Math UA 262 Section 1 SPRING 2023

First-order differential equations
Section 1.1 : Introduction
A differential equation is a relationship between a function of time and its derivatives.

$$
\text { Examples. } \begin{array}{rlr}
\frac{d y}{d t}=\cos (t)+3 y & & \text { first-order diff. eqn. } \\
& \frac{d^{2} y}{d t^{2}}=e^{-y}+t^{2}+\frac{d y}{d t} & \\
\text { second-order diff. eqn. }
\end{array}
$$

The order of a differential equation is the order of the highest derivative of the function y that appears in the equation.

A solution of a differential equation is a continuous function $y(t)$ which together with its derivatives satisfies the relationship.
e.g. Show that $y(t)=2 \operatorname{sint}-\frac{1}{3} \cos 2 t$ is a solution to the equation

$$
\text { LHS }=: \frac{d^{2} y}{d t^{2}}+y=\cos 2 t .:=\text { RUS }
$$

Show that LHS $=$ RUS

$$
\begin{aligned}
\frac{d y}{d t} & =2 \cos t+\frac{2}{3} \sin 2 t \\
\frac{d^{2} y}{d t^{2}} & =-2 \sin t+\frac{4}{3} \cos 2 t \\
\text { LHS } & =-2 \sin t+\frac{4}{3} \cos 2 t+\left(2 \sin t-\frac{1}{3} \cos 2 t\right) \\
& =\cos 2 t \\
& =\text { RHS }
\end{aligned}
$$

Thus $y(t)=2 \sin t-\frac{1}{3} \cos 2 t$ is a solution to the given diff. eq μ.
Section 1.2: First-order linear differential equations

Assume that our equation can be written as

$$
\frac{d y}{d t}=f(t, y)
$$

\leftarrow Given $f(t, y)$, find all functions $y(t)$ that satisfy this diff.eqn.

Def ${ }^{n}$: The general first-order linear differential equation is

$$
\frac{d y}{d t}+a(t) y=b(t)
$$

This is linear become the dependent variable y appears by itself.
(That is, no terms like e^{-y}, y^{2}, cos y, etc in the equation)

$$
\begin{aligned}
& \text { ecg. } \frac{d y}{d t}=y^{2}+\sin t+2 \text { (nonlinear because of } y^{2} \text {) } \\
& \frac{d y}{d t}=\cos (t) y+3 \quad \text { (linear) } \\
& \frac{d y}{d t}=\cos y+t \quad \text { (non linear because of } \cos y \text {). }
\end{aligned}
$$

Def The equation

$$
\frac{d y}{d t}+a(t) y=0
$$

(so with $b(t)=0$ from above) is called a homogeneous first-order linear differential equation, whereas when $b(t) \neq 0$ from above, it is called the nonhomogeneous first-order linear differential equation.
ex. Solve $\frac{d y}{d t}+a(t) y=0$
Use separation of variables:

$$
\begin{aligned}
\frac{d y}{d t} & =-a(t) y \\
\int \frac{d y}{y} & =\int-a(t) d t \\
\ln |y| & =-\int a(t) d t+C \text { ©finiggration }
\end{aligned}
$$

Now taking exponentials of both sides.

$$
\begin{aligned}
& |y|=e^{-\int a(t) d t+C}=e^{-\int a(t) d t} e^{C} e^{\text {some constant, } l \text { call } 1 t A} \\
& |y|=A e^{-\int a(t) d t} \\
& \left|y e^{\int a(t) d t}\right|=A
\end{aligned}
$$

$$
\Rightarrow \quad|y|=A e
$$

Notice that we have a continuous function of time on the LHS, ie. $\quad y(t) e^{\int a(t) d t}$ but on the RHS we have a constant.
But if the absolute value of a continuous function $g(t)$ is constant then g itself must be constant. Why?

If g is not a constant there exist two different times t_{1} and t_{2} for which $g\left(t_{1}\right)=c$ and $g\left(t_{2}\right)=-c$. By the IVT g must achieve all values between $-c$ and tc which is impossible if $\mid g(t))=c$.
\Rightarrow We get the equation $y(t)=A e^{-\int a(t) d t}$

This is the general solution of the homogeneous equation.
The constant A is arbitrary. Thus, $\frac{d y}{d t}+a(t) y=0$ has infinitely many solutions; for each value of A we obtain a distinct solution $y(t)$.
e.g. Find the general solution to $\frac{d y}{d t}+3 t y=0$

Here $a(t)=3 t$ and the general solution is
$y(t)=A e^{-\int a(t) d t}$
Thus $y(t)=A e^{-\int 3 t d t}=A e^{-3 t^{2} / 2}$
e.g. Determine the behavior as $t \rightarrow \infty$ of all solutions of the equation

$$
\frac{d y}{d t}+a y=0, a \text { const. }
$$

The general solution is

$$
y(t)=A e^{-\int a(t) d t}=A e^{-a t}
$$

So if $a<0 \Rightarrow$ as $t \rightarrow \infty, y(t) \rightarrow \infty \quad$ (with the exception of $y=0$)
if $a>0 \Rightarrow$ as $t \rightarrow \infty, y(t) \rightarrow 0$
Usually, we look for a SPECIFIC Solution $y(t)$ which at some initial time to has the value yo. I.e.

Solve

$$
\frac{d y}{d t}+a(t) y=0, y\left(t_{0}\right)=y_{0}
$$

This is cooled an initial -value problem.

$$
\begin{aligned}
& \frac{d y}{d t}=-a(t) y \\
& \frac{d y}{y}=-a(t) d t
\end{aligned}
$$

Now integrate both sides between t_{0} and t.

$$
\begin{aligned}
& \int_{t_{0}}^{t} \frac{d y}{y}=-\int_{t_{0}}^{t} a(s) d s \\
& {[\ln |y|]_{t_{0}}^{t}=-\int_{t_{0}}^{t} a(s) d s} \\
& \underbrace{\ln |y(t)|-\ln \left|y\left(t_{0}\right)\right|}_{\ln \left|\frac{y(t)}{y\left(t_{0}\right)}\right|}=-\int_{t_{0}}^{t} a(s) d s
\end{aligned}
$$

Taking exponentials on both sides yields

$$
\begin{aligned}
& \left|\frac{y(t)}{y\left(t_{0}\right)}\right|=e^{-\int_{t_{0}}^{t} a(s) d s} \\
& \left|\frac{y(t)}{y\left(t_{0}\right)} e^{\int_{t_{0}}^{t} a(s) d s}\right|=1
\end{aligned}
$$

Q : How do we decade whether it's identically 1 or -1 ? A let's evaluate at $t=t_{0}$:

$$
\frac{y\left(t_{0}\right)}{y\left(t_{0}\right)} e \underbrace{\int_{0}^{t_{0}} a(s) d s}_{0}=1 \cdot e^{0}=1
$$

Hence $\quad \frac{y(t)}{y\left(t_{0}\right)} e^{\int_{t_{0}}^{t} a(s) d s}=1$

$$
\begin{aligned}
& \Rightarrow \quad y(t)=y\left(t_{0}\right) e^{-\int_{t_{0}}^{t} a(s) d s} \\
& \left.t_{0}\right)=y_{0} \text { and so we get } y(t)=y_{0} e^{-\int_{t_{0}}^{t} a(s) d s}
\end{aligned}
$$

Example: Solve the IVP:

$$
\frac{d y}{d t}+(\cos t) y=0 \quad \text { with } y(0)=\frac{3}{2}
$$

Solution is
$y(t)=y_{0} e^{-\int_{t_{0}}^{t} a(s) d s}=\frac{3}{2} e^{-\int_{t_{0}}^{t} \cos (s) d s}=\frac{3}{2} e^{-\sin (t)+\sin \left(t_{0}\right)}$
since $t_{0}=0$

$$
\Rightarrow y(t)=\frac{3}{2} e^{-\sin (t)}
$$

Method of integrating factor
Now back to nonhomogeneous equations...

$$
\frac{d y}{d t}+a(t) y=b(t)
$$

Think of expressing it as $\frac{d}{d t}(t)=b(t)$ and then integ rating both sides to get the solution.

So we need to ask: What should (x) be such that its derivative 7 w.r.t. t gives the LHS $\frac{d y}{d t}+a(t) y$?

Start with:

$$
\frac{d y}{d t}+a(t) y=b(t)
$$

Multiply both sides by a

$$
\mu(t) \frac{d y}{d t}+\mu(t) a(t) y=\mu(t) b(t)
$$ cts $f(n \mu(t)$:

We will choose $\mu(t)$ so that $\mu(t) \frac{d y}{d t}+\mu(t) a(t) y$ will be the derivative of $\mu(t) y$ iff $\frac{d \mu(t)}{d t}=a(t) \mu(t)$

$$
\frac{d}{d t}(\mu(t) y)=\frac{d \mu(t)}{d t} y+\mu(t) \frac{d y}{d t}
$$

comparing this to

$$
\mu(t) \frac{d y}{d t}+\mu(t) a(t) y w e
$$

have that $\frac{d \mu(t)}{d t}=\mu(t) a(t)$.

But $\frac{d \mu}{d t}=\mu(t) a(t)$ is a first-order, linear homogeneous equation for $\mu(t) \quad\left(\frac{d \mu}{d t}-a(t) \mu=0\right)$ and we know how to solve it. I.e.

$$
\mu(t)=e^{\int \alpha(t) d t}
$$

So with this felt) we have

$$
\begin{aligned}
& \mu(t) \frac{d y}{d t}+\mu(t) a(t) y=\mu(t) b(t) \\
& \frac{d}{d t}(\mu(t) y)=\mu(t) b(t)
\end{aligned}
$$

and now integrate this:

$$
\mu(t) y=\int \mu(t) b(t) d t+c
$$

Equivalently, this is

$$
\begin{align*}
y & =\frac{1}{\mu(t)}\left(\int \mu(t) b(t) d t+c\right) \\
& =\frac{1}{e^{\int a(t) d t}}\left(\int \mu(t) b(t) d t+c\right) \\
& =e^{-\int a(t) d t}\left[\int \mu(t) b(t) d t+c\right) \tag{*}
\end{align*}
$$

With an initial condition, we would integrate from to to t to get

$$
\begin{aligned}
& \mu(t) y-\mu\left(t_{0}\right) y_{0}=\int_{t_{0}}^{t} \mu(s) b(s) d s \\
\Rightarrow & y=\frac{1}{\mu(t)}\left[\mu\left(t_{0}\right) y_{0}+\int_{t_{0}}^{t} \mu(s) b(s) d s\right] \quad(* *)
\end{aligned}
$$

Note. Do not memorize ($*$) and (**). Instead, solve all nonhomogeneous equations by:
(1) Multiplying both sides by $\mu(t)$.
(2) Writing the new LHS as the derivative of $\mu(t) y(t)$
(3) Integrating both sides of the equation.

Examples. Find the general solution of $\frac{d y}{d t}-2 t y=t$

$$
\begin{aligned}
& \text { Here } a(t)=-2 t . \\
& \text { Integrating factor }(I . F .): \mu(t)=e^{\int a(t) d t}=e^{\int-2 t d t}=e^{-t^{2}}
\end{aligned}
$$

Multiply both sides of $\frac{d y}{d t}-2 t y=t$ by I.F.

$$
\Rightarrow \underbrace{\frac{d}{d t}\left(e^{-t^{2}} y\right)=e^{-t^{2}} t}
$$

Now integrate both sides w.r.t. t :

$$
\begin{aligned}
& e^{-t^{2}} y=\int e^{-t^{2}} t d t \\
& e^{-t^{2}} y=-\frac{1}{2} e^{-t^{2}}+c \\
& y=e^{t^{2}}\left[-\frac{1}{2} e^{-t^{2}}+c\right] \\
& y=-\frac{1}{2}+c e^{t^{2}}
\end{aligned}
$$

Example Find the solution to the I.V.P.

$$
\begin{aligned}
& \quad \frac{d y}{d t}+2 t y=t, y(1)=2 \\
& \text { I. F. } \quad \mu(t)=e^{\int 2 t d t}=e^{t^{2}}
\end{aligned}
$$

Multiply both sides by $e^{t^{2}}$:

$$
\begin{gathered}
e^{t^{2}} \frac{d y}{d t}+2 t e^{t^{2}} y=t e^{t^{2}} \\
\frac{d}{d t}\left(e^{t^{2}} y\right)=t e^{t^{2}}
\end{gathered}
$$

Integrate both sides w.r.t. t from to to t.

$$
\begin{aligned}
& e^{t^{2}} y-e^{t_{0}^{2}} y_{0}=\int_{t_{0}}^{t} s e^{s^{2}} d s \quad \text { where } t_{0}=1, y_{0}=2 \\
& e^{t^{2}} y-e^{1}(2)=\int_{1}^{t} s e^{s^{2}} d s \\
& e^{t^{2}} y-2 e=\left[\frac{1}{2} e^{s^{2}}\right]_{1}^{t} \\
& e^{t^{2}} y-2 e=\frac{1}{2} e^{t^{2}}-\frac{1}{2} e \\
& y=e^{-t^{2}}\left[\frac{1}{2} e^{t^{2}}-\frac{1}{2} e+2 e\right] \\
& y=\frac{1}{2}+\frac{3}{2} e^{-t^{2}+1}
\end{aligned}
$$

Section 1.4: Separable equations
We have already used this in Sec. 1.2 but let's look at the general method:
Solve the general differential equation

$$
\frac{d y}{d t}=\frac{g(t)}{f(y)}
$$

Where f and g are continuous functions of y and t.
Any equation which can be put into this form, is said to be separable.
Multiply both sides by $f(y)$:

$$
\begin{aligned}
& f(y) \frac{d y}{d t}=g(t) \\
& \frac{d}{d t}(F(y(t)))=g(t)
\end{aligned}
$$

where $F(y)$ is an antiderivative of $f(y), F(y)=\int f(y) d y$.
Upon integration w.r.t. t we get:

$$
F(y(t))=\int g(t) d t+C
$$

Then solve this for $y(t)$ to find the general solution.
Example. Find the general solution of $\frac{d y}{d t}=\frac{t^{2}}{y^{2}}$.

$$
y^{2} \frac{d y}{d t}=t^{2}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{y^{3}}{3}\right)=t^{2} \\
& \frac{y^{3}}{3}=\int t^{2} d t+c \\
& \frac{y^{3}}{3}=\frac{t^{3}}{3}+c \\
& y=\left[t^{3}+3 c\right]^{1 / 3}
\end{aligned}
$$

Example. Solve the I.v.P.

$$
e^{y} \frac{d y}{d t}-\left(t+t^{3}\right)=0, y(1)=1
$$

Rearrange into the form $\frac{d y}{d t}=\frac{g(t)}{f(y)}$.

$$
\begin{gathered}
e^{y} \frac{d y}{d t}=t+t^{3} \\
\frac{d}{d t}\left(e^{y(t)}\right)=t+t^{3} \\
e^{y}=\int\left(t+t^{3}\right) d t \\
e^{y}=\frac{t^{2}}{2}+\frac{t^{4}}{4}+c
\end{gathered}
$$

Now since $y(1)=1$ we can determine the constant of integration C

$$
e^{\prime}=\frac{1}{2}+\frac{1}{4}+c \Rightarrow e=\frac{3}{4}+c \Rightarrow c=e-\frac{3}{4}
$$

$$
\begin{aligned}
& e^{y}=\frac{t^{2}}{2}+\frac{t^{4}}{4}+e-\frac{3}{4} \\
& y=\ln \left|\frac{t^{2}}{2}+\frac{t^{4}}{4}+e-\frac{3}{4}\right|
\end{aligned}
$$

Example Solve the I.V.P. $\frac{d y}{d t}=(1+y) t, y(0)=-1$

$$
\frac{1}{1+y} \frac{d y}{d t}=t
$$

It's dear from this that if we plug in the initial condition $y(0)=-1$ we will be dividing by 0 .

But, we can see that $y(t)=-1$ is a solution of this I.v.P.
Check that it's a solution:

$$
\begin{aligned}
& \text { LHS }=\frac{d y}{d t}=\frac{d}{d t}(-1)=0 \\
& \text { RHS }=(1+y) t=(1+(-1)) t=0 \\
\Rightarrow & \text { HS }=\text { RH } \\
\therefore \quad & y(t)=-1 \text { is a solution. }
\end{aligned}
$$

Later in the class we will show that it's the only solution.

Section 1.9 Exact equations, and why we cannot solve very many differential equations

Generally, we can solve all differential equations of the form

$$
\frac{d}{d t} \phi(t, y)=0
$$

for some $\phi(t, y)$. To solve this we integrate both sides w.r.t. t to obtain

$$
\phi(t, y)=\text { constant }
$$

Then, if possible, solve for y in terms of t.
Example. Solve $\cos (t+y)+[1+\cos (t+y)] \frac{d y}{d t}=0$

$$
\begin{gathered}
\Rightarrow \frac{d}{d t}[y+\sin (t+y)]=0 \\
\text { Verification: } \frac{d y}{d t}+\underbrace{\cos (t+y) \cdot 1+\cos (t+y) \frac{d y}{d t}}_{\text {from } \frac{d}{d t}(\sin (t+y))}=0
\end{gathered}
$$

once diff. the t term \& then the y term

$$
\frac{d y}{d t}[1+\cos (t+y)]+\cos (t+y)=0
$$

Thus from $\frac{d}{d t}[y+\sin (t+y)]=0$ we see that the solution is

$$
y+\sin (t+y)=\text { cons. }
$$

But this ss an implicit equation in y that cannot be solved for y explicitly in time.
which equations wan be put into the form $\frac{d}{d t} \phi(t, y)=0$?
From the chain rule:

$$
\begin{aligned}
\frac{d}{d t} \phi(t, y(t)) & =\underbrace{\frac{\partial \phi}{\partial t}}+\frac{\partial \phi}{\partial y} \frac{d y}{d t} . \\
& =M(t, y)+N(t, y) \frac{d y}{d t}
\end{aligned}
$$

So a diff. eqn. can be written in the form $\frac{d}{d t} \phi(t, y)=0$ if and only if there exists a fan $\phi(t, y)$ s.t.

$$
M(t, y)=\frac{\partial \phi}{\partial t} \text { and } N(t, y)=\frac{\partial \phi}{\partial y} \text {. }
$$

Does such a function $\phi(1, y)$ exit?

