times
Pefinition The order of an dlement gin aqup G ig the smallest positive integer m

suth that qn=e| . I{ no Sud inbege r exists , e sey g has infinive ovder.

The order of an ddement g is denoted by Igl.

So to find the order of a group element g, you need anly compote the
Seqwenﬁ o‘f pmdud'é 9)32:931 oo lmtlldou read') the idenﬂty &7“’3 (St
time. The oxpenent of this product i the order of g

Example  (onsider U(|5)=fl.l,‘l:q,%.l:.ns,m‘} under MV ltiplication
modvlo 15. This gwup has order 8.

Yo find the order of element =, say, we wmpuie the Sequence
129, 3*=4,33=13, 34¢=) so )3=4
TJo find dhe order of n, we wmpvie
h'=n,n*=1, so [u]=2



Q

Similar computations show that Jr]=t, ,,_|=4., l’ﬂ‘z"&l""f
J13]=4 ond |14|=2.

Do you see a trick that makes these calwlations easier ©
Rather fhan compOting the sequence 13 18%,13%, ... we may observe that

13=-2 mod 15

Thus 132 =2)*=4 od 15
13% = (-23¢4)=-8 mod 15
134 =G-8 =-16=| mod 15

——

Propesties of gmups

Pme. 303 |The identity dement in 4 qroup G is unlqu
le. In & group G there is only one element eeG s.& ey=9e=9 forall G

Proot _ Soppase eand o' are both identities
= 89 :73 gj
m"d e'J: ﬂe' :3
“T0 show Hhat e is unique we must show that e =€,

IF @ 15 the 1dentHy tien ee'=e’ | and i e’ s lso the identily then e e’ e
%JC‘"'E( this gives us eze'

=



ng 3.1 [t gis any element ih o-group G then the inverse of g, cyjjenas g
iS unique.

l’mof Similar to the previous proof , assvme that 9'and 3 " are bglA inverses op
an element 3¢ G then

(+) 99'=9'q =©
and (*) 49" = g"g =e
We wish to show thot 3’:3’! We know that

} from the def " 9¢ an inverse

e': Jle
= 3'038) tm (3)
*'9)g"
= cgu
= 91! a

Fop. 3.10  Let G be a goup- |F a/bee then|(@b)! « b

Roof Let a,beG. Then abb™a™ = gen~z g ce
Alco b~ a7ab=b"eb=bb=¢

Sine inverses are unique by prop. 3.1 We have that (ub)'= p1g~
=

frop. 3.20 et G be o growp- foy ony acé @) "'=0

Proof Lett as an exercise.

Frop. 322 Cancellation
In & group G,the right and left cancellation (awe Lofd, thah &
bazca D boc
and ab=ac = bec



AN
8’_02[: &)ppase baf.(,a
let o' be the inverse o a . Then rultiplying on the nght by ' gives
(ba)a =(co)a’
b(a') = c(ad’) by asswiativity
be = ce by defn of inverse
b =c by defr of identity

Simﬂaﬂ:,‘ e wn PP dhot abz ae D b=c .53 muallme b‘y a’ oy
The [eft.

Note A consequence of the wnceliattm property It that in a Gayleytable foragroup
each gmup element occurs exactly onwe in each row and wolumm.,

Theorem 2.2  For al 3:556

(. 3'"9%3"“"‘ ¥ mneZ
2" 29" v mineZ

@R =2 (b9 )™ ¥ nem. 1p G abelan fpen tgh)"= gnhm,

Section 3.3 SVBGROUVPS

Def" If o subset H °f o.qrup G (6 ikedf q group whder the operation of G;
we Soy thak f is o Subgrowp of G.

Netatimm: H<G eans M iS o Subgwup of G

If we want 1o inditabe that H is & Subgroup of G bot ¥s not equal to G



\Q

2,1 wnder addition modvlo n Is not 4 Subgroup of yA under addihrym Since
addifion mod w is nob the operation of Z_

Note The subgwup e i1s calldd the trivial subgroup of G

frop. 3.830 A subset M of G is a Subgrowp if and only if it satisfies the fellowing
3 Gonditions :

@ The identity e of G isin H.

@ IF h.,l\zeH tb% )\,‘\;GH.
QD If heH ten heH,

Poof (=) Supposathat K is o Subgroup of G
IWe want o show that The 3 conditions hold.
® Since H is a group ik must have anidentify e, . But wemust show that
€H =€, with e =identily °f G
Since they are botb identifies e have
€4Sk =G (ey is an idmti-i\y)
eey= ge =€, [e is anidentiy)

Thus , oquating them gives
% = €Sy
2 €=8 (byihe right-hand can cellartion)

® The sewnd condition holds sihee a .mbamup H is . group, Cclosune pvoperfy)

D 1; prove the 3™ ondition let heH. Since H is o group, Phere isan o ement
P Jroup,

hNeH swhthat hh'sh'h=e.
Since the inverse in G is unique, h’=h",



3(
(<:) ‘f the 3 onditions hold, we must show that H is & growp vhder
he same operation as G. These tonditfons and the assodalivily of
The binafy operaiion are the anoms ctaked in fhe definition %o gowp

ENJ 3.3) Lot H be a Subset of a goup G. Then H is a subgmp of GIf
ond enly ¢ Hys ond when g, heH then gh™ eH.

Poof () Assume H is & subgwupof G.

We want do show Fhat 9b"‘el—t when g, heH.

Q"Cﬂ )\6“ ) h-‘ eH {"vm Wpaty @ o{ P@‘a‘go

BJ the closure property of the qroup operation we hove 3}\"'6 H.

(€) Suppose H s a subset of @ s.t. HE @ and 35" el Ohan §.h eH.

We want 19 show that H 1S e subgrup [ie. show O-0 o prop. 3 3 hod)

Since H s nonemply, We may pick Some xe H
Then latHing 9=x and h=x also (n the hypothesis) e hoye '

qh"eH ° xxleH
=> €eecH
Choose 3=e and h= % in the statemen}

Then 3h-\= ex-'= x' €H

We a.!mcy showed that l-;;' eH whenever ha6H.
Sotehing g<h and h=h' we bave gh=hi(h;")" = hihy €M

Thus, H is « subgwup of G



Example

Consider the set of non2ero real numbers IR* with the greup operation of
mylti p licadion.

. lclenti-tg s |

*x -
- Inverse of any element a€RR™ s L-

We will show tha. t @*=i-€- : p and q are nendero integert] is o sulyroup of R
- The identity of IR is in et

. Given bwo eements in QT , e.q. %, ’-s'— e 7, their prodiuch f;'-;— e 8 also

- The inverse of a:tj element, -%-e&"‘ is ogain in & since 6_%)“‘ - .%

- Sinte  muHiplicahion in IR¥ is associatie, Mvltiplicatien n Q* v assodiative

Example (o SL,CIR) be the subset of GL,CIR) Comsisting of matrices of determinant 1.
That ic. a mabix A= (g db) ¢ SL,(R) exacly ihen ad-be=1.

To chow that SL,CR) is & svbgroup of GL(R) we must thow that it Is o growp
under matrix mu Riplication.

= (5 % € SLOR) sine detlr)=|

At e Lo (d "’)= d b\ e L.CR) since det(A™®) = da-(-A-b)
o,d-bc(‘c e (-c “) LCR) = ad—be
=
Finally, we must show that muRiplication & dosed.Te, the produc of buwo
matrices of determinat 1 also has det 1.

detCap) = det(h)det(g) = I-1=1 v

“The group SL,CIR) is talled She spectal Lineargroup.
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Note A subsev H of a group G wn be o groep wi_w bema a Subgrovp of G

For H 10 be a svbgroup of G i+ must have G's b“nard aperation

Example  The set of ol 1x2 malvices M, CIK) is o growp Under addition

GL,CRD 1§ a subset of IMCIR) and is a.goup vnder matix multiplication but it is not
2
a sobgrop of IMyCIR).

I e add two invertible Matrices, we do nok necessarily qet andther imvertible
wmatrix.

9 (49)+( D=6o) * Glem),

CHAeTER 4 - 63(,(1( 3«1«')5

Section 4.1 Kdic Vbgrups

Sometimes a Svbgmup will depend m o Sirgle element of he group.

L€. lnowing thak pavticulay element wil allow us t compute any other
element in the subgroup.

efmls (onsder  3€7L and Wk ob alf Mulhpjes of 3 (both +ve and 'V9

This =t s 37 =f...,-6,-3,0,3,¢,...}

let's check that 37 jsa siyrupef 7z,

'denﬂis : 40
Inverse : ae 32 D ~a is the inverse
CUosuwe v

This Subgroup 18 compierely determined by the dlement 3 gince We tan obtain oy of
other dements of the group by taking muiipies of 3.

Evewy dement in the subgroup [ "generated” by 3,



p

Theorm 4.3 (ot G be a growp and o be any olement n G.Then the set
ay : {ak o’ké?LLl

5 a subgroup of ¢

Proot. « The identity Isin <a> since g°=e
. The set <a > is closed under multiplicakian sinte if aM g"e<a>, for

mtn
mne7z , then a™Ma" =a €<az.
- ¢ g=a" e<a? then the invefse 'R =@")"= a " e La>y

finy svbgroup 1 of G containing ou paust contain all the powers of o By dasure.
Twos H contains <a7. a

Note ¥ we are vsing addition, as m the e of the intess under addition, we write

o> = §na: neZy-

The Subgroup <Q2 is called the cycic subgroup of G gencraked by o.. In the wse thak
G =<a7, we Soy that G % ydic andthat a is & generkor op g
Notethat & gclic grup may have many generators,

Also, sime aiol = q'¥ =al™ =dla', every (ydic gToup Is abdian.

e7%Z,. S-t.
Example |y VGlo) we hawe the elements §1,3, 3,97 3cd“(a..v':5)=i

This 15 also <37, 3k generator of Olio)

3'e3, 3029, 3%=3, 3%, 35.3%.3=13, 3% 3%3.3.3q



X
éxamplc Z is ydic

Consider the qroup 7L, using the standard operatiom of additiom of- infegers.
Since the operation s denoted additively rather than multiplicakively, we must
wnstder mvltiples vather than powers. Ths 7 s @clic if and only (£

3 anih-l'eaer o st |Z '-'% na : ne?[_l Either a =) or @=-I wil satisfy the

ondittm. So 7 ¢ Wdic wth gencrotoys () or 4 .

Example . 7Z, is gaic

The additive qroup 2, of inbeyers modulo M IS Qlso yelic generoted by [1],
sinee each congruence doss Con be expressed as a finite sum of [1]'s.

ﬁwsdac [k] =k [l] )

Jbis )nteresﬁna 1o determine q) possidle gmemtor.s of 7,.

It [a] is o qenerator of 7, fhen in particalar [, must be a multiple of.
[a]. On the other hand. ¥ (17 is a multiple of [T, they cartatnly evony othe

s :
@ngruence dass wmod n is alsoa MUIPIE Of [0 Thus. 4o determine @l of the
aenemhfs of 7L” we on]:j need to determine the (bﬁ?tl‘: Qa s..b smme

mu kiple °oF a IS tonameat to |. These are preaseg The Ini-eqm hat are
mAaHveud prime @ M,  gcd(a, W)=t

The dements of g wre §0,1,2,3,4:5]. Zg ts agroup under addition.
IS t o Generator of Ze? <S> = Jk5: kezf

5()=5, 5()=4, SBE3, 542, 5=
wod G

No!



6
éxumgle Sometim es (74, ) X) = U[8) s wdtic Somerimes pot. {

First wnsider (Zg,x). We have (21'=[a], []*<[47, (2% = [B], [27%=[1]
Tows, eadh element of (. x) is gencraled from [2] (i.e. each element of
ULS) is & power of fz]) showing that the group /s qyclic . e write
Vs)e <23 >.

Bvt note that [4] is nop o generator, since [4]'=[4], f‘t’]kﬂ]’ (47°=14], ...
Ths  <41>=103d,[41] £ 2.

Next, wnsider 2% = §(11.(22, (51, (31} = U(8)

The square of each element is the tdentidy, S0 we hawe 433> = § [1], [3]3
<[51> = §00.051% and <(31>=§ [10.[31F- 5o ULs) is mot wyelic.

€Example S, — e o roup Of Symmetries of an <quilotenl triangle —is not wdic

%
Let's revxll the Symmetvies, ther are G of them.

3 id = (1) The subgroups are
f= 0.32.3) <7 = {0
f.=(1.3,2) <, 7= {00.0.2,3), (1,30} <(h3,5)”
My = (2,3 <2, )>= ), (2,33
M2 = (1. 3) <Cu3)> = $0), (L3N
pa= (12). <D= Fu) 23

Sinte no lic Subgrowp 13 equal to allof S;, itis ot ydic.
That it, We have shownThak ther is o permutation o~ in §; s.1. S;= <07



Propasition et G be & group and ot Ak
if K is any svbgroup of G s.t. aeK,then <a> ch.

Poet (£ Wis any cubgroup ihat ontains a, then il mvst contarn all positive
powers of a since it is closed under multipli wation.
It also wntains a®=e and if n<o then a"els since q": @),

Thus a2 c K. g

Example In the mutliptreative greup (€., x), wnsider the powers of .

We have i*=-. i2=-b, i*=L

From +his point on, the Ppowefs repeat, since
Fov megative powers We have (= .'t__:._ =i, s2=-1,and =i, Again, {vom
his point the powers repeat.

Thus,we have

S = ji%=i, 6= ii’= -, obe.

<ive flir -1,

The siduation changes when we consider <2i”. ln this cose the powets of 2

are all distinct, and the subgrowp generated by 2i is infinite

(ai>= ?"‘) t” “—8'.‘) “i‘) -‘3‘.0‘;9;0 -4') -ai) '60&‘/ "'3

Theorer 4.10 Euey subgroup of o cyelic group is gydic.

Proof  Well Ue fne division ﬂlad"f"hm % the Prindpie of well -ardering
let G be a gdic group gencraied bya. So G :<a>

S"PW“ aso that H is &svbyroupof G . {§ H= 3e] hen His ydlic Erivialy, Hece>
Swpose that H contains Some clement 9. g¥e. Then it (o0 be wriHen. os

=a" for me7L. Sine Y is a subgrap, g7t =(@n) = o0
3 (n70) by 3 @) =a"e H, also.
sinc® H contains both a™ and O™, we wn assume that H contains some power

a% with k70. let mbe he Smalest matura] aumber <4 gqmMeH.



[N e lnow bj the wen«mderihg prindpie that Such an m exssl-s,]

Well Ordering Principle: E"W namempty Set of positive integers wniains o
smollest member,

We claimhat h=am s o genenatov fiv H.
thvs we mst Show that eucy h'ett can be witten as a power of },

Sine hett ond His a subgroup of G | b’ =ak|$ur ke 7.

sincte G=<a>
Using the division alqo1® , we tan find numbers g and + s.t.
Kemgq ¥v  hee oY <M

/

Thos % = oM fr
T aMmYaq”
= @MVar
= ptar
Thes ok ahvo® o a"= ah9
Sine a% gnd WV arinH, 0T mat also be in H.This wntradress the

definition of a™ gs the smallest positive power of a jn H vnless v =0.
L fram 04rem

-“W\S, k=mq, 2 b= QK = MY =@m)$ :hq, ¢ La™>.
Thus H=<a"™7 and so K is gclic. o Z
P{Op 4.12 let G be o I“d‘(' group of ovder w and Svppose thaf a is

o geneafov of G. Then a¥=e &> n k.

r"_°f (=) Swpose that ak=s. By the division algorithm,
k= nqtr whee O<r<m

Thus k = @"9*" <

e= a “""au";- eq =

Since G s of ovder m , a™=¢e



Since the smaliest positive 1ntEJer m st gmep (s 4, v=0.