Theorem: Let $M(t, y)$ and $N(t, y)$ be continuous + have continuous partial derivatives w.r.t. t and y in the rectangle R consisting of those points (t, y) with $a<t<b$ and $c<y<\alpha$. There exists a function $\phi(t, y)$ s.t. $M(t, y)=\frac{\partial \phi}{\partial t}$ and $N(t, y)=\frac{\partial \phi}{\partial y} \quad$ iff

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

in R.
Proof. $M(t, y)=\frac{\partial \phi}{\partial t}$ for some $\phi(t, y)$ iff $\phi(t, y)=\int M(t, y) d t+h(y)$
Taking partial derivatives on both sides of this w.r.t. y. we get

$$
\frac{\partial \phi}{\partial y}=\int \frac{\partial M}{\partial y}(t, y) d t+h^{\prime}(y)
$$

Thus, this can be equal to $N(t, y)$ iff

$$
\Rightarrow \quad \begin{aligned}
& N(t, y)=h^{\prime}(y)=\underbrace{\int \frac{\partial M}{\partial y}(t, y) d t+h^{\prime}(y)}_{\text {fans of } y \text { and } t} \\
& \text { only } y
\end{aligned}
$$

But this cannot be true which means that the RHS also has to be a function of y alone. le.

$$
\frac{\partial}{\partial t}\left[N(t, y)-\int \frac{\partial M}{\partial y}(t, y) d t\right]=\frac{\partial N}{\partial t}-\frac{\partial M}{\partial y}=0
$$

Therefore, if $\frac{\partial N}{\partial t} \neq \frac{\partial M}{\partial y}$ then there is no function $\phi(t, y)$ s.t. $M=\frac{\partial \phi}{\partial t}, N=\frac{\partial \phi}{\partial y}$. However, if $\frac{\partial N}{\partial t}=\frac{\partial M}{\partial y}$ then we lan solve for

$$
h(y)=\int\left[N(t, y)-\int \frac{\partial M}{\partial y}(t, y) d t\right] d y
$$

This implies that $M=\frac{\partial \phi}{\partial t}, N=\frac{\partial \phi}{\partial y}$ with

$$
\phi(t, y)=\int M(t, y) d t+\int\left[N(t, y)-\int \frac{\partial M(t, y)}{\partial y} d t\right] d y
$$

(Recall that $\frac{\partial \phi}{\partial y}=\int \frac{\partial M}{\partial y} d t+h^{\prime}(y) \Rightarrow \phi=\int M d t+h(y)$)
Definition. The diff. eqn. $M(t, y)+N(t, y) \frac{d y}{d t}=0$ is said to be exact if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$.

Practically how do we choose $\phi(t, y)$?
Method 1: The equation $M(t, y)=\frac{\partial \phi}{\partial t}$ determines $\phi(t, y)$ up to an arbitrary fen of y alone, ie.

$$
\phi(t, y)=\int M(t, y) d t+h(y)
$$

We then take the derivative of this w.r.t. the other variable, ie. y

$$
\begin{gathered}
\frac{\partial \phi}{\partial y}=\int \frac{\partial m}{\partial y} d t+h^{\prime}(y) \\
\Rightarrow \quad h^{\prime}(y)=\frac{\partial \phi}{\partial y}-\int \frac{\partial M}{\partial y} d t=N(t, y)-\int \frac{\partial M}{\partial y} d t
\end{gathered}
$$

which means that $h(y)$ can be determined from this equation

Method 2: If $N(t, y)=\frac{\partial \phi}{\partial y}$ then

$$
\phi(t, y)=\int N(t, y) d y+\underbrace{k(t)}
$$

arbitrary fan of t alone
Now differentiate w.r.t. the other variable.i.e. t

$$
\begin{aligned}
M=\frac{\partial \phi}{\partial t} & =\int \frac{\partial N}{\partial t} d y+k^{\prime}(t) \\
\Rightarrow \quad k^{\prime}(t) & =M(t, y)-\int \frac{\partial N(t, y)}{\partial t} d y
\end{aligned}
$$

(1)

Method 3: $\frac{\partial \phi}{\partial t}=M(t, y)$ and $\frac{\partial \phi}{\partial y}=N(t, y)$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
\phi(t, y)=\int M(t, y) d t+h(y) \\
\Rightarrow \\
\phi(t, y)=\int N(t, y) d y+k(t)
\end{array}\right] \text { Integrating (1) w.r.t. } t \\
& \text { Integrating (2) w.r.t. } y
\end{aligned}
$$

Then we conn usually determine $h(y)$ and $k(t)$ by inspection.

Example
Find the general solution to

$$
\underbrace{3 y+e^{t}}_{M(t, y)}+\underbrace{(3 t+\cos y)}_{N(t, y)} \frac{d y}{d t}=0
$$

This equation is exact if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$

$$
\frac{\partial M}{\partial y}=3 \text { and } \frac{\partial N}{\partial t}=3 \text { so this equation is exact. }
$$

Thus, there exist a ϕ s.t.

$$
M=\frac{\partial \phi}{\partial t} \text { and } N=\frac{\partial \phi}{\partial y}
$$

$$
\text { i.e. } \begin{aligned}
\frac{\partial \phi}{\partial t} & =3 y+e^{t} \\
\frac{\partial \phi}{\partial y} & =3 t+\cos y
\end{aligned}
$$

let's find $\phi(t, y)$ now...
Method 1:

$$
\begin{aligned}
\frac{\partial \phi}{\partial t}=3 y+e^{t} \Rightarrow \phi(t, y) & =\int\left(3 y+e^{t}\right) d t+h(y) \\
& =3 y t+e^{t}+h(y)
\end{aligned}
$$

Differentiate this wot y :

$$
\begin{aligned}
& \left.\frac{\partial \phi}{\partial y}=3 t+h^{\prime}(y)=3 t+\cos y \text { (from def n of } N\right) \\
\Rightarrow & h^{\prime}(y)=\cos (y) \\
& h(y)=\sin (y)
\end{aligned}
$$

Thus, $\phi(t, y)=3 y t+e^{t}+\sin y$.

Method $2 \quad \frac{\partial \phi}{\partial y}=3 t+\cos y$. Integrate wat y to get

$$
\phi(t, y)=3 t y+\sin y+k(t)
$$

Differentiate wat $t: \frac{\partial \phi}{\partial t}=3 y+k^{\prime}(t)=3 y+e^{t} \quad(=m)$
Thus $k^{\prime}(t)=e^{t} \Rightarrow k(t)=e^{t}$
So we have $\phi(t, y)=3 t y+\sin y+e^{t}$
(which is the same as the answer from Method 1).

Method 3 :

$$
\begin{aligned}
& \phi(t, y)=e^{t}+3 t y+h(y) \\
& \phi(t, y)=3 t y+\sin y+k(t)
\end{aligned}
$$

Now comparing this two it's clear that $h(y)=\sin y$ and $k(t)=e^{t}$ Hence, again. $\phi(t, y)=e^{t}+3 t y+\sin y$.

Example. Find the solution of the IVP

$$
4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t+\left(t^{4} e^{t+y}+2 y\right) \frac{d y}{d t}=0, \quad y(0)=1
$$

Verify that this is an exact equation
ls $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$?

$$
\begin{aligned}
& m=4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t \\
& N=t^{4} e^{t+y}+2 y
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{\partial m}{\partial y}=4 t^{3} e^{t+y}+t^{4} e^{t+y} \\
\frac{\partial N}{\partial t}=4 t^{3} e^{t+y}+t^{4} e^{t+y}
\end{array}\right\} \frac{\partial M}{\partial y}=\frac{\partial N}{\partial t} \Rightarrow \text { exact }
$$

Now integrate either $N=\frac{\partial \phi}{\partial y}$ writ y or $M=\frac{\partial \phi}{\partial t}$ wot t :
Integrating $N=\frac{\partial \phi}{\partial y}$ wot y is easier:

$$
\begin{aligned}
\phi=\int N d y & =\int\left(t^{4} e^{t+y}+2 y\right) d y \\
& =t^{4} e^{t+y}+y^{2}+k(t)
\end{aligned}
$$

Now differentiate this wit t :

$$
\frac{\partial \phi}{\partial t}=4 t^{3} e^{t+y}+t^{4} e^{t+y}+k^{\prime}(t)=m=4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t
$$

So comparing the two we see that $k^{\prime}(t)=2 t \Rightarrow k(t)=t^{2}$
Thus the general solution is $\phi=t^{4} e^{t+y}+y^{2}+t^{2}=c \quad \begin{gathered}\text { since } \phi=c \\ \text { is the sol }\end{gathered}$) is the sol)
Now using the initial condition $y(0)=1$ we have

$$
\begin{array}{r}
0+1^{2}+0^{2}=c \\
c=1 \\
\Rightarrow \quad t^{4} e^{t+y}+y^{2}+t^{2}=1
\end{array}
$$

Suppose that the equation now is not exact. Can we make it exact? Yes, using a similar procedure to the integrating factor from before.

$$
\text { I.F. } \mu(t)=e^{\int R(t) d t} \text { where } R(t)=\frac{1}{\lambda}\left(\frac{\partial m}{\partial y}-\frac{\partial N}{\partial t}\right)
$$

Example. Find the general solution of

$$
\begin{gathered}
\frac{y^{2}}{2}+2 y e^{t}+\left(y+e^{t}\right) \frac{d y}{d t}=0 \\
M=\frac{y^{2}}{2}+2 y e^{t}=\frac{\partial \phi}{\partial t} \\
N=y+e^{t}=\frac{\partial \phi}{\partial y}
\end{gathered} \quad \frac{\partial M}{\partial y}=y+2 e^{t}, \quad \begin{aligned}
& \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t} \\
& \therefore \text { Not exact }
\end{aligned}
$$

So weill now find the integrating factor:

$$
\begin{aligned}
R(t)=\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) & =\frac{1}{y+e^{t}}\left(y+2 e^{t}-e^{t}\right) \\
& =\frac{y+e^{t}}{y+e^{t}} \\
& =1
\end{aligned}
$$

So the I.F. is $e^{\int R(t) d t}=e^{t}$ and we multiply the diff. eqn. to obtain the exact form of the eqn

$$
e^{t} \frac{y^{2}}{2}+2 y e^{2 t}+\left(e^{t} y+e^{2 t}\right) \frac{d y}{d t}=0
$$

Check that it's exact now:

$$
\begin{gathered}
\frac{\partial M}{\partial y}=e^{t} y+2 e^{2 t} v \\
\frac{\partial N}{\partial t}=e^{t} y+2 e^{2 t} \sqrt{ } \\
\phi=\int m d t=e^{t y^{2}}+y e^{2 t}+h(y) \\
\frac{\partial \phi}{\partial y}=e^{t} y+e^{2 t}+h^{\prime}(y)=N=e^{t} y+e^{2 t} \Rightarrow h^{\prime}(y)=0 \Rightarrow h(y)=k
\end{gathered}
$$

$$
\phi=e^{t} \frac{y^{2}}{1}+y e^{2 t}=c \quad \text { (quadratic eq for } y \text {) } \quad 2
$$

Thus the solution is

$$
\begin{aligned}
y(t) & =\frac{-e^{2 t} \pm \sqrt{\left(e^{2 t}\right)^{2}-4^{2}\left(\frac{e^{t}}{2}\right)(-c)}}{\not 2\left(e^{t} / \not 2\right)} \\
& =e^{t} \pm \frac{\sqrt{e^{4 t}+2 c e^{t}}}{e^{t}} \\
& =e^{t} \pm \frac{\sqrt{e^{2 t}\left(e^{2 t}+2 c e^{-t}\right)}}{e^{t}} \\
& =e^{t} \pm \sqrt{e^{2 t}+2 c e^{-t}}
\end{aligned}
$$

Section 1.10 : The existence-uniqueness theorem; Picard iteration

Consider the IUP $\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}$.
Q (I) Does this IVP have soluHons?
(2) How many solutions?

ALGORITHM FOR PROVING EXISTENCE OF A SOLUTION $y(t)$
(a) Construct a sequence of functions $y_{n}(t)$ which come closer and closer to solving the IVP.
\rightarrow (b) Show that the sequence of functions $y_{n}(t)$ has a limit $y(t)$ on a suitable interval $t_{0} \leqslant t \leqslant t_{0}+\alpha$
$\rightarrow(c)$ Prove that $y(t)$ is a solution of the IVP on this interval.
(a) Write the IVP as $y(t)=L(t, y(t))$ where L may depend explicitly on y and on integrals of functions of y.

$$
y^{\prime}=f(t, y)
$$

Now we can integrate this writ t :

$$
\int_{t_{0}}^{t} \frac{d y}{d s} d s=\int_{t_{0}}^{t} f(s, y(s)) d s
$$

$$
\Rightarrow y(t)-y\left(t_{y_{0}}\right)=\int_{t_{0}}^{t} f(s, y(s)) d s
$$

$$
\Rightarrow L(t, y(t))=y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s
$$

(t) Integral equation

Conversely, if $y(t)$ is continuous and satisfies this then $\frac{d y}{d t}=f(t, y(t))$

Scheme for constructing a sequence of approximate solutions $y_{n}(t)$.
Our guess for $y_{0}(t)=y_{0}$. $\overline{T 0}$ check if $y_{0}(t)$ is a solution of (t) we compute

$$
y_{1}(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, y_{0}(s)\right) d s
$$

If $y_{1}(t)=y_{0}$, then $y(t)=y_{0}$ is indeed a solution of $(*)$
If not, then we ting $y_{1}(t)$ as our next guess. To check if that is a solution of ($*$) we compute

$$
y_{2}(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, y_{1}(s)\right) d s
$$

Thus, we define a sequence of functions $y_{1}(t), y_{2}(t), \ldots$ where

$$
\underset{\uparrow}{y_{n+1}}(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) d s
$$

successive approximations/
Picard iterates
These Picard iterates always converge on a suitable interval to a solution $y(t)$ of $(*)$

Example. Compute the Picard iterates for the IVP

$$
y^{\prime}=y, y(0)=1 \quad y^{\prime}=f(t, y)
$$

and show that they converge to the solution $y(t)=e^{t}$. for this example $f=y$ the right.

$$
\begin{aligned}
y=L(t, y(t)) \text { where } L(t, y(t)) & =y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s \\
y_{1}(t) & =1+\int_{0}^{t} y_{0} d s \\
& =1+\int_{0}^{t} 1 d s \\
& =1+t
\end{aligned}
$$ hand side

$$
\begin{aligned}
y_{2}(t) & =1+\int_{0}^{t} y_{1}(s) d s \\
& =1+\int_{0}^{t}(1+s) d s \\
& =1+\left[s+\frac{s^{2}}{2}\right]_{0}^{t} \\
& =1+t+\frac{t^{2}}{2!}
\end{aligned}
$$

and in general

$$
\begin{aligned}
y_{n}(t) & =1+\int_{0}^{t} y_{n-1}(s) d s \\
& =1+\int_{0}^{t}\left[1+s+\cdots+\frac{s^{n-1}}{(n-1)!}\right] d s \\
& =1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!} \quad \text { Taylor renes expansion of } e^{t} .
\end{aligned}
$$

Since $e^{t}=1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!}$, the Picard iterates $y_{n}(t)$ converge to the Solution $y(t)$ of this IVP.
HW DD ie date Feb 6 (Monday) at $11: 59$ pm on Gradescope.
Example Compute the Picard iterates $y_{1}(t) y_{2}(t)$ for the IVP

$$
\begin{array}{rlrl}
y^{\prime} & =1+y^{3}, y(1)=1 \\
y(t) & =y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s \\
(2 s-1)(2 s-1)^{2} \\
=(2 s-1)\left(4 s^{2}-4 s+1\right) \\
& =8 s^{3}-8 s^{2}+2 s & y_{1}(t) & =1+\int_{1}^{t}\left(1+1^{3}\right) d s=1+2 t-2=2 t-1 \\
-4 s^{2}+4 s-1 & y_{2}(t) & =1+\int_{1}^{t}\left(1+(2 s-1)^{3}\right) d s \\
& =8 s^{3}-12 s^{2}+6 s-1 & & \\
& & =1+\int_{1}^{t}\left(148 s^{3}-12 s^{2}+6 s-1\right) d s \\
& \left.=1+2 s^{4}-4 s^{3}+3 s^{2}\right]_{1}^{t} \\
& & =2 t^{4}-4 t^{3}+3 t^{2}+3 t^{2}-(2-4+3)
\end{array}
$$

Cb) Convergence of Picard iterates
The solutions may not exist for all time t. Thus the Picard iterates may not converge $\forall t$. We try to find an interval in which all the $y_{n}(t)$ are uniformly bounded (i.e. $\left|y_{n}(t)\right| \leqslant k$ for some constant k).

Lemma Choose any two positive numbers a and b. and let R be the rectangle $t_{0} \leqslant t \leqslant t_{0}+a,\left|y-y_{0}\right| \leqslant b$. Compute

$$
M=\max _{(t, y) \text { in } R}|f(t, y)| \quad \text { and set } \alpha=\min \left(a, \frac{b}{M}\right)
$$

Then

$$
\begin{aligned}
\left|y_{n}(t)-y_{0}\right| \leqslant m\left(t-t_{0}\right) \Rightarrow & -m\left(t-t_{0}\right) \leqslant y_{n}(t)-y_{0} \leqslant m\left(t-t_{0}\right) \\
& y_{0}-m\left(t-t_{0}\right) \leqslant y_{n}(t) \leqslant y_{0}+m\left(t-t_{0}\right)
\end{aligned}
$$

for $t_{0} \leq t \leq t_{0}+\alpha$.

Proof We use induction on n
Observe that $\left|y_{n}(t)-y_{0}\right| \leq m\left(t-t_{0}\right)$ is true for $n=0$ since

$$
\left|y_{0}(t)-y_{0}\right|=\left|y_{0}-y_{0}\right|=0 \leqslant m\left(t-t_{0}\right)
$$

Next, we must show that $\left|y_{n}(t)-y_{0}\right| \leqslant M\left(t-t_{0}\right)$ is tree for $n=j+1$ if true for $n j$.

Assume true for $\left|y_{i}(t)-y_{0}\right| \leqslant M(t-t)$
For $n=j+1$

$$
\begin{aligned}
\left|y_{j+1}(t)-y_{0}\right| & =\underbrace{\mid y_{0}+\int_{t_{0}}^{t} f\left(s, y_{j}(s)\right) d s}_{t_{0}^{\prime \prime}}-\not y_{0} \mid \\
& =\left|\int_{t_{0}}^{t} f\left(s, y_{j}(s)\right) d s\right| \\
& \leqslant \int_{t_{0}}^{t}\left|f\left(s, y_{j}(s)\right)\right| d s
\end{aligned}
$$

$$
\begin{aligned}
& \text { since } \\
& M=\max |f(t, y)|
\end{aligned} \rightarrow \quad \leq M\left(t-t_{0}\right)
$$

$$
(t, y) \text { in } R
$$

for $t_{0} \leq t \leq t_{0}+\alpha$. Thus, $\left|y_{n}(t)-y_{0}\right| \leq M\left(t-t_{0}\right)$ is true for all n, by induction.

Next, we show that the Proord iterates $\left\{y_{n}(t)\right\}$ converge for each t in the interval $t_{0} \leq t \leq t_{0}+\alpha$, if $\frac{\partial f}{\partial y}$ exists and is continuous.
Write $y_{n}(t)$ as follows

$$
\begin{aligned}
y_{n}(t)= & y_{0}(t)+\left(y_{1}(t)-y_{0}(t)\right)+\left(y_{2}(t)-y_{1}(t)\right) \\
& +\cdots+\left(y_{n, 1}(t)-y_{\infty-2}(t)\right)+\left(y_{n}(t)-y_{n-1}(t)\right)
\end{aligned}
$$

So the iterates $\left\{y_{n}(t)\right\}$ are a partial sum for the series

$$
y_{0}(t)+\sum_{n=1}^{\infty}\left(y_{n}(t)-y_{n-1}(t)\right)
$$

Clearly $y_{n}(t)$ converges iff the in finite series

$$
\left[y_{1}(t)-y_{0}(t)\right]+\left[y_{2}(t)-y_{1}(t)\right]+\ldots+\left[y_{n}(t)-y_{n-1}(t)\right]
$$

converges. So we need to show that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|y_{n}(t)-y_{n-1}(t)\right|<\infty \\
&\left|y_{n}(t)-y_{n-1}(t)\right|=\left|y_{0}+\int_{t_{0}}^{t} f\left(s, y_{n-1}(s)\right) d s-y_{0}-\int_{t_{0}}^{t} f\left(s, y_{n-2}(s)\right) d s\right| \\
& \leqslant \int_{t_{0}}^{t}\left|f\left(s, y_{n-1}(s)\right)-f\left(s, y_{n-2}(s)\right)\right| d s \\
&=\int_{t_{0}}^{t}\left|\frac{\partial f}{\partial y}(s, \xi(s))\right|\left|y_{n-1}(s)-y_{n-2}(s)\right| d s
\end{aligned}
$$

where $\zeta(s)$ lies between $y_{n-1}(s)$ and $y_{n-2}(s)$. Note We have

$$
\begin{aligned}
& f\left(s, y_{1}\right)-f\left(s, y_{2}\right)=\int_{y_{2}}^{y_{1}} \frac{\partial f}{\partial y}(s, t) d t \text {, and so } \\
& \quad\left|f\left(s, y_{1}\right)-f\left(s, y_{2}\right)\right| \leq \int_{y_{2}}^{y_{1}}\left|\frac{\partial f}{\partial y}(s, t)\right| d t \leqslant\left|\frac{\partial f}{\partial y}(s, \xi(s))\right|\left|y_{1}-y_{2}\right| .
\end{aligned}
$$

It follows from the lemma that the points $(s, \xi(s))$ lie in the rectangle R for $S<t_{0}+\alpha$.

$$
\begin{aligned}
\Rightarrow\left|y_{n}(t)-y_{n-1}(t)\right| \leqslant & \stackrel{L}{\sim} \int_{t_{0}}^{t}\left|y_{n-1}(s)-y_{n-2}(s)\right| d s, t_{0} \leqslant t \leqslant t_{0}+\alpha \\
L & =\max ^{(t, y) \in R}\left|\frac{\partial f(t, y) \mid}{\partial y}\right|
\end{aligned}
$$

Setting $n=2$ gives

$$
\begin{aligned}
\left|y_{2}(t)-y_{1}(t)\right| & \leqslant L \int_{t_{0}}^{t}\left|y_{1}(s)-y_{0}(s)\right| d s \\
& \leqslant L \int_{t_{0}}^{t} M\left(s-t_{0}\right) d s \quad \text { by the lemma } \\
& =\frac{L m}{2}\left(s-t_{0}\right)^{2}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left|y_{3}(t)-y_{2}(t)\right| & \leq L \int_{t_{0}}^{t}\left|y_{2}(s)-y_{1}(s)\right| d s \\
& \leq L \int_{t_{0}}^{t} \frac{L m}{2}\left(s-t_{0}\right)^{2} d s \\
& =\frac{L^{2} m}{6}\left(t-t_{0}\right)^{3}
\end{aligned}
$$

Proceeding with induction, we have that

$$
\left|y_{n}(t)-y_{n-1}(t)\right| \leq \frac{L^{n-1} m\left(t-t_{0}\right)^{n}}{n!} \text { for } t_{0} \leq t \leq t_{0}+\alpha
$$

Therefore, for $t_{0} \leq t \leq t_{0}+\alpha$

$$
\begin{aligned}
&\left|y_{1}(t)-y_{0}(t)\right|+\left|y_{2}(t)-y_{1}(t)\right|+\ldots \leq m\left(t-t_{0}\right)+\frac{L m}{2}\left(t-t_{0}\right)^{2}+\frac{L^{2} m\left(t-t_{0}\right)^{3}+\ldots}{6} \\
&\left(\text { since } t \leq t_{0}+\alpha\right. \\
&\left.\Rightarrow t-t_{0} \leqslant \alpha\right) \leq m \alpha+\frac{L m \alpha^{2}}{2}+\frac{L^{2} m \alpha^{3}}{3!}+\cdots \\
&=\frac{m}{L}\left[L \alpha+\frac{L^{2} \alpha^{2}}{2!}+\frac{L^{3} \alpha^{3}}{3!}+\cdots\right] \\
&=\frac{m}{L}\left(e^{L \alpha}-1\right)<\infty
\end{aligned}
$$

So we managed to show that the Picard iterates $y_{n}(t)$ converge for each t in the interval $t_{0} \leqslant t \leqslant t_{0}+\alpha$. We denote the limit of the sequence $y_{n}(t)$ by $y(t)$.

Proof that $y(t)$ satisfies the INP $\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}$. and is cts.
The Picard iterates $y_{n}(t)$ are defined recursively through

$$
y_{n+1}(t)=y_{0}+\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) d s
$$

Taking limits of both sides we get

$$
y(t)=y_{0}+\underbrace{\lim _{n \rightarrow \infty} \int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) d s}
$$

we want to show that this equals $\int_{t_{0}}^{t} f(s, y \mid s) d s$
We must show that $\left|\int_{t}^{t} f(s, y(s)) d s-\int_{t_{0}}^{t} f(s, y(s)) d s\right|$ approaches zero as $n \rightarrow \infty$.

$$
\begin{aligned}
\left|\int_{t_{0}}^{t} f(s, y(s)) d s-\int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) d s\right| & \left.\leqslant \int_{t_{0}}^{t} \mid f(s, y(s))-f\left(s, y_{n}(s)\right)\right) d s \\
& \leqslant\left(L \int_{t_{0}}^{t}\left|y(s)-y_{n}(s)\right| d s\right.
\end{aligned}
$$

$$
L=\max _{(t, y) \in R}\left|\frac{\partial f(t, y)}{\partial y}\right| \text { as before }
$$

\rightarrow Estimate $\left|y(s)-y_{n}(s)\right|$

$$
y(s)-y_{n}(s)=\sum_{j=n+1}^{\infty}\left[y_{j}(s)-y_{j-1}(s)\right]
$$

since $y(s)=y_{0}+\sum_{j=1}^{\infty}\left[y_{j}(s)-y_{j-1}(s)\right]$ and $y_{n}(s)=y_{0}+\sum_{j=1}^{n}\left[y_{j}(s)-y_{j-1}(s)\right]$

$$
\begin{aligned}
\left|y(s)-y_{n}(s)\right| & =\left|\sum_{j=n+1}^{\infty}\left[y_{j}(s)-y_{j-1}(s)\right]\right| \\
& \leq \sum_{j=n+1}^{\infty}\left|y_{j}(s)-y_{j-1}(s)\right| \quad \text { and previously we showed } \\
& \left.\leq \sum_{j=n+1}^{\infty} \frac{L^{j-1} M}{j!}\left(s-t_{0}\right)^{j} \quad \right\rvert\, y_{n}(t)-y_{n-1}(t) \leq \frac{L^{n-1} M\left(t-t_{0}\right)^{n}}{n!} \\
& \leq \sum_{j=n+1}^{\infty} \frac{L^{j-1} M}{j^{j}} \alpha^{j} \quad \text { since } t \leq t_{0}+\alpha \Rightarrow t-t_{0} \leq \alpha . \\
& =\frac{M}{L} \sum_{j=n+1}^{\infty} \frac{(L \alpha)^{j}}{j!} \\
& \leq \frac{M}{L} \frac{(L \alpha)^{n+1}}{C n+1)!} \sum_{p=0}^{\infty} \frac{(L \alpha)^{p}}{p!}=e^{L \alpha} \\
& =\frac{M}{L} \frac{(L \alpha)^{n+1}}{(n+1)!} e^{L \alpha} \rightarrow 0 \text { as } n \rightarrow \infty \text { by ratio test }
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} \int_{t_{0}}^{t} f\left(s, y_{n}(s)\right) d s=\int_{t_{0}}^{t} f(s, y(s)) d s$ where $y(t)$ satisfies the integral equation $y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s$.

Recall this is what we wanted to show:
We must show that $\left|\int_{t}^{t} f(s, y(s)) d s-\int_{t_{0}}^{t} f(s, y(s)) d s\right|$ approaches Zero as $n \rightarrow \infty$.

Now we show that the limit $y(t)$ is continuous. lie we must show that for all $\varepsilon>0 \exists$ a $\delta>0$ s.t. $\quad|y(t+h)-y(t)|<\varepsilon$ if $|h|<\delta$.
We do NOT know $y(t)$ explicitly. So... we choose a large $N \in \mathbb{Z}$ and observe that

$$
\begin{aligned}
y(t+h)-y(t)= & {\left[y(t+h)-y_{N}(t+h)\right] } \\
& +\left[y_{N}(t+h)-y_{N}(t)\right] \\
& +\left[y_{N}(t)-y(t)\right]
\end{aligned}
$$

We choose the integer N large enough s.t.

$$
\frac{M}{L} \sum_{j=N+1}^{\infty} \frac{(L \alpha)^{j}}{j!}<\frac{\varepsilon}{3}
$$

Then from what we showed before, i.e. that

$$
\begin{equation*}
\left|y(s)-y_{n}(s)\right| \leqslant \frac{m}{L} \sum_{j=n+1}^{\infty} \frac{(L \alpha x)^{j}}{j!} \tag{t}
\end{equation*}
$$

we have that

$$
\begin{aligned}
& \text { We that } \begin{aligned}
|y(t+h)-y(t)| \leq & \left|y(t+h)-y_{N}(t+h)\right| \leftarrow \text { from (\%) this is }<\frac{\varepsilon}{3} \\
& +\left|y_{N}(t+h)-y_{N}(t)\right| \text { (t) } \\
& +\left|y_{N}(t)-y(t)\right| \leftarrow \text { from (p) this is }<\frac{\varepsilon}{3} \\
< & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
\end{aligned}
$$

for $|h|<\delta$.
Regarding (t), we construct $y_{N}(t)$ by N repeated integrations of continuous functions so it's itself continuous. This implies that we choose $\delta>0$ so small that $\quad\left|y_{N}(t+h)-y_{N}(t)\right|<\frac{\varepsilon}{3}$ for $|h|<\delta$.

Thus $y(t)$ is a continuous solution of the integral equation

$$
y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s
$$

and this finishes our proof that $y(t)$ satisfies the JUP.

We just proved the following theorem:
Theorem: Let f and $\frac{\partial f}{\partial y}$ be continuous in the rectangle $R: t_{0} \leqslant t \leqslant t_{0}+a$, $\left|y-y_{0}\right| \leqslant b$. Compute $m=\max _{(t, y) \in R}|f(t, y)|$ and set $\alpha=\min \left(a, \frac{b}{m}\right)$. Then $(t, y) \in R$ the IVP $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$ has at least one solution $y(t)$ on the interval $t_{0} \leq t \leq t_{0}+\alpha$.

Uniquess of solutions of $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$
Consider $\quad y^{\prime}=\sin (2 t) y^{\prime / 3}, y(0)=0$
Note that $y(t)=0$ is a solution.
If we ignore the I.C. $y(0)=0$ then the general solution is found using separation of variables

$$
\begin{aligned}
& \int y^{-1 / 3} d y=\int \sin (2 t) d t \\
& \frac{3}{2} y^{2 / 3}=-\frac{1}{2} \cos (2 t)+c
\end{aligned}
$$

So then if $y(0)=0$, we get $0=-\frac{1}{2}+c=c=\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \frac{3}{2} y^{2 / 3}=\frac{1}{2}-\frac{1}{2} \cos (2 t)=\sin ^{2}(2 t) \\
& \Rightarrow y^{2 / 3}=\frac{2}{3} \sin ^{2}(2 t) \\
& \Rightarrow y= \pm \sqrt{\frac{8}{27}} \sin ^{3} t
\end{aligned}
$$

So why are there multiple solutions to this NP? $y^{\prime}=\sin (2 t) y^{\prime / 3}$ But this RHS does not have a $\frac{\partial f}{\partial y}$ at $y=0$.
(Note $\left.\frac{\partial f}{\partial y}=\frac{1}{3} \sin (2 t) \frac{1}{y^{2 / 3}}\right)$
New theorem Let f and $\frac{\partial f}{\partial y}$ be continuous in $R: t_{0} \leqslant t \leqslant t_{0}+a,\left|y-y_{0}\right| \leqslant b$ Compu te $m=\max _{(t, y) \in R}|f(t, y)|$, and set $\alpha=\min \left(a, \frac{b}{m}\right)$. Then the IVP

$$
\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}
$$

has a unique solution $y(t)$ on the interval $t_{0} \leq t \leq t_{0}+\alpha$. I.e. if $y(t) \& z(t)$ are two solutions of the IVP then $y(t)=z(t)$ for $t_{0} \leqslant t \leqslant t_{0}+\alpha$.

Proof. By the previous theorem, there exists at least one solution $y(t)$.
Suppose $z(t)$ is a second solution. Then both satisfy

$$
\begin{aligned}
& y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s \\
& z(t)=y_{0}+\int_{t_{0}}^{t} f(s, z(s)) d s
\end{aligned}
$$

Now, if we subtract the two we get

$$
\begin{aligned}
&|y(t)-z(t)|=\left|y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s-y_{0}-\int_{t_{0}}^{t} f(s, z(s)) d s\right| \\
& \leq \int_{t_{0}}^{t}|f(s, y(s))-f(s, z(s))| d s \\
& \leq L \int_{\uparrow}^{t}|y(s)-z(s)| d s \\
& \max _{t_{0}}\left|\frac{\partial f}{\partial y}\right|
\end{aligned}
$$

$\Rightarrow y(t)=z(t)$. So the IVP has a unique solution $y(t)$.
Why is $|y(t)-z(t)| \leqslant L \int_{t_{0}}^{t}|y(s)-z(s)| d s$?
lemma let $\omega(t)$ be a non-negative function with

$$
\begin{equation*}
\omega(t) \leqslant L \int_{t_{0}}^{t_{t}} \omega(s) d s . \tag{t}
\end{equation*}
$$

Then $\omega(t)$ is identically zero.

Example. Show that the solution $y(t)$ of the IUP

$$
\frac{d y}{d t}=e^{-t^{2}}+y^{3}, y(0)=1
$$

exists for $0 \leqslant t \leqslant 1 / 9$, and in this interval, $0 \leqslant y \leqslant 2$.

$$
t_{0}=0 \text { and } a=\frac{1}{9}
$$

\rightarrow Let R be the rectangle $t_{0} \leqslant t \leqslant t_{0}+a$, in this case $0 \leqslant t \leqslant \frac{1}{9}$

$$
\begin{aligned}
& \left|y-y_{0}\right| \leq b \\
& |y-1| \leq b \Rightarrow-b+1 \leq y \leq b+1 \quad 0 \leq y \leq 2 \\
& (s 0 \quad b=1)
\end{aligned}
$$

Compute $\quad m=\max _{l t, y) \in R}|f(t, y)|=\max _{\substack{0 \leqslant t \leqslant \frac{1}{9} \\ 0 \leqslant y \leqslant 2}}\left|e^{-t^{2}}+y^{3}\right|=\left|e^{0}+2^{3}\right|=9$
we see that $y(t)$ exists for $0 \leq t \leq \min \left(\frac{1}{q}, \frac{1}{9}\right)$ and in this interval $0 \leq y \leq 2$.

$$
\begin{aligned}
& t_{0} \leq t \leq t_{0}+\alpha \\
& \text { where } \alpha=\min \left(a, \frac{b}{m}\right) \\
& \\
& =\min \left(\frac{1}{9}, \frac{1}{9}\right) \\
& \\
& =\frac{1}{9}
\end{aligned}
$$

Example Show that the solution $y(t)$ of the IVP

$$
\frac{d y}{d t}=t^{2}+e^{-y^{2}}, y(0)=0
$$

exists for $0 \leqslant t \leqslant \frac{1}{2}$ and in this interval $|y(t)| \leqslant 1$.
\rightarrow let R be the rectangle s.t. $t_{0} \leq t \leq t_{0}+a$ where $t_{0}=0$ and $a=\frac{1}{2}$

$$
\left|y-y_{0}\right| \leq b \Rightarrow|y-0| \leq b \Rightarrow b=1
$$

Compute $m=\max _{(t, y) \in R}|f(t, y)|=\max _{0 \leqslant t \leqslant \frac{1}{2}}\left|t^{2}+e^{-y^{2}}\right|=\left(\frac{1}{2}\right)^{2}+e^{0}$

$$
-1 \leq y \leqslant 1 \quad=\frac{1}{4}+1=\frac{5}{4}
$$

Thus we have $\alpha=\min \left(a, \frac{b}{m}\right)=\min \left(\frac{1}{2}, \frac{1}{(5 / 4)}\right)=\min \left(\frac{1}{2}, \frac{4}{5}\right)=\frac{1}{2}$
$\Rightarrow \quad t_{0} \leq t \leq t_{0}+\alpha$ is $0 \leq t \leq \frac{1}{2}$ and in this interval $|y(t)| \leq 1$.

Section 1.13 : Numerical approximations; Euler's method.
As we' ve already discussed, oftentimes it is not possible to write down an analytical solution to the IVP $\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}$.

In this section, weill learn numerical methods to compute accurate approximations of the solution $y(t)$.
We'll compute approximate values $y_{1}, \cdots y_{N}$ of $y(t)$ at a finite number of points $t_{1}, t_{2}, \ldots, t_{N}$.

The simplest approximation at some point $t>t_{0}$ is to use the Taylor series approximation:

$$
y(t) \approx y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)
$$

Using the information available, we have

$$
y(t) \approx y\left(t_{0}\right)+f\left(t_{0}, y_{0}\right) \cdot\left(t-t_{0}\right)
$$

If we look at to. $t_{1} \ldots$ and $t_{+1}-t_{l}=h$ then

$$
y\left(t_{1}\right) \approx y\left(t_{0}\right)+h f\left(t_{0}, y_{0}\right) \leqslant
$$

$$
\begin{aligned}
& \frac{d y}{d t} \approx \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{t_{1}-t_{0}} \\
&=h \\
&=f\left(t_{0}, y_{0}\right)
\end{aligned}
$$

To summarize: $y_{\ell} \approx y\left(t_{l}\right)$
Define $y_{l+1}=y_{l}+h f\left(t_{l}, y_{l}\right)$
approximation to $y^{\prime}\left(t_{l}\right)$ (since we donot know the true y_{l}).

Example $y^{\prime}(t)=1+(y-t)^{2}, \quad y\left(t_{0}\right)=y_{0}$
Explicit Euler: $y_{l+1}=y_{l}+h\left(1+\left(y_{l}-t_{l}\right)^{2}\right)$

Error analysis
Recall the Taylor Series:

$$
y(t)=y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\frac{y^{\prime \prime}\left(t_{0}\right)}{2!}\left(t-t_{0}\right)^{2}+\ldots
$$

Taylor's theorem says that if we truncate this, then

$$
y(t)=y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\frac{y^{\prime \prime}(\xi)}{2!}\left(t-t_{0}\right)^{2}
$$

$\uparrow \xi$ ls some number in the interval $\left[t_{0}, t\right]$.