(£) divideS b, then [k=ng] for some seZ..

T’WS al‘ c a"‘s e(o.")s = CS =e

Multiplimd:ive qroup of (omplex NUmbers

The wmpiex wmbers are €= Ja +ib: abe RY, whers i*=-i.

If 2z0+lb, a=Re@), b=ImC2)

Prop 4.20 let 2=r(cws b-risine) , w=S (msP+isingd) be two nonzero
wmple x numbers . Then W= vs(w{o+9) + tsin(9+9)).

Theorem 4.22 (De Mo'wn&)

Let = = v(ws® +isinG) be a noniero mmplex nwumber. Then
[’r (cose-!-i.sino)] " = ¥V ( os(ne) +15in (n8)) ,

% n:l,:l,...

The crde group and the mots of unity
The wulliplicativa group of the wmplex numbers denoted as C* has

Swme interesting Svbgroups 0§ finite ovder,

Consider the circle group M = iqe C : ]1\:(3

‘This is a direct result og

Prop. 4-24 The drde group 15 a subgroup of €* Prop. 4.20 above



Y

Cxample Supposethat H=ThL -4 i, -i]. Then H is a subgroup of Hhe tircle

ldeM"rl'u |

Iverse 33 =1 D £'= . So eq. inverse of i -i.
Plso, 1,-1¥, -+ are exactly the wmplex numbers that satisty 3=,

The Complex nvmbers :atl&Fyins the 2quation 2"=] are willed the nth roots of um'Ey

Theorem 4.25 . |f 3" <(,then the Nt roots of wiity are
= kW .
® = @6 [5) i an[3)
for Ik z0,1,....,0.
Alse , the nth roots of “0113 form a W clic qumup of Tof order n.

A qgenerator for the group of the nth Toots of unity is wuled o. primitive nth
root of u.nil:y.

Example The & roots of uniry ton be represented as & equally gpaced
points um the unit arde.




Chapver S : PERMUTATION GROUPS

Definition A permutation: of o set A is a funcon from A to A that is both

one-to-one and onto.
A permutation group of a sei A Is a set of permytations of A that forms o

group under funclion Gomposition.

€9. We define a permutaton o of the set £12,3,4) by spedfuirfy ¥(N=2,
x(2)=3, «(3)=], %(4)=4,

. 12 3
A Gnuenient way to write & js in amay form as: o= | lﬂ

Hee «f) is placed directly below | for eadh j.

€. the permutohon B of the seb 12,3, % 5,6} given by
puI=6, BLI=3,  pA)=l BLYI6, pigy=a, p(6)=4

can e expressed in array form as p- (; 2 3 LG} ) 2)
531 2

As we saw erlier inthe wuss, Gomposition Of parmutations expresied in
arey notation is carried out from vight fo legt b’ gung from +top to bottom, then
again from top fo botiom,

5 _ |23\f$).1hen
e.9~ktr=(;:‘§§,> nd T = (54- ) 2 3

g|3345('23‘|'5
T"°:’_(34123>1435|

=(12.3"-
4 2 ) 3

"
N



3
€xample  Symmetric Group S,

let S denote the set of all one- bo-one fundions fy y fi,2,3) o ibsai.

Then S, under function @Mposition 15 a grup with six elements:
1dentity
| 2 3 L oo = 2 3 1 23
e(.zs ( )'x syt e(iid)

aRr = It €:5-2S;3 is a permutation,

then £ exists sinee f is ome-to-me
and ont0 . hence every permubation

Note that B“ (32?: l) d'p 7,“51 So S‘ is nonabd.an has an Invevse,
=1

Note aiso tha+ the relation Pa=o?g (an be vsed tv compuke other products in S,
withowr resoiting to the arrays. For instance,
pats @paa= (P = @*(pa)  o*(«°R) = vty <up.

This example 0 be gencralived i the symmetric group s,.

let A=§2, - aM). The setof all permutations of A ic (odled the Symmetric group
of degwen gnd is denoted by S,,. Qements of S, hove ihe form

ot ! "]
al) au) . cltn)
We (on also wmpute the order 0f §,. Them ave n choites for «()

Once o) has been determined, we have M= possibiliies br ap)

Mter thoosing o () them are exoctly h-2 pogibilities for oqs).
Gonﬂmms like this, we See that §, has nn-) . ... .3.2-) = @ elements
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Ojde notalion  p¢ we've almadg lm’e{[y seen, There (s anothe, Notation wmmmn\ly

wed 10 Spedfy permutations. It is called wde notation and was introduced by Caudy
in 1®15,

& lonsider the permutation cx=(

I 23 4% S G)- Gchematiwlly this is
21 46§53

ol ol
— -
L2 3 *)“ C5>
< &_6 o
d ol

We Leave out the armws and instead simply wyite P=0 D 4 6)£ST|

An expression of the form (a,, a,,..,ay) i talled o wcleof length m o1 an
m-ycle.

A muHiplication of ycles can be introdut ted by thinking o ayde as apermutation
that fixes any symbol Mot appeanng in the wdle.

Thus L4,6) canbe thought of G5 representing (:' 133: g Z)
2

e.a. Consider the FolLowiU exampte from 58 leb (=01 3)(a 39 § 6)(3)'
and [p= ) 2 396 & 8)(5)\

What is ¥he wde form of ofp”?

on
Going fom vight to left ! (5) fires 1 . as soon a3y
(e 4 8) fixes In en counter wikhin
o yde @ diff-
(1 233) Sends 1to2 dement goio the
viext yde.

(8) fixes a .
(456 fices @ X\h °<
(2 9) cends a to 3

Thus we begin ap = ()3 ..) -



Naw repeating the entire process starting with 2, e have
3 > 3F D> I—>1— (— 1= 13

Thus wg=C) 3 3..)..
At the end we obtain op=(1 #3 (4 8)(s €

% When muliplying ujdes “keep moving " {om une Yol tothe next from vight 4
to left

ﬁe,"ﬂ" ~ Some people prefer to not wvite ojcfes that have onlg one entry,
Inthat (ase. it'S understood that any 'missmj element is mapped to itself.

Definiflon . Tao wdes o=(a,, @, ..., a) and v =(by1ba, -+ b am,o(i.{joint
i$ a;#bj foral iond §

Exumple . The ydles 135 and (29 aredigjoint; however the ujdes 035)and
(3 4 9 ave not.

Remark: The produd of Two uss that arenot disjoint May rediie to something
less tomplicated , however the product of disjoint ydes wunnot be Simpiified.

e.g (135)(a7)=0 3 D) Soysasis
G235)34¢D=0(3425)

Propevties of permutations

frop 5.8
1op 2.7

let & and T be two digoint ydes. Then [oT = ta]
Poot Llet ¢=(a,,a....,0,) and T=0b, bs,- . bw).
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For definiteness, let us soy fhat o and B ase permusations of the set

S« ia"aa”"'%l bn bz/ "':bmi €,&,. - JCL}

Where the C’s are the members of S lefb .ﬁ,‘gd by both o—and t [f;bcrc may not be
ony U's).
76 prove that 0T = B0, we must show that (O )x) =Eo)19) ¥ xeS,
lf = is me of the o elements, say a; , then
(e°)(ai) = o(vla)) = o(a) = oy
T

Sinie T fixes all o elements .

CNO‘I:e. We interprel ajy a5 Q, if 3:@

For the same (eason  (t0)(0i)= T(o(ay) = Tlazy) =Qj4).

Therefore, the fundions 0T ond TO agree onthe o elementS. A Simiar argvment
shows that g and T agree o the b elements as well.

Now, suppose that x is o c ojement, say C;-Then, sinee both 0" and © fix C elements,

Wwe have
Cot)Ce) = 0(xled)= vrlc)=c;

and  (co)()= T(o(c)= t()=¢;

This  completes +he prog.
0

Theovem 6.9 Fveg permutakon of a finite set Con be wrilten as o Wcle o1 o5 o
product of digeint cycles.

Proof . let o0-be a pomwiation m A=3112 - ‘03.13 write o jq digjoint Yde
Gorm , we start &y choosing any member of A, say @,, ond leb

Qy :0'(“3) ) Qg = 010.33 = 0‘(5‘(&,}) = o"'(a.)
and So m, until we ariveat a4=0""(a) fov sme m,



We know that such an m exists bowusse the Sequence a,¥1(a), T*(g), ... must
be finite, G thee must be a repetition , Soy  0-'(a) s 0V (a) for some iand j
with by

Then @, = o™()) Wher m=j-i. He express this relationship as

g = (0, QQ Q3 oo q"'.),.,
L. this indicates the possibilily that we
may not have exhausted the cet A
M the process.

We now choose any dement b, of set & not appearing In the fist Yde
ond proceed to creote a new yfcle &S before. Thvs, we let
b, =a(b), bg=0(b)= o(olb)) < (b)) etc
until we reath b|=0"‘ah) for stme k. This vew oyde wil h(we. no eiemf”ﬂ' n
Lommoy with dhe PreviWSlJ Gonstructed wele. for, if so, then O ‘(a,) < 0"’[5.) Fos
Sowe 1 ond j. But then o-id(a)=b and thus b, =, far some L. j
This cntradicts 1he way b, was chosen.

Gontibuing this pvcess unti we un out Of elements of A, our permvtohon

will agpear as
o< (G, a, am)(b, ba ...b,‘)-"(C, Ca 033

The s, evey permutation can be wntten as o produ ct of digjoint ujeles.
a

Example . =(! 2 34 § /123466
xample . (et r(ﬁ‘tans_g)“”dta;useq
o= 062 4)(3)(s5) =062 &)
T2 0 3))(a59 =03)456)
5T =(136)a4a9)
Toe (& 3)(2S 6)
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Transpesitions

Definition. The simplest permulation & o wyde of Jength a. Sudh oydes are called
transposihues.

Prop. 5.12 A"” permutaton of a finite seb contmining at (east w0 elements can
be written as the product o} transpositions.

Pros Rrst mote that fhe identify con be expressed a3 (12)(0 ) and s0 b i
o produd of A-ycles. 8Y m 59, we Know that every permutation (an be-
wiilken inthe form

(a,0s..- 0 )Ch by - .b) - (6 - Co)
A direct compviaiion shows that this is the same as

CQ, am‘)ca| Q\n.;) .. (0, GDCb. bu)(b, bk-l‘)" . Cblh‘)

e CC,C;)CC. Cs-n\ CC|Q:)
o

on the right- must 2-yele Wite the 2
Gample (1234 8= (150 NAD( D) element dXthen prowed
(63 z)(? 5 A = (1 2)G 3 6)a A4 5) acwrdingly

start W/ first
element of the

WcLe on the n‘3hl—

lemma 5.14 |f the ideotty is wrilten as the product of r trancpositions ,
e = t't‘ X n'
then T is an even number.

?mo{- . Left as an exercise. Use proof by inducHom



L] . 1 * e m
Given o = in S, 1t IS easyto mpute E
au) 6Q) - - - oK)

To dind ¢ 7'(j) we find j in the sewond ro0 of o, say j<e(p). The inverse o
o must referse this assigvment and ;0 WiderJ we write i, 3;\,3”\7 a-"l(’ojai

This w@n be accompli shed by butnthng the +5p rows °f o vpside down and they
rearran Jins terms .

=f! 2 + T
.‘31”:"'[43332) hen o 73'1):(!&34)
34 34 2)

In wde notatin ¢=(14 2 3) o4 T () 324)<(324 )

Thos fv compute Hhe ihverse of o @de, we fusr reverse the order of the wle, Since
Co-' 03_ oo o Tm)CO‘m o-m-' S e rl):C').

Theorem 5.15 . If o permutation o= can be expressed as the product of an even

homber of transpositiuns, then any other product of transposihins ethng o
must also (ontain an even number of transpositions. Similarly for the odd wue

Proj  Suppose that

o.: o-‘wz...a-"‘:t.tzoo'u’
where [m is even]. we must show that v iS also an even number,

The inverse o¢ o s O - 07. Since

‘n"NSl'ﬁea.venba @m ! m

lemma §5.\4. fov mtm=even phen m=even

= n has ® be ewen.
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A permvtation that (on be expressed as a product of an even number

of 2-¢ycles is clled an even pesmutation.

A permutati on that con be expressed as @ prodict of an odd number of 2-ycles
IS walied on odd permutation

Dedfinirion

Definition The group of even permuations o4 M symbols denoted by A, and
s wiled the altemaling grup of degree n

Theorem 5.16  The sei A, is a subgroup of S,

foot  Since the product of Wwo even permuiations must also be euen , Ay is
closed. The dentily js an even permutation by lemwma 5.)4 and so the
idertity is N An.

\f o= is an even permudation, then 0~ 076 ... 3 whers 0 s a
fransposition and r iseven. $ipe pl= 0=

0., 01 [ with the inverse
of any transposition baing itsef] we have g An

o

The nest resuty shows hat oxacly half of the elements of &, [n»1) are even
permutajions.

trgp_i.l"_ fFor n>2, A, has order n!

2

Croot  Let An be the 526 of een permutations M S,, and
let B, p odd //

If we show that there is a bjfection betwenn these Sets, they vmxt contain



the same number of jements.
Fix o ransposilion & in S,. Sinee M2 Such a 0~ €xists,
(Now define Ao ¢ An = B, [,3 Ar-(D)=0T.

Ovppse that Ag-(t) =Ac (). Then by the def™ of Ay we have

0-6'01“ ond 5o T=o0T07t = oo =O-.'O1A=lﬂ,
S [
cince 0-¢S,, e

its inverse 6 is alsoin S,

Thus Ay is me-to -ome.

Now we show that 5 i S"chch"e' let geBn. then r'p ¢ an even

permubation <ince o6 Bu ! Y T
T odd per mutation i
set o€
odd permvt.
Thous 2 ( Y= o
=B

which proves that Ay is surjective.
2

Example  The group Ay is the subgrup of Sq am:irﬁrs of ewh permutations.
There are {2 elements in Ay ( |AA= ﬁ.-n.)
2

As an exerdse —hy 1o write these aements down

Dihedrol groups

Dihed ral groups afe spedal types of parmuvadion greups,

Definition  ~The wth dibedral group is the 9roup of rigid moilons of g regular n-gon.
(i-e. m-sided polygen). We denote #his group by D,



We number the vertices of a reqular m-gon loy bi,...,n e
Note that +here are exacHly v cholces 10 replace the first n-! —
verrex . If we replace the |3t yerfex by k, then the 2™ /—>1
Vertex Must be repjaced by either k-j or k). Hence rhere 3

are 2n fpossible rigld motions of the n-gon. Remark . A rigld

modion Preserves

Theorem 5.20  The dihedral group Dn.ls a subgrovp of Sn the side lengths

04 ovder 2n. .4 an,gle measvres
of the polygm
\
Example 8 =
3 3
€ % a

\ )
8 L a %
reflechon
3 — 3
2 3
6 4 6
5! * s

Theorem §5.23 The grup D, 173 nsists of of] products of the twd elements

T and s, satisfying the relotions ™ o
s* =
Srs=y”
Proof  The posSible motions of a reguar w-gon afe either 24

.There are exactly n possible rotatims:

e, 30 a(w%) ..., (n) (%0%
N n n

We will denote the rotation 360 by r. We note that the rovation +
1\



N2

Qen erafes all. of theother robaHoms. jn other words

1® = i Be0?
n

(A)e. label the n reflechms Sii sy, v ee)Sp where Sy is The refledhion that
Leaves verrex K Fl"ed- There are J wses of reflecHms depe"df'\g an dhebhes

M s even o7

{f there greanw even
pumb ar of vertites then
two vertices ane lefe

fixed by a reflection

and s, = 2 4)y ST ?%-na, = Sy
"B B

+his leaves 1erfes Hhis 1;%
| and ’5‘-+1=+ verfex 3
Qnd ¢ fixed.

fixed

In either tase,the order of each s, is two.

n is odd

(f there are an odd number of
vertices fhen anly a single vertex

is lefF Fixed o o reflection
end s,,s,,... ,Sa are distinct

How many imes we need 10 terate

this operation 1 go back 40 the identiny?2

Ler s=5,.Then s*= and T ™=

Since any vgid mMotlun t of the n-gon replaces the firsy vertex by verfex k,
the and vertex Mush be replaced by K-y or k.