To find the error in Euler's method we examine $\underbrace{y_{1+1}}_{\text {approx. }}-\underbrace{y\left(t_{l+1}\right)}_{\text {tree value }}$

Euler: $y_{l+1}=y_{l}+h f\left(t_{l}, y_{l}\right)$
Taylor: $y\left(t_{l+1}\right)=y\left(t_{l}\right)+y^{\prime}\left(t_{l}\right) h+\frac{y^{\prime \prime}\left(\xi_{l}\right) h^{2}}{2!}$

$$
\begin{equation*}
y_{l+1}-y\left(t_{l+1}\right)=y_{l}-y\left(t_{l}\right)+h\left[f\left(t_{l}, y_{l}\right)-y^{\prime}\left(t_{l}\right)\right]-\frac{y^{\prime \prime}\left(\xi_{l}\right)}{2!} h^{2} \tag{139}
\end{equation*}
$$

Note that $f\left(t_{l}, y_{l}\right)-f\left(t_{l}, y\left(t_{l}\right)\right)=\underbrace{\frac{f\left(t_{l}, y_{l}\right)-f\left(t_{l}, y\left(t_{l}\right)\right)}{y_{l}-y\left(t_{l}\right)}}_{\frac{\partial f}{\partial y}\left(t_{l}, \eta_{l}\right)}\left(y_{l}-y\left(t_{l}\right)\right)$
थ some η_{l}

$$
\Rightarrow\left|y_{l+1}-y\left(t_{l+1}\right)\right| \leqslant\left|y_{l}-y\left(t_{l}\right)\right|+h\left|\frac{\partial f}{\partial y}\left(t_{l,}, \eta_{l}\right)\right| \cdot\left|y_{l}-y\left(t_{l}\right)\right|+\frac{\left|y^{\prime \prime}\left(\xi_{l}\right)\right|}{2} h^{2}
$$

$\operatorname{Set} \epsilon_{l}=\left|y_{l}-y\left(t_{l}\right)\right| \leftarrow$ error

$$
\begin{aligned}
\Rightarrow \epsilon_{l+1} & \leq \epsilon_{l}+\left|\frac{\partial f}{\partial y}\left(t_{l}, \eta_{l}\right)\right| \epsilon_{l} h+\frac{\left|y^{\prime \prime}\left(\xi_{l}\right)\right| h^{2}}{2} \\
& =\left(1+h\left|\frac{\partial f}{\partial y}\left(t_{l}, \eta_{l}\right)\right|\right) \epsilon_{l}+\frac{\left|y^{\prime \prime}\left(\xi_{l}\right)\right| h^{2}}{2} \\
& \leq(1+h L) \epsilon_{l}+\frac{D_{2}}{2} h^{2}
\end{aligned}
$$

with $\quad L=\max \left|\frac{\partial f}{\partial y}\right|, \quad D=\max \left|y^{\prime \prime}\right|$ and note $y^{\prime \prime}=\frac{d}{d t} y^{\prime}=\frac{d}{d t} f(t, y)=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} f$.

To summarize:

$$
\epsilon_{l+1} \leqslant(1+h L) \epsilon_{l}+\frac{D}{2} h^{2} \text { for } l=0,1, \ldots, N-1
$$

Note that $\epsilon_{0}=0$ since $y\left(t_{0}\right)=y_{0}$. So if $\epsilon_{l+1} \leqslant A \epsilon_{l}+B, \epsilon_{0}=0$
with $A=1+h L$ and $B=\frac{D h^{2}}{2}$ then can we say anything about ϵ_{l} independent of ϵ_{l-1} ?

If $\epsilon_{k+1} \leqslant A \epsilon_{k}+B$, then we can show that

$$
\begin{aligned}
& G_{k} \leqslant \frac{B}{A-1}\left(A^{k}-1\right) \\
& \text { for how } \\
& \text { this follows } \\
& \text { see pages }=\frac{D}{2} h^{k} \frac{1}{1+h L \rightarrow r}\left((1+h L)^{k}-1\right) \\
& \text { 92-93 of } \\
& \text { your textbook }=\frac{D}{2 L} h(\underbrace{(1+h L)^{k}-1}_{\substack{\rightarrow 0 \\
\\
\text { as } h \rightarrow 0}})
\end{aligned}
$$

We can also obtain an estimate for ϵ_{k} that is independent of k. Note that $(1+h L) \leq e^{h L}$ since from the Taylor series expansion of the exponential function we have

$$
e^{h L}=1+h L+\frac{(h L)^{2}}{2!}+\frac{(h L)^{3}}{3!}+\cdots \geqslant 1+h L
$$

Therefore, $\epsilon_{k} \leq \frac{D}{2 L} h\left(\left(e^{h L}\right)^{k}-1\right)=\frac{D}{2 L} h\left(e^{h L k}-1\right)$
Since $h k \leq \alpha$, we have $G_{k} \leq \frac{D h}{2 L}\left(e^{\alpha L}-1\right)$ where α is the one from the existence and uniquess theorem.
\Rightarrow Euler's scheme is FIRST-ORDER CONVERGENT. I.e. If $h \rightarrow h / 2$ then

$$
\epsilon_{k} \rightarrow \epsilon_{k / 2}
$$

Example Consider $\frac{d y}{d t}=\frac{t^{2}+y^{2}}{2}, y(0)=0$
(1) Show that $y(t)$ exist at least for $0 \leqslant t \leqslant 1$ and that in this interval $-1 \leqslant y(t) \leqslant 1$

Let R be the rectangle $0 \leqslant t \leqslant 1,-1 \leqslant y \leqslant 1$.

$$
\begin{aligned}
& 0 \leq t \leqslant 1,-1 \leqslant y \leqslant 1 \\
& M=\max _{(t, y) \in R}|f(t, y)|=\max _{0 \leqslant t \leqslant 1}\left|\frac{t^{2}+y^{2}}{2}\right|=\frac{1+1}{2}=1 \\
& -1 \leqslant y \leqslant 1 \\
& \alpha=\min \left(a, \frac{b}{m}\right)=\min \left(1, \frac{1}{1}\right)=1
\end{aligned}
$$

Hence by the existence-and-uniqueness theorem, $y(t)$ exists at least for

$$
t_{0} \leq t \leq t_{0}+\alpha \Rightarrow \quad 0 \leq t \leq 1
$$ and in this interval $-1 \leqslant y \leqslant 1$.

(b) Let N be a large positive integer. Set up Euler's scheme to find approximate values of y at the points $t_{k}=k / N, k=0,1, \ldots, N$.

Euler's scheme:

$$
\begin{array}{rlr}
y_{k+1} & =y_{k}+h f\left(t_{k}, y_{k}\right) & \text { since } \frac{d y}{d t}=\frac{t^{2}+y^{2}}{2} \\
y_{k+1} & =y_{k}+h\left(\frac{\left.t_{k}^{2}+y_{k}^{2}\right)}{2}\right. & \\
& =y_{k}+\frac{1}{2 N}\left[\left(\frac{k}{N}\right)^{2}+y_{k}^{2}\right] & t_{k}^{2}=1
\end{array}
$$

with $k=0,1, \ldots, N-1$ and $y_{0}=0$.
since $y(0)=0$
(0) Determine the stepsize $h=\frac{1}{N}$ so that the error we make in approximating $y\left(t_{k}\right)$ by y_{k} does not exceed 10^{-4}.

In this example $f(t, y)=\frac{t^{2}+y^{2}}{2}$ and so $\frac{\partial f}{\partial y}=y, \frac{\partial f}{\partial t}=t$

Reval that $y^{\prime \prime}=\frac{d}{d t} y^{\prime}=\frac{d}{d t} f=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y}\left(\frac{d y}{d t}\right)^{=f}=\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y}=t+\left(\frac{t^{2}+y^{2}}{2}\right)^{42} y$
So we have $\left|y\left(t_{k}\right)-y_{k}\right| \leqslant \frac{D h}{2 L}\left(e^{L}\right)$ where

$$
\begin{aligned}
& L=\max \left|\frac{\partial f}{\partial y}\right|=1 \\
& D=\max \left|y^{\prime \prime}\right|=1+\frac{1+1}{2}=2
\end{aligned}
$$

Hence $\left|y\left(t_{k}\right)-y_{k}\right| \leqslant \frac{2 h}{2\left(t^{\prime}\right)}\left(e^{\prime}-1\right)=h(e-1) \leqslant 10^{-4}$
So the stepsize must be $h \leqslant \frac{10^{-4}}{e-1}$
Interpreted in terms of the exact solution:

$$
\text { IV P: } \quad y^{\prime}(t)=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Integrate both sides of the diff. eqn.

$$
\begin{aligned}
\Rightarrow \quad y(t) & =y_{0}+\int_{t_{0}}^{t} f(s, y) d s \\
& \approx y_{0}+\left(t-t_{0}\right) f\left(t_{0}, y\left(t_{0}\right)\right) \\
& =y_{0}+h f\left(t_{0}, y_{0}\right)
\end{aligned}
$$

Euler's method obtained by approximating this integral in this case, the valve of f at to was used. Alternatively we could have used the value of t :

$$
\begin{aligned}
y\left(t_{1}\right) & =y_{0}+\int_{t_{0}}^{t_{1}} f(s, y(s)) d s \\
& \approx y_{0}+\left(t_{1}-t_{0}\right) f\left(t_{1}, y\left(t_{1}\right)\right)
\end{aligned}
$$

Now, the equation $y_{1}=y_{0}+h f\left(t_{1}, y_{1}\right)$ must be solved for the value of y_{0}. This is known as IMPLICIT EULER. The error is similar, but the stability is better.

STABILITY OF EULER
Examine the model problem $y^{\prime}=-\lambda y$, with $\lambda>0$.

$$
y_{l+1}=y_{l}+h f\left(t_{l}, y_{l}\right)
$$

Explicit Euler: $y_{l+1}=y_{l}-h \lambda y_{l}=(1-h \lambda) y_{l}$
The true solution is $y=c e^{-\lambda t}$, and $y(t) \rightarrow 0$ as $t \rightarrow \infty$ (since $\lambda>0$).
In order for $y_{l} \rightarrow 0$, we require

$$
\begin{aligned}
& y_{1}=(1-h \lambda) y_{0} \\
& y_{2}=(1-h \lambda) y_{1}=(1-h \lambda)\left[(1-h \lambda) y_{0}\right]=(1-h \lambda)^{2} y_{0}
\end{aligned}
$$

that $|1-h \lambda|<1$ and therefore since $\lambda>0, h>0$, we require

$$
\begin{array}{r}
-1<1-h \lambda<1 \Rightarrow \quad-2<-h \lambda<0 \\
0<h \lambda<2 \\
0<h<\frac{2}{\lambda}
\end{array}
$$

This means that the stepsize h must be in this interval to ensure stability.

IMPLCIT EULER

$$
y_{l+1}=y_{l}-h \lambda y_{l+1}
$$

Solve for y_{l+1} to obtain

$$
\begin{aligned}
y_{l+1}(1+h \lambda)=y_{l} \Rightarrow y_{l+1} & =\left(\frac{1}{1+h \lambda}\right) y_{l} \\
& =\frac{1}{(1+h \lambda)^{l+1}} y_{0}
\end{aligned}
$$

The factor $\frac{1}{1+h \lambda}$ is always <1 if $h>0, \lambda>0$, and therefore impircit Euler is A-stable.

Section 1.15 Improved Euler method
Consider the IVP $y^{\prime}(t)=f(t, y), y\left(t_{0}\right)=y_{0}$.
Integrating the diff.eqn. between t_{k} and t_{k} th gives:

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+\underbrace{\int_{t_{k}}^{t_{k}+h} f(t, y(t)) d t}
$$

we must approx.
the area under the curve $f(t, y)$ bet t_{k} and $t_{k}+h$

Pictorially

The area of the trapezoid T is a much better approximation of the area under the curve compared to the area of the rectangle R.

So if we replace the integral in $y\left(t_{k+1}\right)=y\left(t_{k}\right)+\int_{t_{k}}^{t_{k}+h} f(t, y(t)) d t$ with the area under the trapezoid, we get the following numerical scheme:
(x)
we cannot determine y_{k+1} from y_{k} belallse y_{k+1} also appears on the RHS.

On the RHS we con then use Euler's method. I.e.

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right)
$$

Thus ($*$) becomes

$$
y_{k+1}=y_{k}+\frac{h}{2}[f\left(t_{k}, y_{k}\right)+f(\underbrace{t_{k}}_{t_{k+1}+h}, y_{k}+h f\left(t_{k}, y_{k}\right))] \cdot, y_{0}=y\left(t_{0}\right)
$$

this is called IMPROVED EULER METHOD
Example. Write down the Improved Euler method to approximate the solution $y(t)$ to the IVP

$$
y^{\prime}=1+(y-t)^{2}, y(0)=\frac{1}{2}
$$

at points $t_{k}=\frac{k}{N}$ with $k=1, \ldots, N$.
\rightarrow Improved Euler method:

$$
y_{k+1}=y_{k}+\frac{h}{2}\{\underbrace{1+\left(y_{k}-t_{k}\right)^{2}}_{f\left(t_{k}, y_{k}\right)}+\underbrace{1+\left[y_{k}+h\left(1+\left(y_{k}-t_{k}\right)^{2}\right)-t_{k+1}\right]^{2}}_{f\left(t_{k+1}, y_{k}+h f\left(t_{k}, y_{k}\right)\right)}\}
$$

with $h=\frac{1}{N}, y_{0}=\frac{1}{2}$. The integer $k=0, \ldots, N-1$.

Section 1.16: The Runge-Kulta method

$$
y_{k+1}=y_{k}+\underbrace{\frac{h}{6}\left[L_{k, 1}+2 L_{k, 2}+2 L_{k, 3}+L_{k, 4}\right.}], \quad k=0,1, \ldots, N-1
$$

Where $y_{0}=y\left(t_{0}\right)$ and think of this as an average slope

$$
\begin{aligned}
& L_{k, 1}=f\left(t_{k, 1}\right) \\
& L_{k, 2}=f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h L_{k, 1}\right) \\
& L_{k, 3}=f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h L_{k, 2}\right) \\
& L_{k, 4}=f\left(t_{k}+h, y_{k}+h L_{k, 3}\right)
\end{aligned}
$$

The Runge-Kulta method is much more accurate than Euler's methodand the improved Euler method.

Note from above that there are 4 functional evaluations at each step for Runge-Kutta whereas in the Euler method we perform only one functional evaluation at each step. However, the Runge - Kutta method is still much more accurate.

SUMmARY
First-order accurate methods
Forward (explicit) Euler: $y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right)$
Back ward (implicit) Euler: $y_{k+1}=y_{k}+h f\left(t_{k+1}, y_{k+1}\right)$
Second-order accurate method
Improved Euler: $y_{k+1}=y_{k}+\frac{h}{2}\left[f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k}+h f\left(t_{k}, y_{k}\right)\right)\right]$
Fourth-order accurate method
Runge-Kulta: $y_{k+1}=y_{k}+\frac{h}{6}\left[L_{k, 1}+2 L_{k, 2}+2 L_{k, 3}+L_{k, 4}\right]$ with $L_{k, 1} L_{k, 2}$, $L_{k, 3,} L_{k}, 4$ from above

Let's say we have 3 numerical methods that have an error

$$
3 h, 11 h^{2}, 42 h^{4}
$$

If we require 8 decimal places accuracy, then the stepsizes h_{1}, h_{2}, h_{3} of these three schemes must satisfy

$$
\begin{array}{ll}
\text { three schemes must satisfy } \\
\begin{aligned}
& \text { error }=3 h_{1} \leqslant 10^{-8} \Rightarrow 3\left(\frac{1}{N_{1}}\right) \leqslant 10^{-8} \Rightarrow N_{1} \geqslant 3 \times 10^{8}=300 \\
& \text { million } \\
& \text { error }=11 h_{2}^{2} \leqslant 10^{-8} \\
& \text { error }=42 h_{3}^{4} \leqslant 10^{-8}
\end{aligned} & \Rightarrow N_{2} \geqslant \sqrt{11} \times 10^{4} \approx 34000 \\
& \Rightarrow N_{3} \geqslant 4 \sqrt{42} \times 10^{2} \simeq 260
\end{array}
$$

number of iterations to reach 8 dip. of accuracy.

Chapter 2: Second-order linear differential equations

A $2^{\text {nd }}$-order differential eqn is of the form

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right)
$$

If this is an IUP then the I.C.s are of the form

$$
\begin{aligned}
& y\left(t_{0}\right)=y_{0} \\
& y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{aligned}
$$

We'll learn to solve a second-order linear differential equation. This is of the form

$$
\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t)
$$

Linear berouse both y and $\frac{d y}{d t}$ appear by themselves.

$$
\begin{array}{ll}
\text { e.g. } & \frac{d^{2} y}{d t^{2}}+e^{t} \frac{d y}{d t}+2 y=1 \quad \text { Linear } \\
& \frac{d^{2} y}{d t^{2}}+\frac{3 d y}{d t}+(\sin t)^{2} y=e^{t} \text { linear } \\
& \frac{d^{2} y}{d t^{2}}+5\left(\frac{d y}{d t}\right)^{2}=1 \text { nonlinear } \\
& \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+\sin y=t^{3} \quad \text { nonlinear }
\end{array}
$$

We start with the homogeneous case:

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0, y\left(t_{0}\right)=y_{0} \cdot y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \\
g(t)=0
\end{gathered}
$$

First we want to know if a solution exists.
Existence-uniqueness theorem
Let $p(t)$ and $q(t)$ be continuous functions in the interval $\alpha<t<\beta$. Then there exists one and only one function $y(t)$ satisfying

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the entire interval $\alpha<t<\beta$ and the prescribed I.C. $y\left(t_{0}\right)=y_{0}$, $y^{\prime}\left(t_{0}\right)=y_{0}{ }^{\prime}$. Note that any solution $y=y(t)$ which satisfies the IVP with $y\left(t_{0}\right)=0$ and $y^{\prime}\left(t_{0}\right)<0$ at some time $t=t_{0}$ must be identically 0 .

Now we will view the differential equation through operators L. We use the relation

$$
L[y](t)=y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)
$$

where L is an operator which operates on functions. ie. it associates each function y to a new function $L[y]$.

Example. If $p(t)=0, q(t)=t$ then

$$
L[y](t)=y^{\prime \prime}(t)+t y(t)
$$

If $y(t)=\cos t$ then $L[y](t)=-\cos t+t \cos t$
If $y(t)=t^{3}$ then $L[y](t)=t^{4}+6 t$
"function of a function'

Properties

1. $L[c y]=c L[y]$ for any constant c
2. $L\left[y_{1}+y_{2}\right]=L\left[y_{1}\right]+L\left[y_{2}\right]$

Proofs

$$
\text { I. } \quad \begin{aligned}
L[c y](t) & =(c y)^{\prime \prime}(t)+p(t)(c y)^{\prime}(t)+q(t)(c y)(t) \\
& =c y^{\prime \prime}(t)+c p(t) y^{\prime}(t)+c q(t) y(t) \\
& =c\left[y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)\right] \\
& =c[[y](t) .
\end{aligned}
$$

2.

$$
\begin{aligned}
L\left[y_{1}+y_{2}\right](t) & =\left(y_{1}+y_{2}\right)^{\prime \prime}(t)+p(t)\left(y_{1}+y_{2}\right)^{\prime}(t)+q(t)\left(y_{1}+y_{2}\right)(t) \\
& =y_{1}^{\prime \prime}+y_{2}^{\prime \prime}+p(t) y_{1}^{\prime}+p(t) y_{2}^{\prime}+q(t) y_{1}+q(t) y_{2} \\
& =\left[y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right]+\left[y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right] \\
& =L\left[y_{1}\right](t)+L\left[y_{2}\right](t)
\end{aligned}
$$

Definition An operator L which assigns functions to functions and satisfies properties 1 and 2 is called a linear operator.
All others are non linear.

Gg. $\quad L[y](t)=y^{\prime \prime}-2 t[y]^{4}$
This operator assigns to $y=\frac{1}{t}$ the function

$$
L\left[y J(t)=\frac{2}{t^{3}}-2 t\left(\frac{1}{t}\right)^{4}=0\right.
$$

but to $y=c \cdot \frac{1}{t}$ it assigns

$$
L[c y](t)=\frac{2 c}{t^{3}}-\frac{2 c^{4}}{t^{3}}=\frac{2 c\left(1-c^{3}\right)}{t^{3}}
$$

Thus for $c \neq 0,1$ and $y(t)=\frac{1}{t}$ we see that $L[y](t) \neq C[y](t)$ so this operator is nonlinear.

Why are Properties 1 and 2 useful?
The solutions $y(t)$ to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ are exactly those functions y for which

$$
L[y](t)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

$i . e$. the solutions $y(t)$ ae exactly those functions y to which the operator L assigns the zero function.

- So if $y(t)$ is a solution by property 1 then 50 is cy(t) since

$$
L[y](t)=\operatorname{cl}[y](t)=0
$$

- By property 2 if $y_{1}(t)$ and $y_{2}(t)$ are both solutions of the diff.eqn. then $y_{1}(t)+y_{2}(t)$ s also a solution since

$$
\begin{aligned}
L\left[y_{1}+y_{2}\right](t) & =L\left[y_{1}\right](t)+L\left[y_{2}\right](t) \\
& =0+0 \\
& =0
\end{aligned}
$$

The two properties together imply that an linear combinations

$$
c_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

of solutions of the diff. eqn. are again solutions.
\Rightarrow We can generate infinitely many other solutions.
e.g. Consider $\frac{d^{2} y}{d t^{2}}+y=0$.

Two solutions are $\left.\begin{array}{rl}y_{1}(t) & =\cos t \\ y_{2}(t) & =\sin t\end{array}\right] \Rightarrow y(t)=c_{1} \cos t+c_{2} \sin t$ is also a solution for every choice of c_{1} and c_{2}.
By the existence-uniqueness theorem, $y(t)$ exists for all t.
Let $y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$ and consider

$$
\phi(t)=y_{0} \cos t+y_{0}^{\prime} \sin t
$$

solution since it's a linear combination of solutions
and

$$
\begin{aligned}
\phi(0) & =y_{0} \\
\phi^{\prime}(0) & =y_{0}^{\prime}
\end{aligned}
$$

Thus $y(t)$ and $\phi(t)$ satisfy the same $2^{\text {nd }}$-order linear diff. on and the same l.C.s.

Theorem 2 (from textbook): Let $y_{1}(t)$ and $y_{2}(t)$ be two solutions of $y^{\prime \prime}+p(t) y^{\prime}+g(t) y=0$ on the interval $\alpha<t<\beta$ with

$$
y_{1}(t) y_{2}{ }^{\prime}(t)-y_{1}{ }^{\prime}(t) y_{2}(t) \neq 0
$$

in this interval. Then $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is the general solution of the diff. eq n.

Definition The quantity $y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$ is called the Wroskian of y_{1}, y_{2} and is denoted by $w(t)=w\left[y_{1}, y_{2}\right](t)$.

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

Theorem 3 (from textbook): Let $p(t)$ and $q(t)$ be continuous in the interval $\alpha<t<\beta$ and let $y_{1}(t)$ and $y_{2}(t)$ be two solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t)=0
$$

Then $W\left[y_{1}, y_{2}\right](t)$ is either identically zero, or is never zero, on the interval $\alpha<t<\beta$.

Note. Let $y_{1}(t)$ and $y_{2}(t)$ betwo solutions of the linear $2^{n d}$ order diff. eqn. $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then, their Wroskion

$$
w(t)=w\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t) \sim y_{1}^{\prime}(t) y_{2}(t)
$$

satisfies the 1 st-order diff. eqn.

$$
W^{\prime}(t)+p(t) W(t)=0
$$

Note We van solve this $1^{\text {st }}$ order diff. eqn. Using separation of variable

$$
\begin{aligned}
& \int \frac{d W}{w}=\int-p(t) d t \\
& \Rightarrow W(t)=A e^{-\int p(t) d t}
\end{aligned}
$$

Why does the Wrostian satisfy $W^{\prime}(t)+p(t) W(t)=0$?

$$
\begin{aligned}
W^{\prime}(t) & =\frac{d}{d t}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
& =y^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}-y_{1}^{\prime} y_{2}^{\prime} \quad \text { (by product nee) } \\
& =y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
\end{aligned}
$$

Since y_{1} and y_{2} are both solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ they must satisfy

$$
\begin{aligned}
& y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \Rightarrow y_{1}^{\prime \prime}=-p(t) y_{1}^{\prime}-q(t) y_{1} \\
& y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0 \Rightarrow y_{2}^{\prime \prime}=-p(t) y_{2}^{\prime}-q(t) y_{2}
\end{aligned}
$$

Plugging these into $w^{\prime}(t)=y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}$ we obtain

$$
\begin{aligned}
W^{\prime}(t) & =y_{1}\left(-p(t) y_{2}^{\prime}-q(t) y_{2}\right)-\left(-p(t) y_{1}^{\prime}-q(t) y_{1}\right) y_{2} \\
& =-p(t) y_{1} y_{2}^{\prime}-q(t) y_{1} y_{2}+p(t) y_{1}^{\prime} y_{2}+q(t) y_{1} y_{2} \\
& =-p(t)(\underbrace{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}_{w(t)}) \\
\Rightarrow W^{\prime}(t) & +p(t) W(t)=0
\end{aligned}
$$

Proof of theorem 3: Choose any t_{0} in the interval $\alpha<t<\beta$ Then from $W^{\prime}(t)+p(t) W(t)=0$ we have

$$
\begin{aligned}
& +p(t) W(t)=0 \text { we have } \\
& W\left[y_{1}, y_{2}\right](t)=W\left[y_{1}, y_{2}\right]\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p(s) d s}
\end{aligned}
$$

from separation of variables

But $e^{-\int_{t_{0}}^{t} p(s) d s} \neq 0$ for $\alpha<t<\beta$. Thus, $W\left[y_{1}, y_{2}\right](t)$ is either identically zero, or is never zero.

Note The Wrosklan of two functions y_{1}, y_{2} vanisher identically if one of the functions is a constant multiple of the other. If $y_{2}=c y_{1}$

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](t) & =\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
y_{1} & c y_{1} \\
y_{1}^{\prime} & c y_{1}^{\prime}
\end{array}\right) \\
& =c y_{1} y_{1}^{\prime}-c y_{1} y_{1}^{\prime} \\
& =0
\end{aligned}
$$

Theorem 4 Let $y_{1}(t)$ and $y_{2}(t)$ be two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on the interval $\alpha<t<\beta$ and suppose $W\left[y_{1}, y_{2}\right]\left(t_{0}\right)=0$ for some t_{0} in this inferval. Then one of these solutions is a constant multiple of the other.

Proof of theorem 2 Let $y[t]$ be any solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} .
$$

We must find constants c_{1}, c_{2} s.t. $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$, for to in $\alpha<t<\beta$

$$
\left.\begin{array}{l}
\left(x y_{2}^{\prime}\left(t_{0}\right)\right) c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
\left(x y_{2}\left(t_{0}\right)\right) c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{array}\right] \text { satisfies the I.C. }
$$

$$
=\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)+c_{2} y_{2}\left(t_{2}\right) y_{2}^{\prime}\left(t_{0}\right)=y_{0} y_{2}^{\prime}\left(t_{0}\right) \\
& c_{1} y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)=y_{2}\left(t_{0}\right) y_{0}^{\prime} \\
& c_{1}\left[y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)\right]=y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{0}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=\frac{y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{0}^{\prime}}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)} \\
& \left(x y_{1}^{\prime}\left(t_{0}\right)\right) c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
& \left(x y_{1}\left(t_{0}\right)\right) \quad c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \\
& c_{1} y_{1}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=y_{0} y_{1}^{\prime}\left(t_{0}\right) \\
& c_{1} y_{1}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime} y_{2}\left(t_{0}\right) \\
& c_{2}\left[y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)\right]=y_{0} y_{1}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{0}^{\prime} \\
& c_{2}=\frac{y_{0} y_{1}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{0}^{\prime}}{y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}
\end{aligned}
$$

c_{1} and c_{2} exist if $y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) \neq 0$.
Now, let $\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for this choice of c_{1}, c_{2}. Since it's a linear combination of solutions $\phi(t)$ is a solution too. By construction, $\phi\left(t_{0}\right)=y_{0}$ $\phi^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. Thus $y(t)$ and $\phi(t)$ satisfy the same $2^{\text {nd }}$-order linear homogeneous eqn and the same initial conditions. So by the uniqueness theorem, $y(t) \equiv \phi(t)$, that is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t), \alpha<t<\beta .
$$

Proof of theorem 4: Suppose that $\omega\left[y_{1}, y_{2}\right]\left(t_{0}\right)=0$. Then by theorem 3 $W\left[y_{1}, y_{2}\right](t)$ is id entically zero. Assume $y_{1}(t) y_{2}(t) \neq 0$ for $\alpha<t<\beta$.
Then dividing both sides of the equation

$$
y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=0
$$

by $y_{1}(t) y_{2}(t)$ gives

$$
\frac{y_{2}^{\prime}(t)}{y_{2}(t)}-\frac{y_{1}^{\prime}(t)}{y_{1}(t)}=0
$$

Solving it gives: $\ln \left(y_{2}(t)\right)=\ln \left(y_{1}(t)\right)+\tilde{c}$

$$
y_{2}(t)=c y_{1}(t) \text { for some constant } c .
$$

Definition: Two functions $y_{1}(t)$ and $y_{2}(t)$ are said to be linearly dependent on an interval I if one of these functions is a constant multiple of the other on I.

Corollary Two solutions $y_{1}(t)$ and $y_{2}(t)$ of $y^{\prime \prime}+\rho(t) y^{\prime}+q(t) y=0$ are linearly independent on the interval $\alpha<t<\beta$ If $W\left[y_{1}, y_{2}\right](t) \neq 0$ on this interval. So two solutions $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions of the diff. eqn. on $\alpha<t<\beta$ jiff they are linearly independent on this interval.

Section 2.2: Linear equations with Constant coefficients

Homogeneous, linear second order equation with constant coefficients

$$
\begin{equation*}
L[y]=a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=0 \tag{x}
\end{equation*}
$$

with a, b, c constants and $a \neq 0$.
From the previous section, we know that we need only find two independent solutions y_{1}, y_{2} and all other solutions are obtained by taking linear combinations of y_{1} and y_{2}.

Ansatz (educated guess):
$y(t)=e^{r t}$, for r a constant

$$
\begin{aligned}
L\left[e^{r t}\right] & =a r^{2} e^{r t}+b r e^{r t}+c e^{r t} \\
& =e^{r t}\left(a r^{2}+b r+c\right)
\end{aligned}
$$

$y=e^{r t}$ is a solution ff $a r^{2}+b r+c=0$ since $e^{r t} \neq 0$.
characteristic equation

$$
\text { of } G *)
$$

Solving the characteristic equation we see that the two roots are

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2}-4 a c>0$ then r_{1}, r_{2} are real and distinct

$$
\Rightarrow y_{1}=e^{r_{1} t}, y_{2}=e^{r_{2} t}
$$

(linearly independent on any interval I)

To show this we can also compute the Wroskian through

$$
\begin{aligned}
& W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{cc}
e^{r_{1} t} & e^{r_{2} t} \\
r_{1} e^{r_{1} t} & r_{2} e^{r_{2} t}
\end{array}\right|=\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) t} \neq 0
\end{aligned}
$$

when $r_{1} \neq r_{2}$.

Example: Find the general solution of $y^{\prime \prime}+5 y^{\prime}+4 y=0$
The charaderistic equation is $r^{2}+6 r+4=0$

$$
\begin{aligned}
& (r+4)(r+1)=0 \\
& r=-4, r=-1
\end{aligned}
$$

$y_{1}(t)=e^{-4 t}, y_{2}(t)=e^{-t} \quad$ (form the fundamental set of solutions)
Thus the general solution is

$$
y(t)=c_{1} e^{-4 t}+c_{2} e^{-t}
$$

for some constants c_{1} and c_{2}.
Example Solve the vP:

$$
2 y^{\prime \prime}+y^{\prime}-10 y=0, \quad y(1)=5, y^{\prime}(1)=2
$$

Characteristic equation: $2 r^{2}+r-10=0$

$$
\begin{array}{r}
(2 r+5)(r-2)=0 \\
r=-\frac{5}{2} \quad r=2 \\
y(t)=4 e^{-\frac{5}{2} t}+c_{2} e^{2 t} \\
y^{\prime}(t)=-\frac{5}{2} c_{1} e^{-\frac{5}{2} t}+2 c_{2} e^{2 t}
\end{array}
$$

Using I. Cs:

$$
\begin{aligned}
& y(1)=c_{1} e^{-\frac{5}{2}}+c_{2} e^{2}=5 \quad \text { Multiply by } \frac{5}{2} \cdot \frac{5}{2} c_{1} e^{-\frac{5}{2}}+\frac{5}{2} c_{2} e^{2}=\frac{25}{2} \\
& y^{\prime}(1)=-\frac{5}{2} e_{1} e^{-\frac{5}{2}}+2 c_{2} e^{2}=2
\end{aligned}
$$

Adding the two:

$$
\begin{aligned}
\frac{9}{2} c_{2} e^{2} & =\frac{29}{2} \\
c_{2} & =\frac{29}{9 e^{2}}
\end{aligned}
$$

Using $c_{1} e^{-\frac{5}{2}}+c_{2} e^{2}=5$ and $c_{2}=\frac{29}{9 e^{2}}$ gives us C_{1} as

$$
\begin{gathered}
c_{1} e^{-\frac{5}{2}}+\frac{29}{9 \theta^{6}} e^{f}=5 \\
c_{1}=(5-29 / 9) e^{5 / 2} \\
c_{1}=\frac{16}{9} e^{5 / 2}
\end{gathered}
$$

Thus the solution is $g(t)=\frac{16}{9} e^{\frac{5}{2}} e^{\frac{-5}{2} t}+\frac{29}{9 e^{2}} e^{2 t}$

$$
\Rightarrow \quad y(t)=\frac{16}{9} e^{-\frac{5}{2}(t-1)}+\frac{29}{9} e^{2(t-1)}
$$

Remark: Observe from this example that $e^{r\left(t-t_{0}\right)}$ is also a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ if $a r^{2}+b 1+c=0$. So to find the solution to the NP

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

we would write $y(t)=c_{1} e^{r_{1}\left(t-t_{0}\right)}+c_{2} e^{r_{2}\left(t-t_{0}\right)}$
and solve for C_{1} and C_{2} from the initial conditions.

- If $b^{2}-4 a c<0$ then the characterstic equation $a r^{2}+b r+c=0$ has complex roots

$$
r_{1}=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}, \quad r_{2}=\frac{-b-i \sqrt{4 a c-b^{2}}}{2 a}
$$

Assume that $y(t)=u(t)+i v(t)$ is a complex-valued solution of

$$
a y^{n}+b y^{\prime}+c y=0
$$

This means that it satisfies the diffeegn. and so

$$
\begin{aligned}
& a\left[u^{\prime \prime}(t)+i v^{\prime \prime}(t)\right]+b\left[u^{\prime}(t)+i v^{\prime}(t)\right]+c[u(t)+i v(t)]=0 \\
\Rightarrow & \left(a u^{\prime \prime}(t)+b u^{\prime}(t)+c u(t)\right)+i\left(a v^{\prime \prime}(t)+b v^{\prime}(t)+c v(t)\right)=0
\end{aligned}
$$

Both the real and the imaginary parts must be zero.

$$
\left.\begin{array}{rl}
\Rightarrow \\
\text { AND }
\end{array}\left[\begin{array}{l}
a u^{\prime \prime}(t)+b u^{\prime}(t)+c u(t) \\
a v^{\prime \prime}(t)+b v^{\prime}(t)+c v(t)
\end{array}\right)=0 .\right]
$$

Lemmas Let $y(t)=u(t)+i v(t)$ be a complex-valued solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ with a, b, c real. Then $y_{1}(t)=u(t)$ and $y_{2}(t)=v(t)$ are two real -valued solutions. I.e. both the real and imaginary parts of a complex-valued solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ are its solutions.

Q : What is $e^{r t}$ for r complex?
A: Let $r=\alpha+i \beta, e^{r t}=e^{(\alpha+i \beta) t}=e^{\alpha t} e^{i \beta t}=e^{\alpha t}(\cos \beta t+\sin \beta t)$ real real

The solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is a complex-valued function if $b^{2}-4 a c<0$. Recall:

$$
r_{1}=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}, \quad r_{2}=\frac{-b-i \sqrt{4 a c-b^{2}}}{2 a}
$$

so by lemma 1.

$$
\begin{aligned}
& y_{1}(t)=e^{\gamma_{1} t}=e^{-\frac{b}{2 a} t} \cos \beta t \\
& y_{2}(t)=e^{\gamma_{2} t}=e^{-\frac{b}{2 a} t} \sin \beta t
\end{aligned}
$$

for $B=\frac{\sqrt{4 a c-b^{2}}}{2 a}$ are real-valued solutions of the diff.eqn.