If the 2"d vertex is replaced by k-1 then t =srk
Z kH  then t = vk



Thvs 7 and s generate Dy,
].e. Dn consisks of all finite produtts %€ ~ and g

Dﬂ =fl,1,’l’m, . on ,T”.'csa T, .S‘r", ...,STn.'s,

Think of how D, is ditfemnt than S,.
Example The group of rigid motions oF a Squam Dy consists of cight elemens.

‘ - | ‘nl
N g The rotations ae Y =0234&)  :90°
—1707 T*=(13)24) :180°
N 3_ . 230°
y l' 3 Y 200432 2310
+*=(1)
The group Dy

and e reflections o8 S, =(2 4)
Sa_z (1 3)

Buigine |Dy|=2(4)=8, thew are still 4o dements.
Those ave 78,=C1 2 3% (2 )= (1 2)(® &)
oand ¥35,=( 43 D= (1 D(23)



St
GAPTER @  Cosels ond Lagranges theorem

Definitions let G be o group and H a Sobgme"F G. Wedefine a lefl cocet
0+ H with representative g eG to be the set

I—JH s fgl’)' }\GH‘)

and similarly, tight oseis as
Ha T i ha Zhé"(}.
lf left ana Tight Gosets  minade we wil vse “toset” Wfo Spedfing left o7 vight.

Example. let H be the §ubgmup of /g wnder wddition consisting o} the elements

0 and 3. We rewadl that ihe elemenis of (7L5,+> are t‘o,l,z,B.lhsj.
Thus the left wsets are

O+H , 1+H, aH,  3+H, “ +H, S+H
RO R B cX B IO T R A
since =f3.03
H =fo.33 since

mod ©

Thos O0+H = 3¢H =io,33]

leH = GrH = fuY]
144 = 5 +H = 18]

1-‘ (%
éxamglc let # be the subgrup of S; defined by 1he permuiatiows f(l).(l 13),(132)]

The demen}s of Sz are  §0), (12), U 3), @ ), (1 23),0 39

Thus the (eft wsets of K are

MK =), 023),0325
/g DH = {a2), (102 3), (1 D3

o we take gach element ged5, and perform gH.



Ci23)H -
O M= (1273 N9

Coni-muina ke this we wn show thal (12DG23)=03 2
0 230 3)=() (99
MH = G2DH = U3V H= '{ (1), 123, 32)3 =q)

and DW= I= = FaD, 0 D0 N

We @an aJso show that the rigbt' wets of H aw exadly the same asthe left
cos ets
HG 3) = fCt 9, (1023, w2y ek

& However, it's ot always the ose that a left wset is the sameadsa vight oset.
K-

let K be a subgmwup of S3 defined by the permutations |§(0, 13 The lett
losets of K are

@K=02K = 570,03
(0 HK=023K=7F ( 3)L123)3
(2 3)% = (i 1IDX=7 (2 3,0 32)

However, the right cosets are different.
Kan= ka 2) =fL0, (1 2)]
Kad) = k(i 3= §113),032
K3) =K023)=§(23), (12 3)}

Properﬁes of tosets Let K be o Subgroup of G and Let 9, ond ¢, belang to G, Then,

1. 4, € Q‘H

2. qd=H ifand onlyif 9,eH.

3. 9,H= 9,H if ad only if 9,eq,H
QMg R wogHagH=p

5. qH=q,# if andony if §;'9, ¢H



6. 1q,H| = 2.4 6

*.9,H- Hg‘ if and only W H= 3,“9."
8. qH isa svbgroup of G if and only if g eH.

M 1. C g,|H
. 4 9,8 eta:-l
2. 94 =H ifand ovlyif 9,cH
1. (=) We suppose that gH=H.Then g,=g.c€q,H =H
(&) Next, we assume thet 9,eH anda show thet 9H sH ond thar

€ 9,H, which woud imply that 9.H = H.
£ heg AR N Py

§.eH (byas.)The first ncwsion follows directly from the closure of H.
then g €H T show that H € g,H, let heH . Then sinte g,eH and heH,

by dosure e know that g-cH, and by closwe 97 he Lby assumphom
3 S0

gHeH  Thus  heeb=g57h=9,(3"h) egH

3. 9,H= g,H if ad omly if 9,eq,H
3.(3) ¢ gH =9,k ,then g,=9c€qH=9HK Y by definition of wset
(€) 1F 9,0 we mue q-qh with heH, and thus
ANR=(9."H = gq_(hH) - q.H hH= $hh : hen)

H  cheen!

"

“ QH:qR o gHagH-p —

Theorem 6.4  Let H be a subgwup of a group G.

Then the left wsets of H in G potiion G- That is the group G s the
diﬁ‘[oinb union, of he left wsebs of H in G

4. This follows directly from property 3, for if there is an element
¢ & qH aqH , then cH= 9,4 and cH=9,H
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5. qH=q,# if and ony if 9, g, €H
5. (hek that it's tue vsing property o
G. |Q|H| = }QIHI
G. To prove hat [9H [=]9.H], it suffices 4o define a mme-to-ine
mapping from ¢,H onto g.H.
Obviously, the comespondene q,h — 9,h maps gH onto g.H.
That & (s one-fo-one fonouws directly €rom the cancellation propériy.
*. 9,H = Hg, if and only W He g,Hg;'

4. Note #hat g,H = Hq, if andomy ¥ (g H)g1= (Hg)q:'= H(gg ") =H(e)=H
i and on ¥ g,Hg =H.

g. cmH i§ o subgroup of G if and only if 9,eH.
R. If 9/H is a subgroup, then it Containg the identity e.
Thus gH neH 29 and by propery &, We have 9,H =eH=H
Thewsfove , €rom propeity 2, we have 9,6 H
vaerseld, it 9,€H, ‘kl\en.again b' property 2, qH =H. o

Definition Let G be @ group & H be a subgrup of G. The index o+ H in G s

ihe number Of (ett wsets of K in G. We denote the index by [G:H]J.

Cxampe. fecwll Prom before thal for ¢ -7t} - {9 1:2,3,4,5] and 4 <f0,33,

We found +that the wsets are 0HH = 3+H <30, 3]
I+H = 4+H = §1,4
A+ H = St+H =fa.53.
Thos [&:H]=3 (& of jepy tosets)



Example . Also from before 1§ G=S3, H= T, 023),() S"Z)\] and
k=11.02)] ,then [G:H]=2 ond [G:K]=3

Propositom 6.9 let 4 be @ svbarovp of G kith §eG and define a

map ¢: H > gh by [ @)= qh|. The map & is bifective ; thus The
humber of ejements in H is the sameas the number of elements o gH

oot . We fitst show $ is me-fo-me .
Suppose () = Ph) fov b, hyeh. We must show h,=ha- Bk ¢(h) = gh,
(by defh of ¢() and $lhy) =gh..
Ths  Plh) =) 3[,|=ah,_
By the Left ancellafion property (i.e. ab=ac 9 b=g
we have h,=h,.

We now aiso Show that Q is onto.

By definhm of SH, evety ojement of gH (s of the foim 3}\ for Some
heH, and ¢ (h) =Jb

Theorem .10 J

let G be o finite group and (et H be a sibgmup of G.

Then |[\I - [6 tH] 18 ihe number of distinct Left wsebs of Hin G.
[H]
In parliudar, the number of elements in H must divide the nvmber °f elemenis

NG (ic. the order of +he Subgp H wut divide fhe orde of
the group &)
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P}mj_ Since all the left cosets form a partilion 06 G- we only need bo

show that oll the wsets have |uf elements . By the definiim of ingex

L thes fonnowas from prop. 6.9
there ar® [GH} left cosets m total, so we finush {*e’mﬁ'

|Gl =[G :H]-[H|.
———
index
=t of (eff wsets H in G
Corollary 6.1 . Suppose thal" Gr is o finite goup and g6G.

Then the order of g must divide the number of eJements in G

Cowlgch.lz * If |1G)=p with pa prime number then G js Yclic ond any
geGe 5.t afe is o.eenemiof

foof (et 9eG 3-L 97 €. Goasider the subgrowp <97 < G |ts size

divides |Glepby Lagronge's thesrem, 59 it s | or p. But it's lasger than f
o5 (F contains ¢ and 3- So 1437' =p

. So [<9>|=IGI. Thus the
tﬁd!c gqbgvouf) t,eneral-ed 53 3 (s eqv.albfhc gmqu-l‘tsejp, Hence G

(s generated by O- Single eement § And is thyg ydic.
|
Rewl L9y = f'n,gz nel}

&wllov}j G.13 let H and K be subgvups of a f'iniieamup G sT.
RcHcG. then

La:k] = [G:H][H:K]

fosi. [o:6] =[G &LL< 16 HJCH K]




g

No¥e The convesse of Laarqnse's th corem is fajse.
The a&ermhnj group A4 has ovder |Aq) = % 2|2,

Howevet i (an be choun that it does ot have a svlgroup of oyded G

Lagm\,e{; theorem imphes that  gubgroups of o group of o1de 12 Gn have
ordes ],113\""16.

However . we are not Juaranteed that Subgroups of every possible order enist,

To prove #hot A’4 has m_@bamup of oder G, we'll assvme that i am@
has sudh a stbgroup and  show that o contradickion: must occu 1.
Reall that A, is the set of ail ewen permutatioys of S.,.
The 12 elements  are

0, X3, (13)24), 0Dk 0€23), 03, UzY
04 2),038), ¢¢3),(23%, (283

L £ we take
. 3-de ¥ wmbine
o 3-gpcde Gxn be wnten eqg (2 N 9) it
WR a 2-tycles 3o o

3-yde we'l get
Since A4 wowhains & 3-gydes, we know that H musk wntain o 3_%04(_{* 3yt

We') ghow Hhat 1 H wntains ome 3-yde Hen i+ must w@ntain Mmore than
6 erements

Prop 615 . The growp Ay has o svbgwoup of oder G

Proof e assume A-4 has @ subgroup H of ovder ¢,
Then [A.‘_: "l]‘ .‘.% =2, and §° there are o'nl\y two osets of H in 44

One of the wsets is H itseu—. The rfaht- and (eft (osels must (oincide.



Gl
Thus  gH = Hg , which is equualeat +o 9H9" =H por

ey gehy,
Sinee there ae 8 3-wdes in A, at least ome 3-yde must be inH

60(0!2 assume (| 23)¢eH,
Then (123) =(3aD=(132) ey also

a\so rewrifen as

S’o -
N ghgteH wqehy ang all heH

I we vee hi=ci23)eH and 9 =(1 24) for example, then we

et
! ghg = (23 ) (1 2029

= awUadiaan)
=024 3
= (24 3
Similarly, if we use h 1 23) sti) but pick 9 =2 43 we get

ghg™ = (2 49(1a N 4D
=(2 ¢ NU2A3)(3 4 2)
=Cl &2
We Gndude that H wust haveat least F elemenis. Namely,

(1), Cia3), ¢t 33), (2 &43), (2 43)"=(3Z4)=(a3s4),
T ) t 1

kR by
G4, ¢ '=CaenN=029
SJS-' / Comtradickion

Ths, Ay has mo Sukgroup of order 6.



(HAPTeg Q: Isomorphisms

It fums out that many grovps thet appear b be ditferent avuachw)&
the same by simply renaming the goup elements, Speutiwlly if we
demonstrate a. one- {o-one Corresp ondence between the elements of the two
groups  and between the group operations then we SAY that the Jroups
ore isomovphic.

Definifion,. Two groups (G, ) and (H, ) are isomorphic. ¢ ther exists a
one-to-tme and omto map 47 :G 2 H sud that the group operation is

PfEServed : a-b) = ) v o beG. The name wmes Ham
Pe® = ¢)eg | Groek . ious = equal
1€ Gis isomorphic to H, we write |G = H. MOPPN = foym

The map ¢ & called on isomorp hism.

|t ig implidt in the definttion 0f isomovphiem that isomovphic. qroups have the
Same ovder.

It is also fmpw 't that the operativm on the left hand side of Khe equaliby sign
(s that Of G & the operation. on the RHS is that of H.

We next show the Hour cages iveluing . and +.



G operation H operation Operation freservation @
$(a-5)= 9 G0)- $lb)

Al ¢ (a-b)= $la) +(b)
': - $latb)= Po) - Pb)
lP (atb) = 4)(&\ tP(b)

% To prowe that & group G is isomorphic to o group H, we mut fojlow 4 I
Separate skeps.

STEP1 . Mogping” Define o. candidate for the isomurphism. ).€. define a
fundion ¢ from G to H

STEP2. "I-1" Prove that ¢ Is one-fp-me. |.€. kssume $() = $(b) ond
prove that a =p,

STEP3. "Onto" Prove < Is mmte. I.e. For angy heH, find an element geG
St 9@P=h.

SIépg. "Operatim-preserving " frove that ¢ 15 operotion=presetving . |.e.
7 show Hhat $ W) = p@PB) ¥ aibeG.

In other words, this requiras that one be oble to obtain the same resull by

wmbininj 7 elemenks & then mapping » or by mapping 2 elemenks and then

(o rbining them .

c.q- In caladus j;b (f+g)dx =f,c Aerbadx . _

* -~ Cirde group "0 generated by

Cxample . T3 show that 2_,*_:?'@ =Tt i”-"}

We define o map :7Z, — <i> bu B(n) =" [. We must show that

éP is bijecttve and preserves the group operation,.

[?L“ ,‘l‘)"’ z 0:';1333
The map $ is e ~to-one and outo bevause

4’(0\ = io |
1) =1 =t
$(d = 12 =
P3I=L¥ = -L



~at

Since ¢ (mrn) = LLLCIEL, FL S (P(mwum, the group opeTation is preserved.

€xample. e @n define oan isamerphism $ from the additive group
°f real rumbsrs (R D b be the mulbipliative group of positive real
nomberts (R* x) with the expomentiel map. |.e.

‘PC"“:W c e"*yce"eﬂ = cP(x)CP(gp
Show that C’ is Dbjjective as an exercse,

Example. The integers are isomorphic o the Subgroup of @.* that wnsists of
elements of the form "

We define a map & : Z — Gl* by |§g(10c 2" |. Then
4) () = 20')‘"1' = lmzn. =¢L‘"D¢UL)

V 2"e@* 7 neZ st ¢md=a™ by defmition of the map. Thus
the map 9 s onto the subset fz" ;ne7£.2| of QF.

Now we must show Thet 1> IS Qso tme-To-one.

We assyme that m¥ n. So we must Show that c? (m) # $(n). Suppose
that m>n and assume that PLmd =9 (M

Then Sm)=$c gives 2a™=2" 9 a™ Vo

Since bv assumpien Mmon D mM-n>0, 2™ " = s impessible

Thus,if m¥n,then Plm) Z ¢(O and ¢ is ame-to-ome, }
a



NG
Q’ﬁ!ﬂ% The groups (728"") and (Z), +) Gannot be isomorphic bewause,
they have different orders.

However U(®) = U()2),

Rewli thab UC8) is (25, but with ocu(8) sodisfying g ( a,8)=.
Thes Uls)= 51,35, 1)
Simil.cnla, U(i)= {l, 5;4,n}.

We mvst find o isomavphism & : U(8) — y(2). One fe given by

| v—>)
E1)
5+ 1
F-— 0.
Othar posshvilitiesalso enrst. Goy ¢ st. 1>
3= (|
5= S
o3

C_‘“‘ﬂ'& The symmetnc group S3 and Zg have the same number of elements
bot % is abelian whereas S, is ninabelion.

Thus, one might suspect that he bwo groups are not isemarphic.

To shewths 28 dctually the wase, we syppose tat ¢ % = % bs an
iSomorphism |

let (o be §] be 40 clements s:t.

Since 1: is an isomorphism, A mmne¥ s-t.
$(my =0 and ¢im=b.

Then ab= 4»(!0)4:(1\3: <[>(m+n)-.—. (I)(‘nﬂn)z ?m)c)(‘m) =bo.

7

However, this toniradicts The fact that o and b do net wwmute 4



%
&ampl@ There is no issmaevphism from (@ D to & *, the group of

yomaerp vafiona) Wmbers und& multiplication.

T8 4; were Sich a mappivg there would be a ratimal number a, s.t.
Ploy= -

Bot then / operation of group G is t

(r0'3d) : $(99010)- (4l49)
~:=dD=¢(3 } T lwere o isSmonglicem.
However, N0 yational nvmber sq\w.m.d i equal to -.

Exarple ot G=SLG.LIR), dhe group of 262 matrices with determinanl

equal to {. (e M ke amy 2%2 ved matrix w/ det. 1.

Then we wn define a mapping from G to G jtself by
b (a)=MAM™

¥ motices Ac G.

o verify that &, is o inmowphism e follow the 4 steps outlined
above.

Srepl. ¢, is o fun fom G to G- We must show thet b, () is
indeed an element of G yhenever A is.

From the properries 0f deverminanis we have

det (MAM™) = det CM) -det (A) -det(M™)
=/.]. L
|

~|

Thvs MAM™' e G.



stepz 4, Is me-to-ome.

§uppose that Py (R) = Py(B). Then MAM = mpM-!
By left and right  cancellation we obtain A=B,

SE3. ¢, is onto.

let B eG. We mst find @ matix pAec g st by (A =B.
[f such a matnx A is to exit, ¥ MOt SokiSy thpy mAm =B
Bot this tells us what A should be.

We can solve for A to obain A= MTBM and verigy that

b (A= MAMT= m(mBm)m = B.

ST€EP4 - 4’,,, i operatioy) - preserving
let A, B eG. Then eﬁi’fl to identily
Pn(AB) = M (ABYM™ = mA MM 8m™
= @am (mam-)
- ¢M (A CPMCB)

Theorem 9.6 let ¢: G =k be anisomorphism of two groups . Then

the. following statements are true .-

D ¢1:H>G Is an isomorphism.
2) @)= |H|

3) |£ G is abelian, then H is abelian
4) If G is wclic, then H is yclic

5) 18 G is o Subgiup 3 oyder m.then H has a subgroup of order n.
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Proof . 1) Since ¢ is o bijection , $7! exicts and it maps trom H 0 G.

2) Since ¢ is bjjedive, |G|=(HI.
3) Suppose #hat h,, h,€H. Since ¢ is mto,

3 9:3:€ & 5. $lg)=h, and P(g)=h,. OF)

e B o
TbVG b = ‘P‘%O‘l’ G.) = ?‘:‘332’3 = P (8.9 = "PCQ;)CP g = h’-h‘
* T . i b
by (8 bythe Rt aoeran. g e fack that
that ¢ is NJ2 =9.9, iSoMOTPhism

an isomorphis m

Theorem 93 4, cydic groups of infinite oxder ave isormwphic to %.

Poot Let G ke o Welbcgmp with infinile ovder and suppose that a. s
& gencrator of G . Define map §: Z -G by [Prm>a

Tren btminy = o™ = a™a" = ¢ m)di)

by def™ 0-947

To show that <f 1s injechve , Suppose tht m,ne 7% whefe mZn.
We assume m>n. we rmust show Hhat mE ¢, jo g™z an

Let's svppose instead that o™=a".

This gives a™-N =g  pher moh B MNP0 which contradicks the,
foct that o has infinite order.
Thvs a™7 a” and 4» 15 therefore iq,’ccﬁue.

The map ¢ & onto sine any element in G can be wriken as g™

for €7 and $em=a" o
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Theorem 486 W G 18 & wclic group of order m, then G s Isomovphic to Z,.

M Let G bea (t‘dic smup of+ order m aenemed Qy o and define q mep

$: 2,26 by [|$0)=a*)| where 0 k<n.

N
ovder of G

- In group theory, The main goal is to dassity adl grvups.
Instead of d;assi'fd ing all §PUPS, e want to classlfy al!groups
wp to Somowphism
That is, We wnsider hoo groups 0 be the same if they are i€0 mophic.

Theorem 9.0 The isomorphi St o groups determines an equivalene
relation on +the class of anl growps.

CAYLEY'S THfOREM |§ G is & group . it is )somovphic to o group OF

permutatioms on some Set. l-]eme.evenj graup is o permutation group

The 3“" of repfe,sentai-imthemy I8 t0 find an (80MOPhism of some
group G that we wish to study into o group that We know a lot about,
eg o group of Permuta‘l‘i(ms or matrices,

Proof  Let G be a grovp.
We must fing o qroup of permutations G that is iSomorphic to G,

For any qe &, define a {undion A& 26 by |25145= §a V- aeG.




We daim that 23 (Y pe rmutation of G

We fivst show that the map Ag is mvie-to-one. Suppase thay 1

gla):24(b)
Then gatgb, which implies g=b by the le{1 cancellation property

To show that Ag s mto We must Show dhat for each a €6 3 a b s-i-

Ag(brea. e use gb=a
5=97a

Now we detine the qroup G. let |_§-=j:\3;356],

We must show that & is a group mder wmposition of functions
and find an isomOrphsm between G ond & :

We have clsure under o mpasition of fundions. For a€G
(Ag03)) () - Ag(3,(a))
= 49 (ha)
= 9 (ha)
=@M a
= gnl  cosue

We aleo have A (d)=ea =g

id entj
and 13

IEPRIIE 24+ (3 )
= 33-| (30)
= 430
S @43)""
v ea
b= * .
:J\e(a) Inverse

9



We defive an isomowphism from 6 to G by [¢:9- 23].
« §is me-to-one because if

$(g) (D= Sl

then Ag 0= 3 l0)

ga <ha
‘3”’

. i§ ombo
i belowse CP(S)'-")a for any A, e G.

- The qroup operatim ¥ preserved sine for g,heG

}0 2 - b\a de" O{. ¢
‘?‘8 gh ah =2 2I\ 4;9)?;“,)
‘Ly de{" of ¢ O

—rBe ?somorph(sm 3}_) 2\9 iS¢ lnown as -t\\e le“', mulaf YEpresen-laHm O-FG,

Example  (onsider 725. The (ayley table for (7. ) is

+|o 1 2
olo 1 2 }’lhis sug gests that it's the same as

o
sy 30 ) the permutation goup

G=f(o). (om-),(ozl)J

The 1somorphism is

e (302t (1D (3L el
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Example  Let's compute the ledt requier reprasentaion  U02) for U (12)= §4,5,31)

(7‘\1"") with
W‘f‘ﬁhg the permutations of U(n) i avray foym, we have 3r_dm.rD'=|
_{vS F 0 f193 0 = S 3N [1§3aNn
;‘ ’(' ° 7 ") s (5"' :')'2:' ‘-: ] tS)'g' [u’l'sl)
2 s
rewall that Ax ; 0 _5 (';"id"’ i
i§ just molkiplication, sB)=509)=4m
by x 25(43 =5(3)=1 wmod 2
23(41) = 9a VacG Ag (D= 55=F mod i

where as(s) c 53 With QGG

We next compate the Oﬁ\e\\’ table for V() and its left regwlar rep nsentation UD2).

Vi)l + 5§ 3 Ul)| 2, 35 23 2y
| 1§ 3 . Ay As Aq3 Ay
5 s | N3 2s | 2g A, Aq Aa
A I I R M| A Ay A, A
"l u 3 35 1 Al An A9 A 3,

The tobles ghow that U(12) and Ol are only wotatiovally different,

Section 43  prgecr PRODUCTS

Given to groups G and H, it i possible to construct a new group from the
(ostesian product of G-and KB, [GxH

Conversely, given a large groep it Is sometimes possible to dewmpose the

group. |.e. A Group is Sometimes isomoyphic to the dirsur product of two
Smaller groups.
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External direct pvodlucts ~

It (G, and (H,9) awe gvoups, then we wn make the (arpesian product
Of G and H infoa new group. As a set, GxH is just the ordemd

Paie [(g.h)eGxH| where [g¢G and heH

We defive a binary operation. on GxH by

(ﬂi' h‘) (3"’ ha) = (ﬂl ‘92, h, oh, )

We wil veually denore iv simply a8 (g,g, ,hyh) but it impiied bhot

We multiply elements in the P toord as wediin G & elements in the
2" ord as we do in H.

Prop.q.1z  Llet & and H be qroups.The set G xH is agmup knder the
Dpera)'icm (", ha (ga'Ba)z [ﬂlga’ h.]\;) w"em 9:»936'6 a"d hllhzeH.

Proog . The opemlion defined above is dosed

|dentiry : |f €5 €G and e4€H are the identilies of cach grup
(eg. &) 15 1he )d@nﬁy of GxH.

Inverse: The inverse of (3,),)56 s @’*.h"),

The operation is assou ative dnce G 2 H aw assvcabive,

Example Lot 1B be the group of real nwmbers under addition.
The Cortesion product IRxIR= @R (s a0 o qroup-

The Jroup operation i€ addition in each wordinate,i.c.
(a,b) + (c,d)= (atc, b+d)



The \dentity is 19,0) :‘\“
The inverse of (a,b) is (-a,-~b).

Example  (onsider  Z,y %, 21(0,0), .1, (1,0, (1,13
and @-4."‘) s i0:|.1.3}.
They both have order 4 but they ale ot isomarphic.

Every element (ab) € & xZ, hqs order 2 gince (a,b) +(a; b) = (o,0)

But Z4 is dic and S0 one of its elements
bas order 4
=g=29 mod &

3¢3x3=9:=1 mod &
3434343 =120 mad 4

6<ar_v_\gle U(8) x V(w) = i().l), G, 9, L, 0,9),
(3 lnl(atg)) (3,5), (3,?),(3,‘1)
(sul))(5,3). (5)5)) (5,?),(5»Q)

U(63= 1) 3. 5):‘
f J (qnl)o [?'3)1 (915)1(‘3!?)'(?’?)}

Ultio) = §1,3,5,2, 4]

€Exawple  CLASSIFICATION 0F GROUPS OF ORDER 4

A gmup of ovder & s iSO’MO‘Ipbtc, o @W @ both are abelian. and
Tyelic Of ovrder 4
Te verify this. let- G = fe, . b, ab} .

A ey differance betwesn the 4w growpe is that the ydic group Z, hos an element
oforder 4 byt 74 x%, only hos elements of ovder 2

i G s not Wdic.then from Lagrange's theorem la| = |b) = Jab) =2
Then the mapping e —> (0,0), a->(19), b->(o, 1, and ab—>CL,1)

1S an f60m07pblgm from G onto Z-L’(Za. 0
CHECK 0s an exereise



AN
The goup Gx<H is wlled the externd direct product of G and H. We tovid

also have mory qoups : @,,G,, ..., Gy, and then their external direct product
wovuld be defined n the game manner

P

Theorem 9.1 let (gh) e GxH. If 9 and h have finite ovders v and s,mpeoh‘vc.l)
then the ovder of (.M € GxH is the least ommon mvitiple of rand s

Proot: Suppese that wm ls the least common muHipie of Y and § and Let
n:'cg (h),

Then ‘ﬂ nh\m = (amn hm) = (eG ’ BH)
(3“! hﬂ) = (gah-)“ = ceG .C,..)

However gince v and 6 arg the ordews of eléments g and h, vespedtively, we have

hence n must divide m and nem

" *Ce
. } s T must divide n
9 *Cn 3 § must dviden as wel)

So m ts o wmmon multiple of r and S,
Since m is the least wommm wuitiple of rands, men.

TS M must equal n

lovollarg 9.1® (g} (901 9n) € 1?6;

il

If g; hag Finite order % in Gi, {hen the order of ()1 -+ 19n) € TG, is the least
o mmon  multiple 0f Yy et Mn.




it qcd (q,a )71 then SCJ(W:O)-"‘ ond ovder(a) W/ {5

OEZ, is N = N
Exomple 9.19 let (8.5¢) ¢ Z \, x 7, - gedtnie) o

Since 3cd(8.(1)= 4, the oxderog 8 (5 L:-_-=3 in7,,

Similavly , ged (56,60) = 4 . the order of 56 is é‘tg = 1§ in Lgg

T\WS, the least Gommon wultiple Is IS, which implies by theovem 9.17 that
ﬁS. 56) has ovder (5 in 7"1)‘7"60'

Gxamgle. Consider 7L, = fo.u} ond 7‘3 :fo,l,z}-’lben

order is 6,
ZxLy > § @00, (0,), (1,0), (1,203
In this wse, 7Z,x7, < Zg
s omorphic
Here we have 10 show that 7.,x7%; is wdic.
Let's wmsider the dement O,1).
200)=Cn) + (1= (2,2) =(0,2)
r T
Mod 2 3
30D, D+, D +041) = (0,2) +CL,1D) = C1,3) = (1,0)
T
nod 2 mads
40000+ (DED FD = (Lo +0,1) = (2,03 (0, 1)
st = (0, NT(LN=(1,2)
6(nh= Cuya)+(n1)=(2,0) =(0,0) order o (1) IS 6. /
least commen multiple
of 2 and 3

L) 15 o De,nerafoﬂ



?
“The nect theorem tells us exodly when the divect produck of two yelic K
groups is ydic.

Theortm 921 The group Zm X7y, s isomorphe to 7Z,,, if and only i¢
god (m,n) =],

Proot () We want o ghow that [f W %7, T 7Ly then gcd (min)=)
We le.if gedemmy=d >1 then
Uy x7y coumot be ydic

Note that ym s divrsible by both ™ and m, hente for any element
d

(a.b)e 7Lm b 71»” opf\fﬂﬁon of 2..0‘7"’ s addition
(a, ) tla,b)+.- .. -|-(a,b) = (0)0)
VvV — 1dentity

MY 4 im
— s
1 e

Thus mo (o,b) win generate O Of Zy xZ, .