Check that these two solutions are linearly independent by showing that their Wroskian is never zero. Thus, the general solution for $b^{2}-4 a c<0$ is

$$
y(t)=e^{-\frac{b t}{2 a}}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right), \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
$$

Remark. We must verify that $\frac{d}{d t} e^{r t}=r e^{r t}$ is true for r complex before we can say that $e^{r_{i} t}$ and $e^{r_{2} t}$ are complex-valued solutions of the diff. eqn. $a y^{\prime \prime}+b y^{\prime}+c y=0$.

$$
\begin{aligned}
\frac{d}{d t} e^{(\alpha+i \beta) t} & =\frac{d}{d t}\left(e^{\alpha t}(\cos \beta t+i \sin \beta t)\right) \\
& =e^{\alpha t}[(\alpha \cos \beta t-\beta \sin \beta t)+i[\alpha \sin \beta t+\beta \cos \beta t)] \\
& =e^{\alpha t}[\alpha(\cos \beta t+i \sin \beta t)+i \beta(\cos \beta t+i \sin \beta t)] \\
& =e^{\alpha t}(\underbrace{\cos \beta t+i \sin \beta t}_{e^{i \beta t}})(\alpha+i \beta) \\
& =e^{(\alpha+i \beta) t}(\alpha+i \beta) \\
& =r e^{\gamma t}
\end{aligned}
$$

Example Find two linearly independent real-valued solutions of

$$
4 \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+5 y=0
$$

Characteristic eqn: $\quad 4 r^{2}+4 r+5=0$

$$
\begin{aligned}
& T=\frac{-4 \pm \sqrt{16-4(4)(5)}}{2(4)}=\frac{-4 \pm \sqrt{-64}}{8}=\frac{-4}{8} \pm i \frac{8}{8}=-\frac{1}{2} \pm i \\
& \Rightarrow r_{1}=-\frac{1}{2}+i, r_{2}=-\frac{1}{2}-i
\end{aligned}
$$

Thus $e^{r_{1} t}=e^{\left(-\frac{1}{2}+i\right) t}=e^{-\frac{1}{2} t} e^{i t}=e^{-\frac{1}{2} t}(\cos t+i \sin t)$
By Lemma

$$
\begin{aligned}
& y_{1}(t)=\operatorname{Re}\left\{e^{r_{1} t}\right\}=e^{-\frac{1}{2} t} \cos t \\
& y_{2}(t)=\operatorname{Im}\left\{e^{r_{1} t}\right\}=e^{-\frac{1}{2} t} \sin t
\end{aligned}
$$

are two linearly independent real-valued solutions of $4 \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+5 y=0$.
Example Solve the INP $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+4 y=0 ; g(0)=1, y^{\prime}(0)=1$
Characteristic eq.

$$
\begin{aligned}
& r^{2}+2 r+4=0 \\
& \gamma=\frac{-2 \pm \sqrt{4-4(4)}}{2}=-1 \pm \frac{\sqrt{-12}}{2}=-1 \pm \frac{i \alpha \sqrt{3}}{2}=-1 \pm i \sqrt{3}
\end{aligned}
$$

$$
\Rightarrow e^{r_{1} t}=e^{-1+i \sqrt{3}) t}=e^{-t}(\cos (\sqrt{3} t)+i \sin (\sqrt{3} t))
$$

$$
y_{1}(t)=e^{-t} \cos (\sqrt{3} t)
$$

$$
y_{2}(t)=e^{-t} \sin (\sqrt{3} t)
$$

and the general solution is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$

$$
\begin{aligned}
& =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =e^{-t}\left[c_{1} \cos (\sqrt{3} t)+c_{2} \sin (\sqrt{3} t)\right]
\end{aligned}
$$

Now use the initial conditions to find c_{1} and c_{2} :

$$
\begin{gathered}
y(0)=1 \Rightarrow 1=e^{-\quad}\left[c_{1} \cos (6)+c_{2} \sin y_{0}\right] \\
\Rightarrow \quad 1=c_{1} \\
y^{\prime}(t)=-e^{-t}\left(c_{1} \cos (\sqrt{3} t)+c_{2} \sin (\sqrt{3} t)\right)+e^{-t}\left(-\sqrt{3} c_{1} \sin (\sqrt{3} t)+\sqrt{3} c_{2} \cos (\sqrt{3} t)\right) \\
y^{\prime}(0)=1 \Rightarrow \quad 1=-c_{1}+\sqrt{3} c_{2} \\
\quad 1 \text { from above } \\
\Rightarrow \quad 2=\sqrt{3} c_{2} \\
\Rightarrow \quad c_{2}=\frac{2}{\sqrt{3}}
\end{gathered}
$$

Thus the solution is $y(t)=e^{-t\left[\cos (\sqrt{3} t)+\frac{2}{\sqrt{3}} \sin (\sqrt{3} t)\right]}$

- If $b^{2}-4 a c=0$ then the characteristic equation $a r^{2}+b r+c=0$ has equal roots $r_{1}=r_{2}=-b / 2 a$
We get only one solution $y_{1}(t)=e^{-\frac{b t}{2 a}}$ of $a y^{\prime \prime}+b y^{\prime}+c y=0$
METHOD OF REDUCTION OF ORDER
Q: How do we-find a $2^{\text {nd }}$ solution which is independent of y_{1} ?
A : Let's define a new dependent variable v through

$$
y(t)=y_{1}(t) \cdot v(t)
$$

Then by the product rule $\frac{d y}{d t}=\frac{d y_{1}}{d t} v(t)+y_{1}(t) \frac{d v}{d t}$

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}} & =\frac{d^{2} y_{1}}{d t^{2}} v(t)+\frac{d y_{2}}{d t} \frac{d v}{d t}+\frac{d y_{1}}{d t} \frac{d v}{d t}+y_{1}(t) \frac{d^{2} v}{d t^{2}} \\
& =d^{2} \frac{y_{1}}{d t^{2}} v+2 \frac{d y_{1}}{d t} \frac{d v}{d t}+y_{1} \frac{d^{2} v}{d t^{2}}
\end{aligned}
$$

Thus for the case of a linear $2^{\text {nd }}$ order diff. eqn. (not necessarily w) constant coefficients) we have

$$
\begin{aligned}
L[y](t)= & \frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0 \\
= & \frac{d^{2} y_{1}}{d t^{2}} v+2 \frac{d y_{1}}{d t} \frac{d v}{d t}+y_{1} \frac{d v}{d t^{2}}+p(t)\left[\frac{d y_{1}}{d t} v+y_{1} \frac{d v}{d t}\right] \\
& +q(t) y_{1} v \\
= & y_{1} \frac{d^{2} v}{d t^{2}}+\frac{d v}{d t}\left[2 \frac{d y_{1}}{d t}+p(t) y_{1}\right]+v[\underbrace{\left[\frac{d^{2} y_{1}}{d t^{2}}+p(t) \frac{d y_{1}}{d t}+q(t) y_{1}\right]} \\
= & y_{1} \frac{d^{2} v}{d t^{2}}+\left[2 \frac{d y_{1}}{d t}+p(t) y_{1}\right] \frac{d v}{d t} .
\end{aligned}
$$

This implies that $y(t)=y_{1}(t) v(t)$ is a solution if v satisfies

$$
y_{1} \frac{d^{2} v}{d t^{2}}+\left[2 \frac{d y_{1}}{d t}+p(t) y_{1}\right] \frac{d v}{d t}=0
$$

If $u=\frac{d v}{d t}$ this bewmes $y_{1} \frac{d u}{d t}+\left[\frac{2 d y_{1}}{d t}+p(t) y_{1}\right] u=0$ which is a first order diff. equation for which we can use the integrating factor

Rewrite: $\frac{d u}{d t}+\left[\frac{2}{y_{1}} y_{1}^{\prime}+p(t)\right] u=0$

$$
\begin{aligned}
& \frac{d u}{d t}+\left[\frac{2}{y_{1}} y_{1}^{\prime}+p(t)\right] u=0 \\
& \text { I.F. } \mu(t)
\end{aligned}=e^{\int\left[\frac{2}{y_{1}} y_{1}^{\prime}+p(t)\right] d t}=e^{2 \int\left(\frac{y_{1}^{\prime}}{y_{1}}\right) d t} e^{\frac{y_{1}^{\prime}(t)}{y_{1}(t)}} \underset{ }{\int p(t) d t}
$$

Now $\mu(t) \frac{d u}{d t}+\mu(t)\left[2 \frac{y_{1}^{\prime}}{y_{1}}+p(t)\right] u=0$

$$
\frac{d}{d t}[\mu(t) u]=0
$$

$\mu(t) u=c$ for some constant c

$$
u=\frac{c}{\mu(t)}=\frac{c}{y_{1}^{2}} e^{-\int p(t) d t}
$$

But $u=\frac{d v}{d t}$ and so $u=\frac{d v}{d t}=\frac{c e^{-\int p(t) d t}}{y_{1}^{2}}$
wog can take

If we integrate again writ t we obtain $v(t)=\int u(t) d t$ with $u=\frac{c e^{-\int p(t) d t}}{y_{1}^{2}}$
and thus the $2^{\text {nd }}$ solution which is linearly independent to $y_{1}(t)$ is

$$
\begin{aligned}
y_{2}(t) & =y_{1}(t) v(t) \\
\Rightarrow \quad y_{2}(t) & =y_{1}(t) \int u(t) d t
\end{aligned}
$$

$y_{2} \neq k y_{1}$ (not a constant multiple berocuse $u=\frac{c e^{-\int p(t) d t}}{y^{2}}$ is never zero)
Remark: This is known as the method of reduction of order because the substitution we used; $y(t)=y_{1}(t) v(t)$ reduces the problem from a $2^{\text {nd }}$ order diff. eq. to a $1^{s t}$ order diff.eqn.
APPLICATION TO EQUAL ROOTS: We found $y_{1}(t)=e^{-\frac{b t}{2 a}}$ as one solution of

$$
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=0
$$

We first want to write this in the form $\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0$,
so where the coefficient of $d^{2} y$ is one. so where the coefficient of $\frac{d^{2} y}{d t^{2}}$ is ouse.

$$
\Rightarrow \frac{d^{2} y}{d t^{2}}+\frac{b}{a} \frac{d y}{d t}+\frac{c}{a} y=0
$$

1. comparing the two: $p(t)=\frac{b}{a}$
and so we get $u(t)=\frac{d v}{d t}=\frac{e^{-\int p(t) d t}}{y_{1}^{2}(t)}=\frac{e^{-\int \frac{b}{a} d t}}{\left(e^{-\frac{b t}{2 a}}\right)^{2}}=\frac{e^{-\frac{b t}{a}}}{e^{-\frac{b t}{a}}}=1$
Therefore $y_{2}(t)=y_{1}(t) \int u(t) d t=e^{-\frac{b t}{2 a}} \int 1 d t=t e^{-\frac{b t}{2 a}}$ is a second solution of the diff. eq.
$y_{1}=e^{-\frac{b t}{2 a}}$ and $y_{2}=t e^{-\frac{b t}{2 a}}$ are linearly independent on the interval $-\infty<t<\infty$
\therefore The general solution is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$

$$
\Rightarrow \quad y(t)=\left[c_{1}+c_{2} t\right] e^{\frac{-b t}{2 a}}
$$

in the case of equal roots.

Example Solve the IUP $9 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+y=0 ; y(0)=1, y^{\prime}(0)=0$

Charactenstic equation:

$$
\begin{aligned}
& 9 r^{2}+6 r+1=0 \\
& (3 r+1)^{2}=0 \\
& r=-\frac{1}{3} \text { (twice) }
\end{aligned}
$$

Hence the general solution is $\quad y(t)=c_{1} e^{-\frac{1}{3} t}+c_{2} t e^{-\frac{1}{3} t}$.
Now use $y(0)=1: \quad 1=C_{1}$

$$
\begin{gathered}
y^{\prime}(0)=0: y^{\prime}(t)=-\frac{1}{3} c_{1} e^{-\frac{1}{3} t}+c_{2} e^{-\frac{1}{3} t}-\frac{1}{3} c_{2} t e^{-\frac{1}{3} t} \\
0=-\frac{1}{3} c_{1}+c_{2} \Rightarrow \frac{1}{3}=c_{2}
\end{gathered}
$$

Thus, the solution to the IUP is $y(t)=e^{-\frac{1}{3} t}+\frac{1}{3} t e^{-\frac{1}{3} t}$

Example (method of reduction of order)
Solve the iUD $\left(1-t^{2}\right) \frac{d^{2} y}{d t^{2}}+2 t \frac{d y}{d t}-2 y=0, y(0)=3, y^{\prime}(0)=-4$ on the interval $-1<t<1$, given one of the solutions is $y_{1}(t)=t$.

Using the method of reduction of order we have that a second solution $y_{2}(t)$ is found by $u(t)=\frac{e^{-\int p(t) d t}}{y_{1}^{2}(t)}$.
First we rewrite the equation such that the weff. of $y^{\prime \prime}$ is i, ie.

$$
\frac{d^{2} y}{d t^{2}}+\underbrace{\frac{2 t}{1-t^{2}} \frac{d y}{d t}-\frac{2}{1-t^{2}} y=0}_{\substack{1 \\ p(t)}}=
$$

$$
\begin{aligned}
& u(t)=\frac{e^{-\int \frac{2 t}{1-t^{2}} d t}}{y_{1}^{2}}=\frac{e^{-\left(-\ln \left(1-t^{2}\right)\right)}}{t^{2}}=\frac{e^{\ln \left(1-t^{2}\right)}}{t^{2}}=\frac{1-t^{2}}{t^{2}} \\
& \text { and } \begin{aligned}
y_{2}(t) & =y_{1}(t) \int u(t) d t=t \int \frac{1-t^{2}}{t^{2}} d t=t \int\left(\frac{1}{t^{2}}-1\right) d t=t\left(-\frac{1}{t}-t\right) \\
& =-1-t^{2}
\end{aligned}
\end{aligned}
$$

Thus $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} t-c_{2}\left(1+t^{2}\right)$
Using the I.c. $y(0)=3, y^{\prime}(0)=-4$, we get the values of c_{1} and c_{2}.

$$
\begin{aligned}
& y^{\prime}(t)=c_{1}-c_{2}(2 t) \\
& y(0)=3 \Rightarrow \quad-c_{2}=3 \Rightarrow c_{2}=-3 \\
& y^{\prime}(0)=-4 \Rightarrow \quad c_{1}=-4
\end{aligned}
$$

Thus $y(t)=-4 t+3\left(1+t^{2}\right)$ is the solution to the diff. equ.

Section 2.3: The nonhomogeneous equation
Consider now

$$
\begin{equation*}
L[y]=\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t) \tag{*}
\end{equation*}
$$

Theorem 5 (from textbook): Let $y_{1}(t)$ and $y_{2}(t)$ be two linearly ind dependent solutions of the homogeneous equation

$$
L[y]=\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0
$$

and let $\psi(t)$ be a particular solution of the nonhomogeneous eqn ($\%$).
Then, every solution $y(t)$ of $(*)$ must be of the form

$$
\begin{gathered}
y(t)=\underbrace{c_{1} y_{1}(t)+c_{2} y_{2}(t)}_{\begin{array}{c}
\text { from solving } \\
\text { the homogeneous } \\
\text { es } \\
\text { problem }
\end{array}}+\underbrace{\psi(t)}_{\begin{array}{c}
\text { solution of } \\
\text { non homogeneous } \\
\text { equation }
\end{array}}
\end{gathered}
$$

Lemma The difference of any two solutions of the nonhomogeneous equation $(*)$ is a solution of the homogeneous equ.

Proof let $\psi_{1}(t)$ and $\psi_{2}(t)$ be two sowtions of (x). By linearity of L

$$
\begin{aligned}
L\left[\psi_{1}-\psi_{2}\right](t) & =L\left[\psi_{1}\right](t)-L\left[\psi_{2}\right](t) \\
& =g(t)-g(t) \\
& =0 \quad\llcorner\text { R.H.S. of } L \text { since it's a } \\
& \text { nonhomogeneous problem }
\end{aligned}
$$

So $\psi_{1}(t)-\psi_{2}(t)$ is a solution of the homogeneous problem
($L[y](t)=0 \Rightarrow y(t)$ is a solution of the homogeneous problem a

$$
\left.L\left[\psi_{1}-\psi_{2}\right](t)=0 \text { for } y(t)=\psi_{1}(t)-\psi_{2}(t)\right)
$$

Proof of theorem 5: Let $y(t)$ be any solution of $(*)$. By the lemma, 70 $\phi(t)=y(t)-\psi(t)$ is a solution of the homogeneous problem $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ But every solution $\phi(t)$ of the homogeneous equation is of the form

$$
\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

for constants $c_{1}, c_{2}, s 0$

$$
\begin{aligned}
y(t) & =\phi(t)+\psi(t) \\
& =c_{1} y_{1}(t)+c_{2} y_{2}(t)+\psi(t) .
\end{aligned}
$$

Theorem 5 is useful because it tells uswe can find two solutions of the homogeneous problem \& one solution of the nonhomogeneous problem instead of al f solutions of $(*)$.
Example Three solutions of a specific $2^{\text {nd }}$ order nonhomogeneous linear equ are $\psi_{1}(t)=t, \psi_{2}(t)=t+e^{t}, \psi_{3}(t)=1+t+e^{t}$. Find the general solution.

By the lemma:

$$
\begin{aligned}
& y_{1}(t)=\psi_{2}-\psi_{1}=t+e^{t}-t t=e^{t} \\
& y_{2}(t)=\psi_{3}-\psi_{2}=1+\frac{t+e^{t}-\left(t+e^{t}\right)=1}{}
\end{aligned}
$$

these are two solutions of the homogeneous problem. They are also linearly independent. By theorem 5. evens solution is of the form

$$
\begin{aligned}
y(t) & =c_{1} y_{1}+c_{2} y_{2}+\psi(t) \\
& =c_{1} e^{t}+c_{2}+t .
\end{aligned}
$$

Section 2.4: The method of variation of parameters
Q: How do we find a particular solution $\psi(t)$ of the nonhomogeneous eqn

$$
L[y]=\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t)
$$

once we know the solutions of the homogeneous eau?

A: let $y_{1}(t)$ and $y_{2}(t)$ be two lineany ind ependent solutions of the homogeneous eq $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, we'l) try to find a p.S. (particular solution) $\psi(t)$ of the nonhomogeneous can, of the form

$$
\psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

I.e. We'll try to find functions $u_{1}(t)$ and $u_{2}(t)$ so that the linear combination $u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ is a solution. We compute

$$
\begin{aligned}
\frac{d}{d t}[\psi(t)] & =\frac{d}{d t}\left[u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)\right] \\
& =u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} \\
& =\left[u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right]+\left[u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right]
\end{aligned}
$$

We want to simplify this problem to finding solutions $u_{1}(t)$ and $u_{2}(t)$ of two ven y simple first-order equations
We see that $\frac{d^{2}}{d t}[\psi(t)]$ will have no $2^{\text {nd }}$ order derivatives of u_{1} and y_{2} if

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

So wo want to impose this condition on the fans $u_{1}(t)$ and $u_{2}(t)$.

$$
\begin{aligned}
L[\psi](t) & =\psi^{\prime \prime}+p(t) \psi^{\prime}+q(t) \psi \\
& =\left[u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right]^{\prime}+p(t)\left[u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right]+q(t)\left[u_{1} y_{1}+u_{2} y_{2}\right] \\
& =u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}+p(t) u_{1} y_{1}^{\prime}+p(t) u_{2} y_{2}^{\prime}+q(t) u_{1} y_{1}+q(t) v_{2} y_{2} \\
& =u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} \underbrace{\left.y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right]}_{11}+u_{2}^{\prime \prime} \underbrace{y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}}_{0}] \\
& =u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

$$
\Rightarrow \psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t) \text { is }
$$

a solution of the nonbomogeneoces
Since y_{1} and y_{2} are eqn. If $u_{1}(t)$ and $u_{2}(t)$ satisfy

$$
\begin{gathered}
\begin{array}{c}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array} \text { multiply by } y_{2}^{\prime} \\
\text { multiply by } y_{2} \text {, and subtract } \\
u_{1}^{\prime} y_{1} y_{2}^{\prime}+u_{2}^{\prime} y_{2} y_{2}^{\prime}=0 \\
u_{1}^{\prime} y_{1}^{\prime} y_{2}+u_{2}^{\prime} y_{2}^{\prime} y_{2}=g(t) y_{2} \\
u_{1}^{\prime}(\underbrace{\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)}=-g(t) y_{2} \\
\Rightarrow\left[y_{1} \cdot y_{2}\right](t) \\
u_{1}^{\prime}(t)=\frac{-g(t) y_{2}(t)}{W\left[y_{1} \cdot y_{2}\right](t)}
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{aligned} \text { multiply by } y_{1}^{\prime}
$$

$$
\begin{aligned}
& \frac{u_{1}^{\prime} y_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2} y_{1}^{\prime}=0}{u_{1}^{\prime} y_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}^{\prime} y_{1}=g(t) y_{1}} \\
& u_{2}^{\prime}(-) \\
& \Rightarrow \underbrace{\left(y_{2} y_{1}^{\prime}-y_{2}^{\prime} y_{1}\right)}_{2}) \\
& \Rightarrow u_{2}^{\prime}(t)=-\frac{\left.g(t) y_{1}, y_{2}\right](t)}{W\left[(t) y_{1}(t)\right.}
\end{aligned}
$$

To obtain $u_{1}(t) \& u_{2}(t)$ integ rate both w.r.t.t.