(€) s follows direcHy from thegrem 9.1# sine  lem (m,W=mn
if and only (¢ ged cmym) =1



(HAPTER 10 Novmal SUbamups 3 foctor groups %

We already saw that if Hisasubgroup of o group G, then, Nght osets are
hot always the same 05 left wsets. |.e. it's not always the wse that- gH =Hyg
¥qeG.

“The subgroups For which 1his property is b allow  for the G netruction of-a.new
class of groups called factor or quotient groups

Pefinition A Subgroup H of a group G is movmal| m G if qH = Hg Y 9€G.
A howa| subgwup of a gvoup G s one in wWhich the «n’ght and left cosets are
1he same. Sometimes we denote iz by HIG.

Exomple lef G be an abeliah group. Every subgroup H of G is a hormal Svbgroup.
Sinte gh=hg for all geG and he H, it will ajways be that gH = Hg.

Evample let H loe the subgroup of G3 that 15 f(l), (_,2)}.1\01; narmal in S

S;: ?m. a2), (23, 03,023,030 }

Sne  (1adH= (,13)3(‘),(13)3 and H(|13')-?(\).(l2)}023)
= fud, 03y F =f023), (23]

H tannot be a nowmal svbgroup of 3.

However , the subgroup N, wnsisting of- the permutations (1,012 3), and
C[32),7s notmal Since the wsets of N are
N =75 (). 023), CISZ)J mormal in Sg
GNON = {0 2), C13), (za)j = N (L),
(1N = §(23),(13),012)]=N(23)

ctc Se o
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Th?. next exmp‘e &bow.s FoY was to uSe o nwmc‘ gubgroup to crecte Mw
Subgroups from existing ones.

€xample et H be a noTmal subgroup of a group G and K be any subgroup
of G.Then HK=5hk |heH and ke K] is a Subgroup of G,
To verify this, wote that e=ce is in HK.
Then for any ashk, and bs hk, Where h hyéH and ki k€K
there is an element h'e H S.t.  ab™ = hik, (b,k,\“‘

=hk, k;'h'

= b, Ck, k) b

(o ) O )

€H eK wWhich makes

So ab™ € HK.
“ ab cHih~1hk |heHE kek]

Theorem 19.3 Normal subgroup test

A subgroup H of G is normal inGr if and only If gHg? € H VgeG

Proogf () I H is notmal in G, then for any geG and he H 3 h' ¢ H
s.t. gh=h'g. (since by def™ of normal subgroup gh=Hg 3 qu=jgh: heH]
) Hq =5 ha
Thus ghg '=h qHg? < H J =1hg:hen]
(@) If 9“9" SH VaeG' then lelﬁng 5:@ , we have aHa“lsH
oY agH ¢ Ha.
On the other hand, letting 3=Q". we have %Hg-l = o' H(a)"
ca'Ha ¢H
5 HQQGH.
This imphies that aH=Ha and so H is N2'mal in G.



&
Definiion |£ N is a notmal subgroup of a group &, then the wosets op

N in G form a qroup G/szﬂN:m. G} under the operation |(aN)(bN)=abN
This qroup is calied the foctor ov ‘quotient group of G and N.

Theoem 10-4 let N be a novmol subgroup of a group G.The cosets of N

in G form o gqroup G/N of ovder [G:N].
index = &t of left cogets

froof The group operationon Gy is (aN)bN) =abN.
We must show that the group mwlitiplication (s independent of the dwice of
oset representative .

let aN=bN and cN =dd.

We mosg show +that (aN)(cN)= ach = bd N =(bNIEN)
oince N:bN oo cN=qu left ooset deficN = neN]
Then a=bn, and c =dn, for some n . neN

Tws  acn - (bn)(dn,) N aN = ]on:men |
bN = bh: 'v\et\l}

d b“l@N)

= bn,(ﬂd) «—sinee N is a norma| subgroup dN =Nd

= bNd ,

= bdN ’ — here we vsed

B ossodativity a lot

ole

Wae also used ome of the properties of wsets:

T&idenﬁ [t =
by is eN =N that gH =H itf g eH

TI'E invem of¢ SM TS q-lN'
The order of G/n| i the rumber of- cosets of A in G Which is the
definition of index [G:N].



€xample  Consider the nomol subgroup of S, r\)-sfm.un). [l3?-)}

The wsets of N in S are N and ci2)N.
The factor group Ss3/y hos the following multipliwadion table

N (2N Nofe that ifyoux mpute (3N pu wil{
N| N (12N get that It's equal to CIVN. So the diistinct
N[N N 0SerS 0§ yin Sy are N & Q)N

ind ex [G’N1= S . 2 cosets
3

where (N = (()§01) Gad, U3
= %(l ), (230 3)} = (13N

and indeed  wa)N Ga)N is (1D TOD, ca 3) ¢ 37]
=3C9,0023), (13D]  ere

This qroup is issmovphic to e f"o") (S3/N = 72,)

Consider $: S3/N = 7, defined by $N) <0 and 4)((1;),,,) -l
$ is bjjedive.
How about operation-preseruing?

&|so, ¢]>(0=-)N N) = 4{(.’!2)") <= J=1+40 = ?({;;)N) +PW)

and G(DNCAIN) = $(N)= © 3" = pcaam + dLan)

7 mod 2
Note also that S; /N is abefian and Yelic, Sy << CIIN .



Notice that S3/N is @ smaller group than S5,

b\le nite that N-'-Aa «— altunaﬂ\rg group, i-e .the gvoup of even. Pamota'l'ions

and a2)N = (2) ju), (23),0 31)\}

= f(,l 2), (2 3), (1 3)} is the set of odd permukations.
produdt of odd number of 2-weles

odd

So the information wptured n G /N is parity L-.!é%len

—> muliplying two even oY Tw0 odd permutations results in an even permutation

—> multipling an 0dd permutation by an even permut-ation Yields an odd permutation.

ém Gnsider the nowmm| Subgroup 37 of Z. (3744743

e mote  Z/3Z 2 %3 =f002). Wehave |Z/3%| = [2:37]- 3

A ( disinct- costs)
The cosets of 372 in 7L are qN = §gn: neN] where
0+ 372 :? cers =31913,6, ... G=% ond N=3%

1+ 3L = §..‘,-2,.,4.,q,...3
243> J.-4,2,58,..3
343%Z=F...,0.3,6,...] =937 and it keeps repeatirg



The group 7L /87 1s given ky

t | ov3m \+3% 2t37L
o43%Z| 0+32 3% 2t3Y

143722 14374 a+372Z. 0+37Z

243%| 2+3%Z o0+3% {#aW) e.9 (a+ 37D+ (3+3IL)
= 4+37L = (+ (3t372)
= 1¥3%

Note , 7L/37 1s clic. nsMder for example /3% <<i+32>.

Generally, the subqwup nZ of 7 is normel. Elements of 7/ W2 ave cosets:

nIL, 1N, atvZ, -2 (DL

mURipIICOTiIVE group L3,
Example [t G - 0(32) = i. 3,5, 7,9, 11,13,13,13,19, 21, 23,25,23,29, ’3\3

and H=§113]. Then HAG since G isabelian. (o P3 38 we show that
when G is ogbelian all SWpgroups aswe 00‘""‘").

IG‘/H\ [G' H] _'G_\,,. _LQ.:S' So we have @ disHnct cosets of
H 3
H in G.

€lements of theqroup L(3AV/H are:

1H = H=%113]
30 = 13.19)
SH = 151 Ql}

H - §3.23}



iH = %q,QS]
1L H = §10,27]
13H =313,29]

JSH =115|3l}

Note : The gperofiom (s | H b =abh

SO, 'FOT example,

NH 3= (D03) H =193H = {143, 43177 T 4(33)+15, 75(32) +3(3

= $\s 31 = 5K
Note

Somefimes we vse the terminology G mad H* for G/t This arises fromhe

analogy w) wodwer arithmelc. \hen we work in Z mad 5, ke sow
=3wmod S bLewwse

8=3+5 =3 mod S becamse the S ‘gets absorbed *
iMo the madwlus. That IS, 3 mod S= (3+5) mod 5= 3+(5mod5)=3 mud §

Stoilarly, 1 we 100k at gy and i€ gzg'h then qH =9'hH =g'H bevause
the h “gets absorbed " by the H.

CHAPTER ' HOMOMORPHISMS

Thig & o Jmmlihﬂon of an isomo-p hitm .

i we wmlox the requirement that an iSOMOYPhism of groups be bijective, we have
a homomorphism.

Definition: A homemorphism  between qvoups (&, Yand (H,0)isamap ¢:G>4
Such that | (g, 8.)= Plg)oblg)| For 9,.9,¢6.

Therange of $in H is called the homamarphic image of ¢

AN



Nete.: This suggests that bav Jroups are. sirongly celaked i they are fsomovphic
but- @ weaker ralationship mn exist between two groups.

Example. (et G be agrup and geG. Define a0 map $: L — G by $in)=9™
Then ¢ IS o qroup homomovphsm since

¢ (min) = g™ = gm gn = GIm .

Tlhis hamomotphism)  maps 7. onto +he cgclic subgroup of & genemed by g.

Example. Let G:GLUR). IF A= 2) 16 in G, then the deteminans is
noner0 detlA)= ad¢bc70. Foy any A,8€G, de-t(AB):th(A)dﬂ'(B).

Ilsing the determingnt , we dedine a homomorphism ¢ : GLa (IR) » R* by
A > det(A)

€xample (Ve define a homomorphiswm ¢ from (JR,+) to T (the circle

group Gonsisting of all omplex NUmMbA 3 5.5 [3]<1), as
$: 8 — wsO + isink

4)(0(4- g) = CosCx+p) + isin («+R)
= (050 S — inwsing) + i (5in RS+ OSASINP)

binary . N
operation of = ((’05 a tusin Ol.) Cwsg+ isinp)
(R, ) = i) $LE)

l”bfnar‘y operafion of

€xample  The map 963= x* from 'A*, the nonzewo feal numbers under

MV ltiplication 1o itself is o homomowphism since
P (ab) = (W)* =a*b? = Pla) by ¥ a,beR*



£
Example The map $(x) = x* from (IR \t) to itself is wat @ homomorphiom
sine  $latb) = (atb)* = o+ 2abtb* ¥ @)+ $Lb)
= atb®,

When deﬁning a homamorphism from o gvoup in whidy, there are Several ways
fo represent the dementS, we must ensure thet the  mespondence is o funcfion.
(i-e. a wel-defined mapping)

€.9. since 3(xHy) = 3x+3y i Zg , ome might telieve thet the orvespmdente
X+ <37 223% from R/<3> 10 YU s a homomowphism.
But it is not & funchon, sinte 0+<3> =3+<372 N 253> buyf

307 3-3 in Zg.

The f-o(lowing proposition lists some basic properties of qroup homomorphisms

ng.ﬂ.h- let $:G,—~ G be a homomovphism of growps. Then
@ It e is the identity of G, .then ¢le) is the idenm-, of G,
@ hkr any element geG, . Hg) = [ ptg]”™

® If H, 150 subymup of G, tnen $(H) i@ subgroup of G,

@ If H, isa subgroup of G, then G ™'(Hy) =§9:6,: 4;(3)6",‘} is a Subgroup of G,.
Ao, if Hy 4 Gy ,then 9'(H) 4 G

8’;0[-_@ Suppose. € and &’ am the identities of G, and Gr, , respecively.

Then  e/dle)s @)= $led) = $EP() Pl9,92) = 19 2908
. 1= | sTnce ¢isa B.P::F G, 8'1;" of Gy

BJ 'ngirl' wncellehm € = ‘P ). ho memorphism blee) = @)

@ Forany 9¢eG,

cince ? s & hom.

$(q) d(q): ¢ (qq)=Pe)=¢'
9 (g7 ¢CqgM)=¢ T eroperty ©



3
Tws 4(g =4 l( @(a))" "= q>(3)) «
9 s'mcg e’ is the identify 0% G
® $(H,) is a nonempty set sihe the identily of G, is in ¢(H,). from prop.@

Suppose that H, is a subgroup of G, and let %,y e & CHD.
3 abeH, st $l)=x and §(b) =y,

Sine  x y < 4R CON
= ¢l $0b7')

= ¢lab)
€ #“‘l') since O.bs H. and H. iSa. su.bgl'oup. a-b"e"l‘,

Thus 4 (H,)) is a subgroup of G, by prop. 3.3I.
M
l-/e.\,::ﬂ be a subser of a groupG.Then RS
o Subgroup of G if and anly 1f H7$ and whenever
g,heH then gh" s in H.
@let H, be o subgroup of G, anddefine H, 1 e & “(Hy).
Thet 15, Hi=39¢€G, : p(@eH ]
o The idenfity e is in H, sne §lé) ¢’ eH,
e It a,beH, then $ab™) = b)Y (67)= ¢ () (B €H, since H, isa
subgroup ¢ G, |

Thus ab™ eH, and H,is a subjroup of G,
Sifnce by def" of H, ob eH, : ¢ (ab-)EH,

« lf H, ts novmal MG,, Then we must Shao That 3"5\95’", for
'\G“h and Se‘G',.



But  pigihg) = $g1) 40 49
=@>(«3))"<)(h)<\’l-9) eH,

Sine H, is o normal subgrowp °f G, . TThus 9-'1-;3 éH,. J

let ¢ -G >H bea goup homomorphism and svppose that e it
the identity of H.

From Prop.0.4 (H we Koo thab if H,is o subgrowp of G, then
&7 () is a subymup of G, (where ¢:G,=>G). Thus, in this e,
$=(§e) is o SVbgowp of G This subgrup of & S alled the

kerne of C\L denoted by ker 9 Fquiualen%y: ker q): isqG_ ?(3): 8}.

Theowm .S (eF ¢: G = tt be o gmup homomovphism . Then ker &
is & nemmal subgroup of G.

Nofe hx Soys that with evety hemomorphism of groups we wn naturally
assouate a novmal svbowup.

Grawple et $ : Gl UR) —» R¥ defined by [P(A)-det(M)| be o
homomorphism.

[dentily of R™* s ).
Thus ker ¢ is @l ax@ malries having determinant |,

ie. kerg= ¢7(fe]) = 7 geq, . Dlg)= 7e))
This implies that kerg =SL, (IR)




&

Cxample  The kernel of the quoup homomviphism $: R ~ C* defip)
by $® = ws8Fising s Jamn :neZ).

This i§ because :
$(amn) = cos(arm) + isin(am) =1 and | ls the identity of C*

(sormoyp htc 0 .

ker &= L

Example How do we find ay possible h omomoIphisms c} :7,(9-;74'1?

Sine kerp must be a sobgroup of 7., ,there are only two possible
kernels - §9) and all of 724

The image of a subgrup of 7Lq must b @ subgroup op 7 -

This implies that there is 0 Injecive hamomorphism.
Otherwise 7L, would have o subgroup of order F which s Mot pessible,

Therefore, the only possible homomophism 2 Zg = 7L, 15 1he one
that maps all elements fo 9.

Gamele . let G be a grup. Suppose Je G and §: Z -5 G, given by
<P('n):g" s @ homomarphism

~ | £ the order of q is infinite . then the kerngl of Hhis homomorphisw is § 9

sihie ¢ Maps Z oo the wic SVbgroup of G- generated by g.
~ If g bas finite ovder, say v, then ker $=-nZ,



AN
Sedion 1.2 : THE |SOMORPH(SM THEOREMS

Factor groups torrespand 10 homomophrc irno.ge.s and we wse factor gwups
to study homomorphisms,

We just leamed in theovem 1.5 fhat with every group homomovphi'sm ?:G-’ﬂ
we an associgte O NuTmal subgroup of G, ker .

The (onverse iS also (rue: every novmal subgwup of a group Ggives Tise bo

homomarphism of groups.

Definition : let H be a novma) Subgroup of G- The matural or tanonical
homomorphism $: G G/H s defined as () =9H|

This is indeed « homomorphism, since
¢ (99 b qqH = §,HgH = PUIPUL)

by def™ 1 T'bz def™
of $ since f P
'-iﬁ":u: :h::’::a;'be, Recall that tF N s
binary gperation f::e":;ncﬂ s::i,m?: ;hen
e e o)

Theorem 11.10

It $:G=H is o group homemovphism with K=kery . then K is novmol in G

let ‘P‘G—’ G/K be the canOnical homo'MO‘rphrsm ?La) =3K "Ihen 3 0- Unique.
isomophism M : G/Kk =Y Ca) Such that vn¢.




‘Pﬂﬁ Ovne of the assumptions is that K is normald in G.

Petine mM: 6/k — y(6) bsj ")(jm = 7
We first show thot 7 is o well -defined mop.

IF 9K 29, K then for sme keH, g k=g,.
nlvs since '}'fs . homowm ovphism

1GK) =) = gade= ¢ @) peK) = Pk = g, - 7(3.K)

This chows that 1 does not depend , the choice of wsel mpresentatives
and the map 1) : G/K —’\PCG) 's uniqu.d,a defined since \}"3”]1’

How do we know Y=N$? Bewause $:G~ G/K s the canonical homomovphisim
we know that ?(syz@ by def" of canonical hom.

Thus sine 1 (gK)=P(9), we have nP@= Y. > 7

We must also sholo that 7 is a homomorphicm, by

"l (% kﬁ;k.) = 7}682“)
= ‘I'(g'ﬁz)
- ‘}'(91)"’“!:3
=1 (3,K) M (9.K)

Dpesation preserving
We have that 7 is emto $(e) 6incee v l}’@é'{f&,} 3 9K e G/K st
N(9K)= 1»(3)(53 definition)

To show that 7 ic ome-to-one, Suppose that  7Mlg,K)="(g,K). Then Y (3)) =¥(3,)



This implies that \‘J(g‘) (Ly(ga))"l Te = 1,,(3‘) ‘Ng;') e
= Y99, M =e
oY 4,9, € kery
Hence 979 K =K

-n:’is implies 9,K= 9,K.

Theretore '] iS an isomwphum.
1]

Note We use diogvams xlled commutative diagrams to describe Such theorems

The -follow’mg diagram " Comwmutes” since P=n9.

c Y

—H

AL

G/K
( Based on the website Math3ma)

Suppose P G — H 15 @ homomorphism of groups (let's assume ib's not the map
that sends everything to the identity . otherwise there's mothing interesting
to say) and rewall that ker¢ cG means "You belong +o leery if and only ip
You map the identity €y in K"

Now we want +o understand Why it's helpful to Think of The quotient C"/Lp_ml,

o6 tonsisting of all the stuff in & thab doesn't- map to €y

G , " things in & thal
/ker\\f don?k map to the
Identity "



Fint notice that every element of G is either
D in kery
@ not m kery
There's only one way to satisfa @ — youare sSmply in the kerne}
This is why we have exactly one "frivial" toset. ker {.

On the other hand , there may be many ways to satisfy @ and it's why there
may be many "montrivial " tosets.

But just how misht an €ement ?66 sati.sfy @

@19 7 €y

But notice there ovld be many elements besides g who also map to
the same p(9) under¢.

For instante, every dement of the form gg' where g'ekery  Works,
So we group all those €lements together inone pile, me wse, and denote
A gkery. The notation fov this i quite goud : the litle g feminds ws

" ‘These are all the elemenys that- map to the value of ¥ at thak q ¥

And multiplying g by kery on fhe ight is swggestive of what we just
obsewed : we an sbtain other elements with the same imags \Mﬂ by
molttplying g on the right by things in ker.

let’s imagine the elements o¢ G as starting off asdobs salbered eveqyubeng

Which we van organize into little piles acwording to their image under Y

We wlof -tod e them as foljows



® o ® o

. . E . G
e %3 Ja 95 l ¥
e 1190 Vo) VB VI Y0 H

Note that Y isn't neessanly gusjective. Now here's the key observatim.

t one such pile for every element in the set '{l(G) =7he H} tc?r::bg?; }

We 9¢

The idea then behind forming the quotient &/ u,* is that W@ Might as welL
onsider the wilecHm of green dots as a single § veen dot and call it the coset
ker V. And we might as well wneider the wllection of orange dots a5 a

sing) ¢ ovange dot and call it the caset GLeryp, and o on. Sowe get this

picture :

ker¢ Jkery G kery G kevy 9atery gskery

b o
b V@ Y8 yor)

Intuitively, then, we should expect a ome-lo-ome wrespondence between the
osets of Gfrery @nd the eements vg (G). That 'S exacHy what the
First isomorphrsm theorem means when it telisus there (s o b{jediom

C‘I’/w,{, = ‘l’CG')




X

We should abe wotice that there are exactly l\}f(c;)\ie...]] wags to “£4i|" ty be
in keeV  and exactly 1elfeud] way to be in ker

TS!P““"H [¥CGI\Jexil >t and so the inte:e:ﬁrg part of the qwﬁgnt G/ken]' lies
in I8 subset of wontrivial cwsels gkery, glery, ...

The first isomovphic theorem implies that thic Is the same as viewing the interesting

part of Y(&) as lying in all the elements of g that den't map to the identiy
in H.

Theorem et y: G >H be a group homomovphism and
let &: &~ G/leryp le the canonkal (Surjectne) homomophism g~ gler .
Then 3 a unique {somorphism M: G/lery Yyl Sothat Y=7¢.

°,’ oo ¢ ‘ %ikery

'.'0 e —_— ker ¢ 9y kery
: . ..:.. ‘ ‘ 0
o : S e 9 ke'{'
¥ i1
€n

1% ygo ¥

&ompie Lot G be a oyclic group with qenerator 4. We define the Map ¢-Z>G Ioj
¢@= 9" | This mapis a homowowphism since ?lmi-n):j"‘*" =q™g" = dimIQ (Y.

It is o.d-mllg a Surjective hormrmo-vphn‘sm since y 9" eG I m e s.t. ?(nkg".

If [9]=m then gM=e .This impiies that ker¢= g™ = mzZ,
¢« since in theorem 11-10 (13t 1somovphism thw)
Aso 7 = 7 o
/ker ? L/m7L £ G e showed that N Gk = $Ce) s an

by defMof l:ﬂ.r? IsOmo7p ht sy *H
in the line above



d6
If the order of g is infinite, then kerp =0 and ¢ 1s an isomovphism of G and 71..\

Theretore, two yclic qroups are isomorphic exacHy when 'H:e:y have 1he same ovde
W 1o isomarphism, te only cyclic groups ave 7 and 7,

CHAPTER I3 The structure of groups

[n group fheow we already said we wantto dassify all groups up to an isaomorp hism.
Given @ pavtiadar guup, We want to match it wilh a known one 'thmu,gl\ an

isom ovphtcm.

e.g. We alveady sow that any finite ydic group of ovder v b isomavphic to 7,.

Thus e  know™ all Finite wdic gmups.

Here we wil charadernie a) finite abelian grovps

(£ o group has & sequence of subgwups G= Ha2Hnq2 - DH,>H, =)¢f

Where ¢ ead‘;nbgmu? H; & noma) in Hiﬂ
o each of the factor §wups ’,"LL' iS obelian

then G is o Solvable qroup.

So tvable groups allow us to Q@ almin,msh between certdin casses of grovps
©) S'tudj solutions 10 polynemia] equations

Section 13.1 : Finite Abelion Groups

Thing: we ulreacl’ detemined:

) Every group of prime orderis isomarphic to 7p
¢ Zn < Zm X7, where gd (roim =l
But more')h(hss hold.



) Cuevy finite abelian group is isomovphic to a diret product of Weic
groups of prime power ovder.|.e. Gvey finiteabelian goup is isomorphic
to a group Z',«, X - qu” where each p, is prime (and mot

] h
necessal y distinct).

Suppose G is agroup and let $9;] be the setof elements in G- whew | Is

in some jndex set I (mot necessarily Finite).

The smallest subqmwup of G containing all of the g;s is the subgrowp of G
qenerated by the g;'s. I} this subgroup of G isin fact all of G, then G is gentrajed
by the ‘set fg; :ieI]. The 9;'s ame the generrboxc of G.

[f there 18 a finHe set fq;: {€L] that generates G, then G is finitely generated.

Cxample Al fimite qroups ave {initely generaied. GJ the §mups S3 is
generated Dy the pemutations (12) and (123)

—

Yhus Sy is finitely generated by the se¥ 302).0 23)]

Propusition 13.3  Let H be he subgrwp of a grup G that & gencrated by
§9,€G LeT}. Then heH exactly when it's a product of the form

a, a
}’:3;’ .-.9': n

h

Where the g;'s aremot Mecessarily distinct-



Proos et K be the set of all produds of the foyrm 3;"' ...3?‘", where
' n
+he f!iu' s are mob meessarily distinct .

This K is o subset of H (recoll that H is generated by §; €G: iel)

« If ges, then K=H since H is the smallest subgroup Contaning all the g'c.
o The set K is closed under ihc group operafion SN it's of the form 3;:‘...3',%
n
+ Sinee g} =1 the Identily is in H
° “l = R - - ~k . .
3 | = (Qi.‘ '"31',.") = (Qi, n --.9; l) is the inverse of g

o

Note fowers of « fixed §; ™oy OLur sweral timas in the product i we havea
nonabelian gmup.
(¢ the group is abelion then the g,'s need ouavOnly once

e.q. A product a-3b%? 'n anabelian group ould be simplified o a%b®

FINITE ABELIAN GROVPS

Any finite abelian group (on be expnessed as a. finite direct product of Wdicgroups

% lething p=prime we define o. group G to be o (=g it every element in G
has as iks ovder a power of .

.denti}y 2P

€.q Both 7L,x7%, and Z, are |2-groups elemens of ydicqrup 7, =§0:1%3)
order of 0 Is 1 ')

elements of 7, x7%, =} (0, 02:(0:1:0,0:C1i10] orderof 1is 4  addition

Ordero; 2is 2

X7 2
Every element (0.6 In Ty %7y has ovder order of 3 is 4

Since (ab)+(a/b)=(0,0)
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Theorem 13.4 [FvNDAmeNTAL THEOREM OF FINITE ABELIAN GROUQS]

Every finite abelian group G is isomovphic to a direct product of Uche groups of
the {orm
7L o, X ZP;“ X...X an“”

Here the p's ars primes that are not necessarily distinct

Let's ook at & few examples to sec hoW power{ul 1he fundamentaltheorem is
Reminder: |v tan be wsed asan dgwi‘}bm For oonstruc.ﬁha all. abelian groups of any e

let's look at groups Whose orders have the form pl, wheg p (s prime and k< &.

Generally there is ove group of ovder Pk for each set of positive tegers whase sum
isk ( such a set is wlled o pavtition of k). That 5. I k Can be wriken as

k% n|+7|3'|’ L "'ht
bhere each M; is a posilive integer then

71‘,,,' x 7(?,5 X .- 7['%

(s an abelian qroup of ovder p"

Qrder of & Partitions of k Possible direct products for G
P \ Zp
p* a Zps
a Ly 7p
g b €7
02 x Lp

(+1+1
lp X7Zp x7LP



94 4 7LP4- \]20

3tl
2t2 Hps p
251 +1 Uys X7£Pt
|41 +141 2y x 2, X7y
Zy x Uy 2% 2 7

.@L“"- The nuvber of terms in the produt and the onders of the wdic grups
are uniquely determined by the group.

This guarantees that distind partitions of k yield distind isomarphism dasses.
For example, g% 7.3 is Mot isomovphic to WUy xLyx g

A ™ncmonic for omparing exgemal direct prodwcts is the uvancelation property:
% b Aishnite then AxB S AxC  jfangomy if BFC

Thus 7, x %y is not isomorphic ® 7 x 7L, x7, bewuse 4 is N
isomorphic to 7Z,x7%, .

Example . Dbjective : Classify ail abelian groups of ovder 540!
Frst wenote that 540 = 2*- 33.5.

The FUNDAMENTAL THEDREMOF FINITE ABELIAN GRouRs bells us we haye 6 possibilities

o Gx UprLynZyxZy 27
C v - S
2 3 I

540 =2 335"
2. Uyx7, x ZyxUq xAs
3. Zyx7yxZyy xUs
4. ToxTly xTUgr B3 % s
S. UgxUygxZq xXs
€. LyxZyyx7Ls
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Consl:mcﬁna all abelian groups of a.cerbain ovder N where n has 2or more dr.sﬁnct\
Pnme dwisols
STeP( Wxite n in the pyime power dewmposition form n= P s L p e
§TeP 2 : [ndividually fovm all abelian grovps of oxder p™, then B2, ...

step3: Form all possible exiernal direct produds of these groups

Example. et N=1176 =2%.33%

Then the compiete list of the distind isomarphism dasseS of Rbelian groups
of ovder 136 i

(. 7L,_x71.2_x7£z x Uy * 7Lax 2y
2. 7L, x Uy % 7Ly x Uy X 2,

3. Ug xUsx Yy x4

4. JLyx Uy xTy 8%y X yq

5. 7L, x7yxTyx Ty

6. T2 gx7ly %y

If we are given any partiwdar abelian grow G of order N3¢, The question we.
want 1o answer about G is:

h 0 o M )
- Which of the preceding SIX isumosphism classes re presenis the structure of G ?

We wn answer this by wmpaving the ordess of the elements of G with the orderc of-

the elemenis in the six direct products ¢ since it tan be shown that o finike

J ® 0 M n
abelian groups are isomorphic if ond on ly If they have the same nump
©lemenis of each orger o

We could detemine whether G- has any elem ents of order 8. [F So,}hen G



AN
mut be lsomophic to the 39 and cth groops above Since these are the
omly OYES with elements of odder g

o narmw G down to a Single choice we Mow need only check whether or not

G- has an glement »f order 49, sine the gth gmup above has such an
element whereas the 3™ mot.

CHAPTER 16 RINGS

So far we Studied sets with & single binary operation Satisfying Certain axioms

0ften, we are intergsted in working with sets that have two b‘mary operations,

€q. think of the integers with the operations of addition and mu(tiplication,
These are related by the distributive property.

If we wnsider o set with two Suh related binary operations sabisfying Certain
axioms, we have an algebvaic structure called a ving

Cedtion 16.1 R‘mgs

Definition-. A nonemply St R is a -n‘nj if it has two closed binary operations,
eddition and muHiplication, sutisfying the following conditions:

1. a+b=bta for a,beR

2. (otb) +¢ = a+ (btc) for a,b,ceR

3. There iS anelement 0 in R suchthat a+0 = a for all aeR

4. For every element aeR, there exists an element -a in R sudh that
0+(-a) =0
5. (ab)c=albe) por a.b,cer
6. For a,b,ceR
alb+c) zabtac

@+b)c = ac+bc



In&. _o is the additive inverse of @. Subtraction in a ving is defined by the
vule a-b= at(H) ¥ abE&R.