Note: The general solution of the homogeneous eq is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

In what we did above we used $y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ so we are essentially allowing the constants c_{1} and 6 to vang with time. That's why this method is known as the method of variation of parameters.

Example: (a) Find a particular solution $\psi(t)$ of the equation

$$
y^{\prime \prime}+y=\tan t
$$

on the interval $-\frac{\pi}{2}<t<\frac{\pi}{2}$.
(b) Find the solution to the same diff.eqn. but $\omega /$ initial conditions $y(0)=1, y^{\prime}(0)=1$.

Characteristic eqn: $\quad r^{2}+1=0 \Rightarrow r= \pm i$

$$
\begin{aligned}
& y_{1}(t)=\operatorname{Re}\left\{e^{r_{1} t}\right\} \\
& y_{2}(t)=\operatorname{Im}\left\{e^{r_{1} t}\right\} \\
&=\cos t \\
& W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\cos t \cos t-(-\sin t) \sin t \Rightarrow \neq 0
\end{aligned}
$$

$\therefore y_{1} \& y_{2}$ are linearly independent.
From the method of variation of parameters we have

$$
u_{1}^{\prime}(t)=\frac{-g(t) y_{2}}{W\left[y_{1}, y_{2}\right](t)}, \quad u_{2}^{\prime}(t)=\frac{g(t) y_{1}}{W\left[y_{1}, y_{2}\right](t)}
$$

Here,

$$
g(t)=\tan t \text { and } w\left[y_{1}, y_{2}\right](t)=1 \text { so }
$$

$$
u_{1}(t)=\int-\frac{\tan t \cdot \sin t}{1} d t=-\int \frac{\sin t}{\cos t} \sin t d t=-\int \frac{\sin ^{2} t}{\cos t} d t
$$

$$
\begin{aligned}
& =-\int \frac{1-\cos ^{2} t}{\cos t} d t=-\int\left(\frac{1}{\cos t}-\cos t\right) d t \\
& \left.=\int(\cos t-\sec t) d t=\sin t-\ln \int \sec t+\tan t\right),-\frac{\pi}{2}<t<\frac{\pi}{2}
\end{aligned}
$$

and $u_{2}(t)=\int \frac{\tan t \cos t}{1} d t=\int \frac{\sin t}{\cos t} \cdot \cos t d t=-\cos t$
Thus $\psi(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$

$$
\begin{aligned}
& =(\sin t-\ln |\sec t+\tan t|) \cos t-\cos t \sin t \\
& =\sin t \cos t-\ln |\sec t+\tan t| \cos t-\cos t \sin t \\
& =-\ln |\sec t+\tan t| \cos t
\end{aligned}
$$

This is the particular solution of $y^{\prime \prime}+y=\tan t$ in the interval $-\frac{\pi}{2}<t<\frac{\pi}{2}$.
(b) for the IUP: $\quad y(0)=1$ and $y^{\prime}(0)=1$

The general solution is $y(t)=c_{1} y_{1}+c_{2} y_{2}+\psi(t)$

$$
\Rightarrow y(t)=c_{1} \cos t+c_{2} \sin t-\ln |\sec t+\tan t| \cos t .
$$

for constants c_{1} and c_{2}.

$$
\begin{aligned}
y^{\prime}(t)= & -c_{1} \sin t+c_{2} \cos t-\left(\frac{\left(\sec (t) \tan (t)+2 \sec ^{2}(t)\right)}{\sec (t)+\tan (t)}\right) \cos t \\
& +\ln |\sec t+\tan t| \sin t \\
= & -c_{1} \sin t+c_{2} \cos t-\sec t \cos t+\ln |\sec t+\tan t| \sin t
\end{aligned}
$$

$$
\begin{aligned}
& y(0)=1 \Rightarrow 1=c_{1}-\ln |y| \Rightarrow c_{1}=1 \\
& y^{\prime}(0)=1 \Rightarrow 1=c_{2}-1+m(1) \neq 0 \Rightarrow c_{2}=2
\end{aligned}
$$

Thus the solution to the IVP is

$$
y(t)=\cos t+2 \sin t-\ln \mid \sec t+\tan t) \cos t
$$

Section 2.8 : Series solutions

$$
\text { Homogeneous linear } \begin{aligned}
2^{\text {nd }} \text { order eq n : } L[y] & =P(t) \frac{d^{2} y}{d t^{2}}+Q(t) \frac{d y}{d t}+R(t) y=0 \\
& \neq 0 \text { in } \alpha<t<\beta
\end{aligned}
$$

We already showed that every solution is of the form $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for $y_{1}(t)$ and $y_{2}(t)$ linearly independent.

Previously, $P(t), Q(t), R(t)$ were all constants. Now we consider the case where they are polynomials. We con determine a polynomial solution $y(t)$ by setting the sums of the coefficients of like powers of t in $L[y](t)$ equal to zero.

Example. Find two linearly independent solutions of

$$
[y](t)=y^{\prime \prime}-2 t y^{\prime}-2 y=0
$$

We set $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

$$
\begin{aligned}
& \Rightarrow y^{\prime}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots=\sum_{n=0}^{\infty} n a_{n} t^{n-1} \\
& \Rightarrow y^{\prime \prime}(t)=2 a_{2}+6 a_{3} t+\ldots=\sum_{n=0}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Plugging them into $L[y](t)=y^{\prime \prime}-2 t y^{\prime}-2 y$ gives us

$$
\begin{aligned}
L[y](t) & =\sum_{n=0}^{\infty} n(n-1) a_{n} t^{n-2}-2 t \sum_{n=0}^{\infty} n a_{n} t^{n-1}-2 \sum_{n=0}^{\infty} a_{n} t^{n} \\
& =\sum_{n=0}^{\infty} n(n-1) a_{n} t^{n-2}-2 \sum_{n=0}^{\infty} n a_{n} t^{n}-2 \sum_{n=0}^{\infty} a_{n} t^{n} \\
& =0
\end{aligned}
$$

Next, we rewrite the first summation $\sum_{n=0}^{\infty} n(n-1) a_{n} t^{n-2}$ such that the exponent of t is n instead of $n-2$ so that ill matches the other two summations.

$$
\begin{aligned}
\sum_{n=0}^{\infty} n(n-1) a_{n} t^{n-2} \rightarrow & \sum_{n=-2}^{\infty}(n+2)(n+1) a_{n+2} t^{n} \\
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n}
\end{aligned}
$$

since the contribution to this sum from $n=-2$, $n=-1$ is zero since the factor $(n+2)(n+1)$ vanishes in both of these instances)
Therefore, $L[y](t)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n}-2 \sum_{n=0}^{\infty} \pi a_{n} t^{n}-2 \sum_{n=0}^{\infty} a_{n} t^{n}=0$
Setting the coefficients of like powers in t equal to zero gives

$$
\begin{aligned}
& t^{n}:(n+2)(n+1) a_{n+2}-2 n a_{n}-2 a_{n}=0 \\
& a_{n+2}=\frac{2(n+1) a_{n}}{(n+2)(n+1)}=\frac{2 a_{n}}{n+2} . \text { recurrence formula for }
\end{aligned}
$$

So once a_{0} and a_{1} are prescribed, all the coefficients are determined uniquely. The values of a_{0} and a_{1} are arbitrary. unless we are given specific initial conditions.

To find two solutions of the diff. eq. We choose two sets of a_{0}, a_{1}.
(1) $a_{0}=1, a_{1}=0$
(2) $a_{0}=0, a_{1}=1$
$\rightarrow(1) \quad a_{0}=1, a_{1}=0$
Recall $a_{n+2}=\frac{2 a_{n}}{n+2}$

$$
\begin{array}{ll}
n=0: & a_{2}=\frac{2 a_{0}}{2}=1 \\
n=1: & a_{3}=\frac{2 a_{1}}{3}=0 \\
n=2: & a_{4}=\frac{2 a_{2}}{4}=\frac{1}{2}(1)=\frac{1}{2} \\
n=3: & a_{5}=\frac{2 a_{3}}{5}=0 \\
n=4: & a_{6}=\frac{2 a_{4}}{6}=\frac{2\left(\frac{1}{2}\right)}{6}=\frac{1}{6}=\frac{1}{2 \cdot 3}
\end{array}
$$

- All odd coefficients are zero since they all depend on a_{1} originally which here is set as zero.
- The even coefficients are found through

$$
a_{2 n}=\frac{1}{2 \cdot 3 \cdots n}=\frac{1}{n!}
$$

Therefore,

$$
\begin{aligned}
y_{1}(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots \\
& =1+t^{2}+\frac{1}{2!} t^{4}+\frac{1}{3!} t^{6}+\cdots \\
& =e^{t^{2}} \quad \longleftarrow \text { is one }
\end{aligned}
$$

is one solution of
(since $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ with $x=t^{2}$) the diff. eqn.
$\rightarrow(2) a_{0}=0, a_{1}=1$
This time all oven coefficients are zero \& only the odd ones are nonzero. Recall $a_{n+2}=\frac{2 a_{n}}{n+2}$

$$
\begin{array}{ll}
n=1: & a_{3}=\frac{2 a_{1}}{3}=\frac{2}{3} \\
n=3: & a_{5}=\frac{2 a_{3}}{5}=\frac{2}{5}\left(\frac{2}{3}\right) \\
n=5: & a_{7}=\frac{2 a_{5}}{7}=\frac{2}{7}\left(\frac{2}{5}\right)\left(\frac{2}{3}\right)
\end{array}
$$

Thus $a_{2 n+1}=\frac{2^{n}}{3 \cdot 5 \cdot 7 \cdots(2 n+1)}$
(you can show this by induction)
Therefore,

$$
\begin{aligned}
y_{2}(t) & =d_{0}^{0}+a_{1} t+a_{2} t^{0}+a_{3} t^{3}+\cdots \\
& =t+\frac{2}{3} t^{3}+\frac{2^{2}}{3 \cdot 5} t^{5}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{2^{n} t^{2 n+1}}{3 \cdot 5 \cdots(2 n+1)} \longleftarrow \begin{array}{l}
\text { is a sewed sol of } \\
\text { the diff. eqn. }
\end{array}
\end{aligned}
$$

Notes:
(A) Infinite Series $y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}$: power series about $t=t_{0}$
(B) Radius of convergence of the power series: $p \geqslant 0$ s.t.
$\left|t-t_{0}\right|<p$: infinite series converges
$\left|t-t_{0}\right|>\rho$: infinite sends diverges
(c) You can differentiate and integrate each term separately, maintaining the same interval of convergence.
(D) Use the ratiotest to determine the interval of convergence. i.e Compute $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lambda$.
$\left|t-t_{0}\right|<\frac{1}{\lambda}$: power series converges
$\left|t-t_{0}\right|>\frac{1}{\lambda}$: power series diverges
(E) The product of $\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}$ and $\sum_{n=0}^{\infty} b_{n}\left(t-t_{0}\right)^{n}$ is a power series of the form $\sum_{n=0}^{\infty} c_{n}\left(t-t_{0}\right)^{n}$ where $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$.
The quotient $\frac{a_{0}+a_{1} t+a_{2} t^{2}+\ldots}{b_{0}+b_{1} t+b_{2} t^{2}+\ldots}$ is also a power series given that $b_{0} \neq 0$.

Theorem 6 (from textbook)
Let the variable t assume complex values. Let z_{0} be the point closest to to at which f or one of its derivatives fails to exist. Compute the distance $p \in \mathbb{C}$ between to and z_{0}. Then the Taylor series of f about to converges for $\left|t-t_{0}\right|<\rho$ and diverges for $\left|t-t_{0}\right|>\rho$.

Theorem 7 (from textbook)
Consider the diff. eqn. $L[y](t)=P(t) \frac{d^{2} y}{d t^{2}}+O(t) \frac{d y}{d t}+R(t) y=0$ Let the functions $\frac{\rho(t)}{Q(t)}$ and $\frac{R(t)}{P(t)}$ have convergent Taylor series expansions about $t=t_{0}$ for $\left|t-t_{0}\right|<p$. Then every solution $y(t)$ of the diff. eqn. is analytic at $t=t_{0}$ and the radius of convergence about $t=t_{0}$ is at least p.
You can determine the weff. a_{2}, a_{3}, \ldots in the Taylor series expansion

$$
y(t)=a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}+\ldots
$$

by plugging the series above into the diff. eqn. and setting the sum of the coefficients of like powers of t, equal to zero.

Example: (a) Find two linearly independent solutions of

$$
L[y](t)=\frac{d^{2} y}{d t^{2}}+\frac{3 t}{1+t^{2}} \frac{d y}{d t}+\frac{1}{1+t^{2}} y=0
$$

(b) Solve the diff.eqn in (a) with initial conditions $y(0)=2, y^{\prime}(0)=3$.
(a) It's easier to multiply the diff.eqn. by $\left(1+t^{2}\right)$ to get it in the form

$$
\begin{gathered}
P(t) \frac{d^{2} y}{d t^{2}}+Q(t) \frac{d y}{d t}+R(t) y=0 \\
\Rightarrow\left(1+t^{2}\right) \frac{d^{2} y}{d t^{2}}+3 t \frac{d y}{d t}+y=0
\end{gathered}
$$

Now set $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$. We get

$$
\begin{aligned}
& \left(1+t^{2}\right) \sum_{n=0}^{\infty} a_{n} n(n-1) t^{n-2}+3 t \sum_{n=0}^{\infty} a_{n} n t^{n-1}+\sum_{n=0}^{\infty} a_{n} t^{n}=0 \\
\Rightarrow & \underbrace{\sum_{n=0}^{\infty} a_{n} n(n-1) t^{n-2}}_{\text {rewrite this such that }}+\underbrace{\sum_{n=0}^{\infty} a_{n} n(n-1) t^{n}+3 \sum_{n=0}^{\infty} a_{n} n t^{n}+\sum_{n=0}^{\infty} a_{n} t^{n}}_{\text {We can combine these } 3 \text { terms }}=0
\end{aligned}
$$

the power of t is
n instead of $n-2$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) t^{n}+\sum_{n=0}^{\infty} a_{n}(\underbrace{n(n-1)+3 n+1}_{11}) t^{n}=0 \\
& n^{2}-n+3 n+1=n^{2}+2 n+1=(n+1)^{2} \\
& \Rightarrow \sum_{n=0}\left[a_{n+2}(n+2)(n+1)+a_{n}(n+1)^{2}\right] t^{n}=0 \\
& \Rightarrow a_{n+2}(n+2)(n+1)=-a_{n}(n+1)^{2} \\
& \Rightarrow a_{n+2}=\frac{-a_{n}(n+1)^{x}}{(n+2)(n+1)}=-\frac{a_{n}(n+1)}{n+2} \\
& \text { the coefficients }
\end{aligned}
$$

As before, to find two linearly independent solutions of the diff. eqn consider the simplest cases
(i) $a_{0}=1, a_{1}=0$
(i) $a_{0}=0, a_{1}=1$
\rightarrow (i) $a_{0}=1, a_{1}=0$
All odd coefficients are zero
The even ones are $\quad a_{n+2}=-\frac{a_{n}(n+1)}{n+2}: \quad n=0 \quad a_{2}=\frac{-a_{0}}{2}=-\frac{1}{2}$

$$
n=2 \quad a_{4}=\frac{-a_{2}(3)}{4}=-\left(-\frac{1}{2}\right)\left(\frac{3}{4}\right)
$$

$n=4 \quad a_{6}=\frac{-a_{4}(5)}{6}=-\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)$

$$
\begin{aligned}
a_{2 n}=(-1)^{n} & \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}=(-1)^{n} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} \\
& =2(2 \cdot 2)(2 \cdot 3) \cdots(2 \cdot n) \\
& =2^{n}(1 \cdot 2 \cdot 3 \cdots n) \\
& =2^{n} n!
\end{aligned}
$$

Thus, the fist solution is

$$
\begin{aligned}
y_{1}(t) & =a_{0}+a t^{0}+a_{2} t^{2}+a_{5} t^{3}+\cdots \\
& =1-\frac{1}{2} t^{2}+\frac{1 \cdot 3}{2 \cdot 4} t^{4}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} t^{2 n}
\end{aligned}
$$

is one solution.
in the absolute value
this wont matter $2 n+2-1=2 n+1$

$$
\left|\frac{\left.(-1)^{2 n+1}\right) \frac{1 \cdot 3 \cdots(2(n+1)-1)}{2^{n+1}(n+1)!} t^{2(n+1)}=(n+1) n!}{(-1)^{5!} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{2 n} n} t^{2 n!}}\right|
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left|\frac{(2 n+1) t^{2}}{2(n+1)}\right| \\
& =t^{2} \lim _{n \rightarrow \infty}\left|\frac{2 n+1}{2 n+2}\right| \rightarrow\left[\frac{2+\frac{1}{n}}{2+\frac{2}{n}} \rightarrow 0 \text { as } n \rightarrow \infty\right] \\
& =t^{2}
\end{aligned}
$$

Thus by the ratio test the infinite series converges by $|t|<1$, diverges $|t|>1$
\rightarrow (ii) $a_{0}=0, a_{1}=1$
ALl even coefficients are zero
Odd coefficients: $a_{3}=\frac{-2 a_{1}}{3}=-\frac{2}{3}$

$$
a_{n+2}=-\frac{a_{n}(n+1)}{n+2}
$$

$$
\begin{aligned}
a_{5} & =-\frac{4 a_{3}}{5}=\frac{2 \cdot 4}{3 \cdot 5} \\
a_{7} & =-\frac{6 a_{5}}{7}=\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} \\
\Rightarrow a_{2 n+1} & =(-1)^{n} \frac{2 \cdot 4 \cdots(2 n)}{3 \cdot 5 \cdots(2 n+1)}=\frac{(-1)^{n} 2^{n} n!}{3 \cdot 5 \cdots(2 n+1)}
\end{aligned}
$$

Therefore $y_{2}(t)=t-\frac{2}{3} t^{3}+\frac{2 \cdot 4}{3 \cdot 5} t^{5}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} n!}{3 \cdot 5 \cdots(2 n+1)} t^{2 n+1}$ is the second solution.

It can be shown using the ratio test that this solution also converges for $|t|<1$ and diverges for $|t|>1$.
(b) For the IVP we want to satisfy $y(0)=2, y^{\prime}(0)=3$.