Def: |t theris aneclement 1€R such that( )70 ) and Ja = al =a for
each €lement 0ER we sog that R isaring with ‘unity or identidy.

Det" : A rina R for which abz=bo ¥ a,beR s taled o commutative 7ing

Note that the additionin a ring is always @mmutztive but the multiplication
may not be commutative

Det®: A ving R js safd 1o be an (integral domain i the {onowinj onditions

hold:
1. R iy commutative

2. R contains an rdentify 170
3. 1§ a.beR and ab=0, then cither a=0 or b=o

Qet" : A division ¥ing is a ving R with an identily , in which every wonzem
element in R is a unt?’, That s, for eath a¢R with a¥0, J o wnique
element a™' Swdh that ala = aa™ =|

Qef®: A ving R 76 said 4o be afield if it satisfies the following prgperhies

1. Ris (ommutaive
2. /@ wntains on idanfiy I¥0

3. for each xR such that x#0 3 Y€ R Such that xy =I.

l.e. a {ield is a. wmmutative diyision 7ing,



TypeS OF RINGS

/ ” \
Comrputa-live Rihgs with
Rings ldentiyy

( covom utahivt) Integral Division, .
Domains Rings (it is not wmmutah ve)

/

Frelds
(it (S omm utaﬁve)

Example  The integers form a ¥ing., since they salisfy axioms I-6.
7 is aiso anintegral domain. l.e. it is @ wommutafive ring with identify.
Rewll that this means therg is an dement 167 sudh +hat 10 and
{a =al =0, fov each aeZ. (more succinctly for every aibe 7L Such that
ab=0 effher as0 or b<0).

Y is@ob) o tield. The® is no integer that is & mulkiplicafive inverse of 2
since '/zﬁ!?l.. The only inteqers with mul#ipUcative inverses @re | and -

e)(ample.. Under the ordinm:y operations of addition and multiplication
all of the familiar number systems are rings:

- the ratfonals Q

- the rea) numbers 1R

~ the wmplex numbess €

Each of these 1ings fs a field.



Example  We tan define the produck of two elements a.beZ, by

ab (mod M)
eq th %, . 95t=1 mod 12

— This product wmakes the abelian group L, into aving. (check that it satisfies
the G axioms of a ¥ing).

- Z, is o commutative ring
- %y, might fail to be an integral domain

¢.q. Gonsider 3-420 (mod 13 in 7Ly, . A product of bwo monsero

elements in the ring tan be equal Yo e
Rewll for anintegval domain for every aibé R suchthat ab =0
either a=0 o7 b=o.

)i inanh is walled a 22 diviso¥
Definifion. A nontero element a g R )
it there Is o nonzern element beR S.t. ab=0.

eg.In 3-4=0 (moud 12) N Xy » 3 and 4 are 2€ro divisors N Z,,.

Example. In wlulus the wntipuous vea)-valued funditns on an interval
[ab) {orm a wommutative ring.
Explanation. We add ov muliply two Tunctions by adding or Multiplying
the values of the functions. If  f(x) =x* and g(x)=voS X, then

({’-}3)(,@: £ +9(x) = X2 ¥ 08 X

(£9)(x) = F(x) g(x) = X005 x.



Example . The 2x2 mairices with entries in B Form a ving under
the usual 6perahons of wmatrix addition and multiplicrtion.

towever, the ring is moncommutative, since uswally AB 7 8A.
Note that (e con hae AB =0 when heither A mor B is 2e0

9. k= [oo> and B“-(‘: Z)

6_@_"’&'2, Example of a viontp mmutative di vision ring
let 1('0).\ ( ) k = (o whee 1=
'-l

We wn check thar these elements satisfy the {-‘ollowina velations ;

AR e
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let IH tonsist of elements fhat have the fovm[aro: +ciTd |
wheve O.b.c.d e R. -
Equivalently, {H can be wnsidered as the Set of all 23 matvices of

.l
be form (°.‘. ?) where X=ardi € €
d g=btci €C

apdi btc a+di bfcc)
(b-l-c.t a-di | ("(b-C'l) a-di

We tan define addition and multiplication on H eith
matix operations o7 In tems of the generators 1 v, :l"

er by 1he usua)

Additon  Cagbyi® Gt i) + (ax b, Lt cyf +dak)
= (o400 ¥ (bitbd b ¥ (64 + (dirdo)

Moltiplication ~ Ca,+by Lt Cif +di k)(a+hitc, )+ dk)
= (a,a,-bib, ~¢G ~did)
+ (a,b,ta,b, +¢,dy - dc)1
TlaG-bd,tca, +d,b)}
+(®,d, t bic, ¢,y +d,a,) k&

rs oK+ p'u-za, y Sk

The ring H 1s «lled 1the|ring of quaternions

8 Show that the quaternions are a division ring.
|- €. show that {for each atR with a#9, J a unique element a™ Such that
o la = aa=|



/5

A : Notice that (atbi 4 c‘i,-td@(a-bi—q,—d&)
= atrb*+ct+d*
4 (af=b)t ab +ci-d)-d{-0) v

+ (8020 - bled) + o + <) §
+ (o1=d) + b(~<) —ct<b)1da) |

= ottbr+crtd?

-

This element oxn be 2er0 IF and only if @.b.¢,d areal 3em.

So if atrbitcitdk Fo

(atbitgjtdl) [ B 7bi- cj-d¥ > =
e~ alfba.*c‘z.)‘dz
if thigis — ——
aeR fhis s a'ER

Seetis fying aa‘za"acl.
+

fmpos’ﬂion 165+ Ller Rbea rin3 with a ,be R.Then

0] aO = Oaro
@ al-0)=(-a)b= -ab

® (-a)b)=ab
distributive prpevty o (btc) = abtac

Pooi (@ Noie that 0 +a.0 = afot0) = a0 +a0

This a0 =0.
by the vight tancd)
Similarly  Oa = (ot0)a = Oa + 0a = Oa =0,

d istributive pmperfy (brc)a = botco



©® We have abt a(H) = a(b-b) =a0<0 (fom@)

2 a(-b)= -ab
St'milarU abt (b= (a-a)b = Ob=0 2(::)(;1’;
D (-a)b= -ab. = 00
= Addin -Ob
TbUS a(-b)= ('a)b"" ~ab 0 40 both sides gives
a(-b) = -ab

@ This foliows fom @ sine  (-a)l-b)=-(a(-k) = -(-ab) =ab,

Q

Eﬂ& SOMe have the mistaken tendenuj bo treat o ﬁr\‘ as if if wWere a group

under wmultiphation.But it isnot . The twoe most [mmon eror are the
assumptions that:

-+ ving elements have mvitiplicative inverses — l'bey heed nof
?a Ting has a multiplicative identijy —it+ need not.

For exomple. if a:b,c € R , a¥oand abstc, We @nnot conclude That bec.
(the righy might nol have @ Multiplicative cancellation)

S"cmilmla. if 0%=a, we cannot wnciude that @ 0 ov a=) (as is the wse b/ R)
(the ving might nat have o muttipliciive identi+y)

Similar o Subgroups of gmups, we have subvings for rings.

Example I R is any ving, then the set My GR) of nxn matrices with

coe fficients in IR with he usual addition and Wultiplication of matrices forms
a ving. Here the additive idem‘i'{vy Is 1he 2¢r0 mahik and the mulbiplicative
identity 15 the 1dentily mahix

My QR)Y is a. non -ommutative ving,




S
D%_mhnn._ A 5“5‘i"3 Sofa ving R is a subset S of R such that
R i§ also a rina under fhe inben‘tcd Waﬁon: from R

TJust as was the wse for Subgwups, ihere fs a simple tes for subrings

SUBRING TEST

A nonempty Subset, S of azing R is a subving if 5 is closed under Subiradion

and muHiplication ; thatf is,if a-b and @b are inS whenever o ond b
ore tn S,

Poog  Since addition in R is wmmutative and S is dosed under subtraction
we know by the 5“53'0“9 test dhat S is an abelian group under addihon.

r (ohy?
Rewll thai the subgroup test stated : let G be a gwup and H a nonemply subset
of G.If ab™ et whenever a,beH, then H is @ Subgroup of .

In additive motation , if a-b € H whenever a,beH, then H (s o subgrogp of G,

Also ,sine  multiplicaion in R Is assouative gs well as distributive over addition
the same 15 true  for muttiplication in S.



a(b-Q) = ab—oc &H whenever ab,aceH

Thus, the only nditien remaining to be checked js that Multiplioton S a binary
operaHon on §  but 4h;s i &xacty what closure is

Example . The ¥ing n7 is o .Subrmg of Z. NoHe that even though
+he 0viginal ring might not have a multiphative tdentity, we do mob
Yequire 1hat its submy has an identity,

Rewll @eZ ,does net have a multipliwtive inverse £ %)

The multiplicative identily would be 1€Z  Q-1=Q

Example let B=I1M, Q) be the ring of 2x2 mai@s wih entries In R.
[f T is the set of upper triangulay matries in R,le.

T =f(g 'g):a.b.celR}
then T b zfa b ~fa' b in T the
en Tis @ subving of R. |f A(o c) and B ac') are in )
A-B- [ a.-a b-l’;’) eT also.

- /& b)fa! b aa! ab’*'*l eT also.
Similarly, AB (o c) ) -(
Thus T Is o subsing of R.

Example  Given two vings R,S, the product ring RxS is defined as a set by

RxS = $C18): 7TeR, seg’} with operations of addition and  muitiplitaviion
performed  Gompoment wise .

The additive identily is qiven by (0p,05) @nd the mullipliative Ydentify is



2
Given by (g, ). lf Risa ring and A,BcR are fwo subrings , then

using the subving test ome wn check that ANB is ancther subving of R.

lntegml domains and fields

Remembering some of the definitions we have alvaady seen ...

- R s aving and 7is & nonero element in R, then ris sad tp be a em divisor
(f there is 5ame MNTEro eclement SR Such that Ys=0.

= A Gmmujative *iNg with identily is an integwal domain if it has no 2ew divisors,
I.e. (¢ for evey 7.S€R cuchihat ¥$=0 , either r=0 O 3=0Q,

~1f oan demént a in a ving R with identily has a muMiplicative inverse , we

Say & is o wnit. |.e. o7 each @6R witha#o 3 a unigue @' ST
aa=aq™=l

- |F every nonzerv element in avipg R s q unit, then Ris talled a divisim

xng

- A ummutative division 7ing is a field .

Cxample  IF i*=-. Then 74[{] = { m i : m,NE Zj‘ forms a ¥ing knowp qc he
Gaussian integecs

The Gaussian intejes are a swbring of the wmplex NVmbers sine They are
closed wnder addition and multiplication.

Say wnieZ[i] formneZ and qrsieZli] forqs€Z. Then
(mini}@tsi) - (mtg) t (nts)3 & Z[i]



Similazly @nmi)(q'i-si)= mg+ msitNg3 ~ns

(mq-ns) + (ms+mq)s e 7L [i]

let s =a+bi be o wnit in Z[i]. Then o =@ ~bi IS aso aunit Since

! /-_-R
f ther  dp =I. by def" of @ unit: for each @6R withayo

wyHiplicalive 3 a unique @ st a’a=aa™ =l
dentity in this wse for each acZ[i] I p st op=l.
- T Y -.-o-( g < |
I Bsctd: then  1=(ap)(aB) Then ofp =0l
" "

' |
= (a+bi)(ctdi) (a-bi)(c -di)
3 (q’- +bY) (c2td z)

When can this happen? So.d atbi=l and ctdi=]
2 (artbY)(*4dY) =
It a1bi =~ and c+di=- > (a*fb*)(HdD) =]
If atbi=i oand Ctdi=i 3 (a tb2)(c?+d?) =]
IFf atbi=-( and crdi=-t 3 @ tpr)(ctd )=
-"WS. UnibSo.f this )')hs are t, or tj.

O Are the Gaussian infegers a {ietd ?
A No they are nd o fleld.

=

/_
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Propesition 1615 Gancellation law

let D be & wmmutative 7ing with identity, Then D s an  inteqrel domain
it and mly If Y DMwWro elements aeD with ab=QC wehawe bec

Guot (%) let D be an integral domain,

Then D has no L divisovs. (by definition)

let ob=ac With a #o.

Then ab-ac:o ® alb-¢) <0 fromthe distributive property .

Since D js an integral domain then for gvey TSED 53, ws=0, either

Y0 0Y §=0.
by this tase sine oFo, k-0
Therfore  b=cC.

( é‘) Let us now SVppose that Concellation is possible in D,
j.e. S e g ab.-.o;. > b:c.
Uppase tne Cas In The assumption In the Pmposiﬁlm)
let abzo. If afo then ab=al or beo.

Thos o wxnnet be a e divisor.



Example FieJd with 9 elements
let Z,[i]= fmtni: m ey

= fo,lulo
i1t b, 2k,
@i, 1+2i. ataif,  where 12=-

This 16 the ring of Gaussian integérs modulo 3.
Elements are added and multiplied as in the complex numbers, except that

the cwefficiants ane reduced modulo 3,

*® X

Note that -1=a 5

This meanc that the addilive Mmverse o€ {  (i-€. -1) s & 1+2=0 mod 3
T

additive idenﬁty

Eample ot @[V3] =fa+ bl : a.be @ . Check that it's « Ting!

Q: Isit o field ¢
_I:\_ + This means thaf every nonzen eement wust be a unit (3 a muit. inverre)

The muHiplicati e Itverse of ary movsen ejement of Jhe fovm atbfz is

L — . We rafionalize tis 1o get L. .a-blx _ p-bfz
atbis arols a-bii = ar-ag

a_ _ b2
al —sz Q_qu'

-
-

..gb 2_ lb"

Thus the inverse of Gt biz is ct+di2 eG_[ﬁ] = c +dia

Note that atb¥2 #o guarantess that a -bi3 #o



Wedderbuvn's theovem

Theorem 16.16 - €vev3 finite integrol domain is a field.

Froof  Let D be a finite integral domain
let D* be the set o nonero elements of D.
We must show that eveny element in DY has on inverse,

For each aeD* e wndeflie @ map 2y :D*>D* by |3, (d)=ad,

It afo and d o then ad #0

The map A s one-to -ome since for d,,d, eD*

DaldD) =g (dy)
2 ad,=ad,
Which by Left ~anceliation gives d,=d..

Recall that by proposition 16.15 The Vltiplicative camelation law boids
wWhen D is an integral demain.

Since D* is a finiteset (look at thestatement of theowm 16.16) , the map
2 must also be onto. Henwe for sotme deD*, 3,(d)=ad-=I.

Thos & has o 7ight inyerse.

Sine D is ommutahve , a also has a lefl inverse, which is d .

Therefore, D is a field.



For ony 'nonneaaﬁue mteger n and any element « in aq ribg R
we wvite 7¢...4y M times as .

Tefiniton The characteristic of a ting R

18 the least positive integer n

such that |M¥=0 ¥ ¥eR
1§ mo such integer exists, then the dmvacteristic of R is defined to ke 0.
We denote dthe characteristic of R by char R].

é‘fm—mg-- for every prime p, 4p Is o fied of chavacteristic p.
Py proposifion 3.4 evety nonier gement 0 7, has an inverse, hence
ZP (s o €ield.

¥ a is any mopaero element in the +ield, ten Pa =0, since the order of any
Tonsenw element in the abelian group Zp is p.

By the definiHon of the chatacteristic of @ ving R, we hknow that 7Lp is
o fidd of charadenstic p.

43



lemma 1618 (gt R be q ving with identily.

If 1

Proof

N1=0

V& no positive M exists Such that 1=0 then the tharacterishc of R

has order M. then the characteristic of R is n.

If 1 hasorder n, then = is the Least positive integer sudr that

Thus, for all veR,
= n()r)
= (nl)~

:0"(
=0

is 2ero.

R

Theorem 16.19  The characteristic of an integral domain s ither prime or 3ero.

Proo £

Suppose that the draraderistic of D ism with n#o.

let D be an inteqral domain .

o If nis not prime then  m=ab whenm |l ca<n

ehd

leb<n

By lemma 16.18, we heed ony lonsider the wse ml=o0.

Since 0= n)

and an integra] domain has 7o 3em dinsvs, We have either

= (ab)|
= (a (b)) Y

a1=0 o7 bl=0

4
Ly these imply Jhat the daradeistic of D s either @ or b and

both ore (ess than n.

we wn dothis by def" of an identity
a)=a and bl =b.
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Thus, the chawaderistic of D myst be less than 1), which is o ontradiction.

Thus, v must &Prime, (‘»?

Gdion 16.2  RING HOMOMORPHISMS AND IDEALS

[f you vesall from buck wohen we were doing groups, @ homamovphism & o
map that preserves the operation of the group.

Similaaly, « homomozphism between vings preserves the operations of
addition and muitiphcation in the ving.

Definition: )¢ R andS are vings, then a 7;,,3 homomorphism is a map

$:R->S sgatisfying

$ lath) = pra) $(b)
<P (o.b) s ?(a)c}a(b)

V‘O\be R.

W‘ It $:R=2Sis a me-fo-one and mto homomowphism . then ¢
is Lalled @ ¥ing isomovph jsm.

Defimton : For any vinﬂ homomasphism $:R=>S, we define the ‘kemel
of a ving homomorphism to be the seb

ket‘tr =ft€ R :t‘)(r):()z




1

Garple oy any inkeger 1 we tan define @ Ying hamommphism $: 25 7,
l"5 ¢ (o) =0 (mod )| Llet's check that this 1s actually a ¥ing homaomovphisim

<}>la1-b\=a1-b fnod M)
= o (mod n) + l’@"’dﬂ

ond 4 (ab)= ab (mod m)
= o(mod n) - b(mad n)

= ¢ (@) ?(b).

Q : What's the pernel of this \'il& bomomorphism?
A :

ker § = N7L  i—miegers that are multiples of M. i-e.nZ =§nx : xe7)

€xample et C[a.b] be the ting of real -valued, continuous funchipns on an
interval [o.b].

F’his is a ((tommurative ﬁng)- (P9 (x) = FOO+§0)
and (F:]) (x) = £0)g () 4

For a {ixed oefa,b], we can define a 2ing homomorphism P, : C[a,b] > R
by [$y (F) = £ 60

letS check this S

&, (F+g)= F19X0
= fCe) T 9(e)

ol MGEE MK

ndeed a ing homom ovphism



J

P L8 =
= fo0 960
= 9, (f) +ol[3)

In fact, thic 1ype of ring homomorphism q (f) = £6) i known as

e valuat on hormomuor phism.

fropositimm 620 let c};:R—»J be aving humomovphism.

® |& Ris a wommutativeying, then $(R) iS also & commututive ving

@ Plo):=0
@ let I, and Is be the identities for R and S, respectively,

[ ¢ i onto then PlIR)=ls
® 1P Risa field and (R F Tob, then p(R) is o Field.

—

Recall that severak seckions ago wheh we were Leayning group theony
Wwe sawthat Moyma) sVgroups are interesting 10 Study.

The wiresponding obJeds h vihg 1heo:y ore speaal subrings known as jdeals.

Definition : An idea) in a ring R is & sub-n’ng Lof R suth that if el
and veR, then both |arel and rael
That is, a subring I of aring R is anlidea) of R ¥ T "“absorbs" elements from,
R. [.e. it «IL -i'ra.\ouel.j_c_._[ end Ir=far| aeljsi VrveR

Example Every ving R has at least twp ideals: fo] and R.
we will these ideals the trivial ideal



112
let R be a ving wiih identity and suppuse that I s an ideal in R ~

Suth that 1el. Sine for any veR, ¥l =reL by the definition of an
ideal , T=R.

Tlel and 1reT
bvt by def" of identtty

Yl csly=r= vel
Example | a is an element in o o mwictative ving R withidentity,
then the set {a> =far: YGR} \s ah jdea( in R.

la>F @ sihe  q.-q) isn <a>

(since R is & wmmuttofive ring with id entity)

The sum af two elements in <a> iS again in <a7 Since
artav' =a(r+v')
by the distributive property

(nverse of ar is —ar = a(-r) € <a>.

| £ we mukbiply an element ave<a> "J ah Orbitmg edement SeR
we have s(ad) = Ba)r  axouativity
= @) commutative (since R is & torom. T'ny)
=0 (S7)  asodativity

Therefors , <a> satisfies the definition of an ideal.
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Definition : |+ B 1S a commictative 7ing with identtty. then an ideol
of the {ovm <q>=iar I YE RJ i5 lled o ‘principal ideal .

‘Theorem 1635 €very ideal in the ring of integers 7 is o prindipul

i deal .

Bwt The zem ideal §o is o principal ideal sine o> <o},

It I isany nonzew ideal in 2, then I mvSt (ontain  gome positive
integer m.
By the well-ardering prindple 3 aleast positive intejer nel .

Now (et a be ahy element in I.

Using the divisin algmﬁbm. we know J q,7€ y/Z3 0
a=nq+r with 04r<n

= y=0-Nq €l

Bur v must be 2€m sinee N i 1he least posttive elemenf in I.

5 a=nqH
o

=) a=ngq,

cehd £=<«n7.
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éxample _ﬂ\e set nZ is ideal |n the ring 0f mcq,gm,

th? Buowse if naenZ and he7/, then mabenZ

o required . o Ting

By thearem 16-25 (that ewery 1deal in the ring 6f integers 7Z ic @
principal ided) , these are the only ideals of 7

| tecall that o prindpal Ideal is an ideal of the form <a) =§av: reg]
-

FWPOS'HO" [6.27 The kernef of any rin9 ho momovphism ¢:R>S s

onideal in R,

froof  From group theony, we know that kerd is an addifive sulogroup
of R. (thetk this for pradtice)

Suppose that o ekerd and reR.
For kerd fobean ideal In R we mst $how that arekmp and

TaE ker §.

We have q?(aﬂ = LU
= 06
=0
and , similorhd, ¢ ()= ?)[1)4)[00
= d) ()0
=0
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Thoe ¢ ar)=0 = arekery and O (ra)<0 $ vacker 9.

a

Remafk In the definifion of an ideal We have required that rIcL

ahd Ir cI {for afl reR. Such ideals Gre sometimes referred bo as
+wo-sided ideals

But fthere are also one-sided idedls that only require that eifher
rTcl oy Trc I for reR hold bat not both.

. In a commutative Ying ang ideal must be two-sided.

for 1he Swpe ot this dass you only need fo know about two ~sided ideals.

Theorem 1629 (et I be anideal of R. The factor group R/1 Isa
ring with mulkiplication defined by

(erD)lstI) = *STL

Frw{ We know that R/1 Is an abelian group under addihon.
(et v+I eR/L } e must show that (v¢D)(stD)=vstL
s stl €R/T is independent o the choie of coset .
~This is equivalent to showing that i r'e T+l and s'e StI,then
vs' evstI.
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Since 1'evtI 3 an element ael such that 1'=r+a.

Simiary ,since $'sstL 3 bel st. §&'=stb.

= r's'=(rta)(sth)

- b
=rst &%dm 1 "absorbs" +hese elements

Sine T Is an 1deal we have that rbtastabe] ~ Since A€L and bel fegh
'(‘OT reR, thel } o

Thersfore v's'€ rstl SeR, asgel ldea)
. (ond abel l_’ﬂ
To show that R/L f5 @ ving with muMiplication we must closurg.

also prove the last two axioms of a ving. Namelg that associativity and
the distributive property hold. Please check ths!

Definition. The Ying RIT With woliplication defined as
(riDlstT) =rstI

18 wiled the factor or quotient vy

Just as with group homomorphisms and novmad Subg™ups. e have a
relationehip between ing  homomorphisms and ideals.

Theorem 16.30 et I be an ideal of R. The map ¢: R R/T defined by
by zvtl s a ving homomowphism of R onfo R/L with kemel I.

f'lo-{'-‘ ?:R“’le s o f“'JtCHVC abejian group homomovpb’sm

bCrs) = (re)tI ;(-,1.1_3 tstD =P NthLs)

definition o addition b'mavy operatim
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We must now show thet ¢ is a Ying homomoavphism, o it works

wreedly under Ing  muttipliation.
let v, 5¢R, +hen
¢ @) $) =(reI)CstD)

= rstl
= & (rs)

Example  Z /47 = for & 14 4, 2447, 3t4Z],

Rewall fvrom pg 83 of these notes that elements of Z/nZ are the wsets:
NL, |#nL, ATNZ, ... () t 7L

7o ee how foadd and MUItiply consider the elements at 4% and 3147

(2+470) ¥ (3147D) = St&L = 1+ 4+¥1L= 1 + 4L
(24U (341D = 6t 4TL = 2t4+ 4 = 2147

Thes, the two operofions awe essentially ymodulo 4 arithmetic.

akten Mod 6
Gample a7 6L = 30467, A telL, 4+67L)

let's ok aithe addition and muHiplicasion operations again.

e.q. G+aI)+({H+OL) = BI6L= 246+67 = 2t67
(4+eD(4+G7L) = 16167 = 4+1216Z = 4457

8o here +he operations are éssentialy modulo G arithmetic
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Example  Nonemmutative idea) and foctor Ying

lety R= ?( ® Q a; enj and let T be he subset of R consisting of Matrices
Q3 M) ]

w ith even entrieS. |t wan be shown that I is indeed an ideal of R.

[ ) |5

k
€ nd BeL, AB=( a1 & (ak. 1 :_)
Then for A€R a ’ (Cl; Q4 JL2k; 2k

N (;a,k,fza,k‘, 20,k, +20:ky >
y

303k,+2a¢,|:3 20; l(z"'zaql‘

]

(2(0.".‘\'“3'{3) J(Q,k;tazleg) ) el
2(askitqks) 20k, +aqks)

Since eveny
entn jsan
8A = [ 2k 2"")(“' G\ 1 eu'g;o me
2k; 2kq /\ 03 Qq

T—can be shown h @ SSmilay manner 10 above

Now tonsider the {octov ving R/r.

* The inte:esﬁng question about this ving is: What icits size?

(Ne cdaim R/I has (6 elements.

In fact RlIei "Y; ?;)rl:

2 oriefo, 13}

An example illustrates the typical situation.
Which of the 16 elements is (53 ‘?3 yI ?

Obsewe that (?_g)f]: = 46 ,_84 tI F (: 73?'[

all even entries
Sv it can be absorbed
m theideal I



Cxamples  Conside? the foctor ring of Gaussian mtegers R = »2[i]/<2-i>

(What does this 7ing fook like?
The elements 0f R al have the form atbit ¢2-i> where aib€e7L
What do the distinct cosets look like?
oct 4 - “iv=
The foct that 2-i -|-<2°db(> -t))r <2-i»> Means that when daaling with coset
mad [2-L
represéntatives e ma . .
Y treat - as egyivalent to 0 D a=t.
For example, he coset 3 t4i +<2-i> = 318 +<2-i> =04 <2-i>
1 I d
represed 1 With @ =) 0 4 beame 8

at -ty » a67.

Similarly ,all the elements of R tan be wilten in the form

We tan further reduce the set of distinct coset repmsentatives l{y observlhg that
2:<i implies by squaring both sides that

4=-]
oy 5=0
c (+5+5+ <27 = 1#<2-i2?

Thevejore, the cosct 3+4i +<2-i2 =N+<2-i>

This way we show that every eitment of R is equal to one of Fhe following cosets .

0+ La-i>

I+ <2-i>

2t+<2-i>

3+<2-1>

4+<2-1>

since 50 fen S+¢2-17 = 0+ <a-i>

(¢ any further reduction possible? OK-.. cnogh &
To demonstrae that 1here is not, we will shwo that )#<2-'> has additive order s



Sinee S[1+<2-i7) = St<2-ly = 04<2-i>

| + <2-4> has order 1 ov order §.

I the order is actually | fhen 1+c247 c0+<2-1> SO 1€<2-~i>
Thus | = (2-{)(a+bi) Sdat2bi-aitb = 2a+b +(-at2b)i For a.be

Butr this (mplies that [ 2a+b <l ] =y d=2b and 2[2b)t+b=l
-at+2b =0 be % yl
]

Oniradidimy,.
So the ring R is essenﬁal!y the same as the field 2.

EXM‘ Let \Rr"J denote dhe '5"{9 of polynomials with real wefficien ts and let <x*+1>
denote the principal iden) Yenerated by x4

K1> 2§ FO0 (xtr) < £09 eRIx ]

Then  R[x]/extti> = F4UA F X172 900 eR[X]]
*faxrb +<xX2H1> ¢ o bele
To see that this Jast equalily is tree motethat i () i¢ an g member of
R{x], then we may write g() in the form
9(,{) = if(f)(&z ) ‘l‘\[é:)'
Guotent Temainder  upon dviding 9(x by x*H

In pataar, vxy=0 o7 the degree of roo I less than 2 9 that rexy=ax+b
for some a,belR .

Thos 969+ <X*H2 = g0 [xX*H) +10) + <x>+1>

= Y(X) +<x*H >



How is the muiplication done?
Since X H+<X*)> =0+ <X*41>  one should Think of x#) og o

3

-
L any 100 elements of RYK] /<X-1)
So for example : ()( 13 t <)(‘-|-(>)°(2xr5 +<x‘+|>)
2T +5x% +6 x 115 +<X+1>

= 22X+ %XHS + <X H1)

=2(-) + hx +1S +<XHID
p

Using x*z 4

]

= x+13+ LT H1>

CHAPTER 17: PoLYNOMIALS

I'm sure you are already familiar with poYyNomials. If you are given oo pojynomials
€.9. Ppix)=Xx3>-3xt2
9(x\ = Ix2-6xt5
then it's dear what pox) +9(x) and pr0q(x) mean. We just add and MuHiply
p0\3nomials as functions:
(p+9)x) = pOA +Gix)
= X3+ 3x* -qx+3
ad (P9I =p0x) qLx)
=(x3~ 3% +2) (3x*-6x+95)
= 3x3 -6x% 4> + 244 -2 x+10

It's nob supising pechaps that polynomials fam a ¥ing

This bai ngs us to the next section of the textbook.
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Sedion -1 Pory nomial vings

In this secion we'l|astu me that R is @ wmmutatve ring with identiiy

Definitions:

~ Any eaptession of the Jform  frxy = 2 a; X' =A.ta, X ta; X . .. rap X"
(%o

where a;€IR and qF0 is a polynomial over IR wHh ndetermingte x

~ The elements a,,Q,, -+, 4n are (afied the @efficients ot £.
- a, = leading coeff.

— A polynomial is Galled monic € the leading coeff . is 1

— IF n s The largest nonnegative number for which an to we say thal the degreg
of fismn, deg(f)=n.

# The set of all polynomicks With weffidents in a ving R are denoted by IR[x]