We found $y_{1}(t)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} t^{2 n}=1-\frac{1}{2} t^{2}+\frac{1 \cdot 3}{2 \cdot 4} t^{4}+\cdots$

$$
y_{2}(t)=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n} n!}{3 \cdot 5 \cdot \cdots(2 n+1)} t^{2 n+1}=t-\frac{2}{3} t^{3}+\frac{2 \cdot 4}{3 \cdot 5} t^{5}+\cdots
$$

$$
\left[\begin{array}{l}
y_{1}(0)=1, \\
y_{2}(0)=0, \\
y_{1}^{\prime}(0)=0 \\
y_{2}^{\prime}(0)=1
\end{array}\right]
$$

So if we want to satisfy $y(0)=c_{1} y_{1}(0)+c_{2} y_{2}(0)=2$

$$
y^{\prime}(0)=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0)=3
$$

we must have $\left[\begin{array}{l}c_{1}=2 \\ c_{2}=3\end{array}\right]$ which implies that $y(t)=2 y_{1}(t)+3 y_{2}(t)$.
Section 2.8.1: Singular points, Euler equations
Consider again $L[y]=P(t) \frac{d^{2} y}{d t^{2}}+Q(t) \frac{d y}{d t}+R(t) y=0$
If $P\left(t_{0}\right)=0$ at $t=t_{0}$ then we call this a singular differential equation.
In the neighbor hood of the singular point to the solutions of the diff. en can becomevery la roe or oscillate very rapidly and solutions may not be continuous at to. So the method of power series will, in general, fail to work.

Definition EULER'S EQUATION
The diff. eqn. $L[y](t)=t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0$, where κ and β are constants is known as Euler's equation.

We assume for simplicity that too.
Note: $t^{2} y^{\prime \prime}$ and $t y^{\prime}$ are both multiples of t^{r} if $y=t^{r}$

$$
\begin{array}{ll}
=t^{2} r \cdot(r-1) t^{r-2} & t r\left(t^{r-1}\right) \\
=r(r-1) t^{r} & =r t^{r}
\end{array}
$$

This suggests that we cantry $y=t^{r}$ as the solution of Euler's equation.

$$
\begin{aligned}
L\left[t^{r}\right] & =r(r-1) t^{r}+\alpha r t^{r}+\beta t^{r} \\
& =[r(r-1)+\alpha r+\beta] t^{r} \\
& =F(r) t^{r}
\end{aligned}
$$

where

$$
\begin{aligned}
F(r) & =r(r-1)+\alpha r+\beta \\
& =r^{2}+(\alpha-1) r+\beta
\end{aligned}
$$

This implies that $y=t^{r}$ is a solution of Ever's equation of

$$
f(r)=0 \text {, ie. } r^{2}+(\alpha-1) r+\beta=0
$$

Using the quadratic formula the two roots are:

$$
r_{1}=\frac{-(\alpha-1)+\sqrt{(\alpha-1)^{2}-4 \beta}}{2}, r_{2}=\frac{-(\alpha-1)-\sqrt{(\alpha-1)^{2}-4 \beta}}{2}
$$

As before, here too, the term under the square root con be tue, 0, or -we.
CASE 1: $(\alpha-1)^{2}-4 \beta>0 \rightarrow$ two real, distinct roots of the form: $y_{1}=t^{r_{1}}$, $\left.y_{2}=t^{r_{2}}\right\}$ linearly independent

$$
\left.y_{2}=t^{r_{2}}\right\} \text { if } r_{1} \neq r_{2}
$$

\Rightarrow General solution: $y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}$

CASE 2: $(\alpha-1)^{2}-4 \beta=0 \rightarrow$ only one real solution: $y_{1}=t^{r_{1}}$

$$
r_{1}=r_{2}=-\frac{(\alpha-1)}{2}
$$

A second solution can be found by the method of reduction of order.

However, there is another way to do it which we show here:
Notice that $F(r)=\gamma^{2}+(\alpha-1) r+\beta=0$
$=\left(r-r_{1}\right)^{2}$ in the case of equal roots

$$
\Rightarrow L\left[t^{r}\right]=\left(r-r_{1}\right)^{2} t^{r}
$$

We must find another solution that's linearly independent and satisfies $L\left[y_{2}\right]=0$.

$$
\begin{aligned}
\frac{\partial}{\partial r} L\left[t^{r}\right] & =2\left(r-r_{1}\right) t^{r}+\left(r-r_{1}\right)^{2} \underbrace{t^{r} \ln t}_{\text {deriv vati }} \\
& =t^{r}\left(r-r_{1}\right)\left[2+\left(r-r_{1}\right) \ln t\right]
\end{aligned}
$$

when $r=r_{1} \Rightarrow \frac{\partial}{\partial r} L\left[t^{r}\right]=0$
Thus $L\left[t^{r_{1}} \ln t\right]=0$ which implies that $y_{2}(t)=t^{r_{1}} \ln t$ is a $2^{n d}$ solution.
Since $t^{r_{i}}$ and $t^{r_{i}} \ln t$ are linearly independent, the general solution for the case of equal roots is

$$
y(t)=\left(c_{1}+c_{2} \ln t\right) t^{r}, t>0
$$

CASE 3: $(\alpha-1)^{2}-4 \beta<0 \rightarrow$ complex roots: $\gamma_{1}=\lambda+i \mu$

$$
r_{2}=\lambda-i \mu
$$

with $\lambda=\frac{-(\alpha-1)}{2}, \mu=\frac{\sqrt{4 \beta-(\alpha-1)^{2}}}{2}$
Hence $\phi(t)=t^{r}=t^{\lambda+i \mu=t^{2}\left(t^{i \mu}=\right.}=\begin{aligned} & \left(e^{\ln t)^{i \mu}=}=e^{i \mu \ln t}\right. \\ & =\cos (\mu \ln t)+i \sin (\mu \ln t)\end{aligned}$

$$
=t^{\lambda}[\cos (\mu \ln t)+i \sin (\mu \ln t)]
$$

- complex-valued solution

$$
\left.\begin{array}{rl}
\Rightarrow y_{1}(t) & =\operatorname{Re}\{\phi(t)\} \\
y_{2}(t) & =t^{\lambda} \operatorname{Im}\{\phi(t)\}=t^{\lambda}(\mu \sin (\mu \ln t)
\end{array}\right\} \text { real -valued independent solutions }
$$

Thus, the general solution in the case of complex roots is

$$
y(t)=t^{\lambda}\left[c_{1} \cos (\mu \ln t)+c_{2} \sin (\mu \ln t)\right]
$$

with $\lambda=\frac{-(\alpha-1)}{2}$ and $\mu=\frac{\sqrt{4 \beta-(\alpha-1)^{2}}}{2}$ as above.

Examples. case 1
Find the general solution of $L[y]=t^{2} \frac{d^{2} y}{d t^{2}}+4 t \frac{d y}{d t}+2 y=0, t>0$
\rightarrow Substituting $y=t^{r}$ gives $L\left[t^{r}\right]=[\gamma(r-1)+4 r+2] t^{r}=0$

$$
\begin{aligned}
& \Rightarrow r^{2}-r+4 r+2=r^{2}+3 r+2=(r+2)(r+1)=0 \\
& \Rightarrow r=-2,-1
\end{aligned}
$$

$$
\text { Hence } \begin{aligned}
y(t) & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{-2}+c_{2} t^{-1} \\
& =\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t} .
\end{aligned}
$$

case 2
Find the general solution op $L[y]=t^{2} \frac{d^{2} y}{d t^{2}}-5 t \frac{d y}{d t}+9 y=0, t>0$
\rightarrow Substituting $y=t^{r}$ gives

$$
\begin{aligned}
& L\left[t^{r}\right]=[r(r-1)-5 r+9] t^{r}=0 \\
& \Rightarrow r^{2}-r-5 r+9=r^{2}-6 r+9=(r-3)^{2}=0 \\
& r=3 \text { twice. }
\end{aligned}
$$

$$
y_{1}(t)=t^{3} \text { and } y_{2}(t)=t^{3} \ln t
$$

Hence $y(t)=t^{3}\left(c_{1}+c_{2} \ln t\right), t>0$.
Case 3
Find the general solution of $L[y]=t^{2} \frac{d^{2} y}{d t^{2}}-s t \frac{d y}{d t}+25 y=0 . t>0$
\rightarrow Substituting $y=t^{r}$ gives $L\left[t^{r}\right]=[r(r-1)-5 r+25] t^{r}=0$

$$
\begin{aligned}
& \Rightarrow r^{2}-r-5 r+25=r^{2}-6 r+25=0 \\
& \Rightarrow r_{12}=\frac{6 \pm \sqrt{36-4(25)}}{2}=\frac{6 \pm \sqrt{-64}}{2}=3 \pm 4 i
\end{aligned}
$$

Thus

$$
\begin{aligned}
\phi(t)=t^{3+4 i} & =t^{3}\left(e^{\ln t)^{4 i}}\right. \\
& =t^{3}[\cos (4 \ln t)+i \sin (4 \ln t)] \\
y_{1}(t) & =\operatorname{Re}\{\phi(t)\} \\
y_{2}(t) & =\operatorname{Im}\{\phi(t)\}
\end{aligned}=t^{3} \cos (4 \ln t)(4 \ln t) \quad \$
$$

Hence $\left.y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) \Rightarrow y(t)=t^{3}\left[c_{1} \cos (4 m t)+c_{2} \sin (4) n t\right)\right]$
for $t>0$.
Q : What happens if $t<0$?
A: $y=t^{r}$ may not be defined if $t<0$ $y=t^{r} \ln t$ is not defined if $t<0$.

7 Both of these difficulties are avoided if $t=-x, x>0$
change of variables
Let $y=u(x), x>0$. From the chain rule :

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d u}{d x} \cdot \frac{d x}{d t}=-\frac{d u}{d x} \\
\frac{d^{2} y}{d t^{2}} & =\frac{d}{d t}\left(-\frac{d u}{d x}\right) \\
& =-\frac{d^{2} u}{d x^{2}} \frac{d x}{d t}=-1 \\
& =\frac{d^{2} u}{d x^{2}}
\end{aligned}
$$

Thus, we can write

$$
\begin{aligned}
L[y] & =t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d u}{d t}+\beta y=0 \\
& =(-x)^{2} \frac{d^{2} u}{d x^{2}}+\alpha(-x)\left(-\frac{d u}{d x}\right)+\beta u \\
& =x^{2} \frac{d^{2} u}{d x^{2}}+\alpha x \frac{d u}{d x}+\beta u=0, x>0 .
\end{aligned}
$$

But after this change of variables this equation is exactly the same as before but with t replaced by x and y replaced by u.
Thus, the solutions a re

$$
u(x)=\left\{\begin{array}{lc}
c_{1} x^{r_{1}}+\epsilon_{2} x^{r_{2}}, x^{r_{1}}, & \text { if }(\alpha-1)^{2}-4 \beta>0 \\
\left(c_{1}+c_{2} \ln x\right) x^{2}, & \text { if }(\alpha-1)^{2}-4 \beta=0 \\
x^{\lambda}\left[c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)\right], & \text { if }(\alpha-1)^{2}-4 \beta<0
\end{array}\right.
$$

Notice that $x=-t=|t|$ for $t<0$ which implies that

$$
y(t)=\left\{\begin{array}{l}
c_{1}|t|^{r_{1}}+c_{2}|t|^{r_{2}} \\
\left(c_{1}+c_{2} \ln |t|\right)|t|^{r_{1}} \\
|t|^{\lambda}\left[c_{1} \cos (\mu \ln |t|)+c_{2} \sin (\mu|n| t \mid)\right.
\end{array}\right.
$$

Section 2.8.2: Regular singular points, the method of Frobenius
Can we find a class of singular diff. eqns, more general than the Euler equation $t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0$ but still solvable analytically?

Rewrite it as $y^{\prime \prime}+\frac{\alpha}{t} y^{\prime}+\frac{\beta}{t^{2}} y=0$

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t)$ and $q(t)$ can be expanded in series of the form

$$
\left\{\begin{array}{l}
p(t)=\frac{p_{0}}{t}+p_{1}+p_{2} t+p_{3} t^{2}+\ldots \tag{t}\\
q(t)=\frac{q_{0}}{t^{2}}+\frac{q_{1}}{t}+q_{2}+q_{3} t+q_{4} t^{2}+\ldots
\end{array}\right\}
$$

Definition: $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ is said to have a regular singular point at $t=0$ if $p(t)$ and $q(t)$ have series expansions of the form (t). Equivalently, $t=0$ is a regular singular point of $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ if the functions $t p(t)$ and $t^{2} q(t)$ are analytic at $t=0$.

Example (1) Classify the singular points of Bessel's equation of order v

$$
-t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+\left(t^{2}-v^{2}\right) y=0
$$

Where ν is a constant.
\rightarrow Here $P(t)=t^{2}$ vanishes at $t=0$. Hence $t=0$ is the only singular point. If we divide by t^{2} we get

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+\frac{1}{t} \frac{d y}{d t}+\left(1-\frac{v^{2}}{t^{2}}\right) y=0 \\
\text { "1 } \quad q^{\prime \prime}(t)
\end{gathered}
$$

$t p(t)=1$ and $t^{2} q(t)=t^{2}-v^{2}$ are both analytic at $t=0$.
Thus, Bessel's equation of order v has a regular singular point at $t=0$.

Example (2) Classify the singular points of the Legendre equation

$$
\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0
$$

where α is a constant.
$\left(1-t^{2}\right)$ vanishes at $t= \pm 1$. So the eqn is singular there.
If we divide by $\left(1-t^{2}\right)$ we obtain

$$
\begin{gathered}
y^{\prime \prime}-\frac{2 t}{1-t^{2}} y^{\prime}+\frac{\alpha(\alpha+1)}{1-t^{2}} y=0 \\
p^{\prime \prime}(t) \quad q^{\prime \prime}(t)
\end{gathered}
$$

since $t=1$ is a singular pt
S_{0} :

$$
\begin{aligned}
& (t-1) p(t)=(t-1)\left(\frac{-2 t}{1-t^{2}}\right)=(t-1)\left(\frac{-2 t}{(1-t)(1+t)}\right)=\frac{2 t}{1+t} \\
& (t-1)^{2} q(t)=(t-1)^{2} \frac{\alpha(\alpha+1)}{1-t^{2}}=(t-1)^{2} \frac{\alpha(\alpha+1)}{(1-t)(1+t)}=\alpha(\alpha+1) \frac{1-t}{1+t}
\end{aligned}
$$

which are both analytic at $t=1$.
since $t=-1$ is a singular point

$$
\begin{aligned}
& \text { Similarly, }(t+1) p(t)=(t+1)\left(\frac{-2 t}{1-t^{2}}\right)=(t+1)\left(\frac{-2 t}{(1-t)(1-t)}\right)=\frac{-2 t}{1-t} \\
& \qquad(t+1)^{2} q(t)=(t+1)^{2} \frac{\alpha(\alpha+1)}{1-t^{2}}=(t+1)^{2} \frac{\alpha(\alpha+1)}{(1-t)(1+t)}=\alpha(\alpha+1) \frac{t+1}{1-t} \\
& \text { which are also both analytic at } t=-1
\end{aligned}
$$

Hence $t=-1$ and $t=1$ are regular singular points.

FROBENIUS METHOD
We consider again $[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ where $t=0$ is a regular singular point.
If we multiply throughout by t^{2} we get

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t(t p(t)) y^{\prime}+t^{2} q(t) y=0 \tag{*}
\end{equation*}
$$

Recall: Euler's equation $t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0$
So $(*)$ is viewed as being obtained from Euler's equation by adding higher powers of t to the coefficients α and β.
let's try solutions of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}=t^{r} \sum_{n=0}^{\infty} a_{n} t^{n}
$$

Example Find two linearly independent solutions of the equation

$$
L[y](t)=2 t y^{\prime \prime}+y^{\prime}+t y=0, \quad 0<t<\infty
$$

Let $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}, a_{0} \neq 0$

$$
\begin{aligned}
& y^{\prime}(t)=\sum_{n=0}^{\infty} a_{n}(n+r) t^{n+r-1} \\
& y^{\prime \prime}(t)=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r-2}
\end{aligned}
$$

Plugging them into the diff.eqn. we get

$$
\begin{aligned}
L(y]= & 2 t \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r-2}+\sum_{n=0}^{\infty} a_{n}(n+r) t^{n+r-1}+t \sum_{n=0}^{\infty} a_{n} t^{n+r} \\
= & 2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n+r-1}+\sum_{n=0}^{\infty} a_{n}(n+r) t^{n+r-1}+\sum_{n=0}^{\infty} a_{n} t^{n+r+1} \\
& P u \| l \text { out } t^{r} \\
= & t^{r}\left[2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) t^{n-1}+\sum_{n=0}^{\infty} a_{n}(n+r) t^{n-1}+\sum_{n=0}^{\infty} a_{n} t^{n+1}\right] \\
\text { let's make all of them start at } n=2_{\sum_{n=2}^{\infty} a_{n-2} t^{n-1}}^{=} & t^{r}\left[2 a_{0} r(r-1) t^{-1}+2 a_{1}(1+r) r+2 \sum_{n=2}^{\infty} a_{n}(n+r)(n+r-1) t^{n-1}\right. \\
& \quad+a_{0} r t^{-1}+a_{1}(1+r)+\sum_{n=2}^{\infty} a_{n}(n+r) t^{n-1} \\
& \left.+\sum_{n=2}^{\infty} a_{n-2} t^{n-1}\right] \\
= & {\left[2 a_{0} r(r-1)+a_{0} r\right] t^{r-1}+\left[2 a_{1}(1+r) r+a_{1}(1+r)\right] t^{r} } \\
& +\sum_{n=2}^{\infty}\left[2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}\right] t^{n+r-1} \\
= & 0
\end{aligned}
$$

Setting the coefficients of each power of t equal to zero gives
(i) $2 a_{0} r(r-1)+a_{0} r=0 \rightarrow 2 a_{0} r^{2}-2 a_{0} r+a_{0} r=2 a_{0} r^{2}-a_{0} r=$ $a_{0} r(2 r-1)=0$
(ii) $2 a_{1}(1+r) r+a_{1}(1+r)=0 \rightarrow a_{1}(1+r)[2 r+1]=0$ $r=0, r=\frac{1}{2}$
(iii) $2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}=0 \quad \downarrow$ bot since $r=0, r=\frac{1}{2}$ from (i), the (ii) implies that $a_{1}=0$

$$
\begin{aligned}
& a_{n}(n+r)[2(n+r-1)+1]=-a_{n-2} \\
& a_{n}=\frac{-a_{n-2}}{(n+r)(2(n+r)-1)} \text { for } n \geqslant 2
\end{aligned}
$$

Solution 1:

$$
r=0 \quad a_{n}=\frac{-a_{n-2}}{n(2 n-1)}, n \geqslant 2
$$

and since $a_{1}=0$ from (ii) we have that all the odd coefficients are zens. The even cerf. are:

$$
\begin{array}{ll}
n=2: & a_{2}=\frac{-a_{0}}{2(3)} \\
n=4: & a_{4}=\frac{-a_{2}}{4(7)}=-\frac{1}{4 \cdot 7} \cdot \frac{-a_{0}}{2 \cdot 3}=\frac{a_{0}}{2 \cdot 3 \cdot 4 \cdot 7} \\
n=6: & a_{6}=\frac{-a_{4}}{6(11)}=-\frac{1}{6 \cdot 11} \cdot \frac{a_{0}}{2 \cdot 3 \cdot 4 \cdot 7}=-\frac{a_{0}}{2 \cdot 3 \cdot 4 \cdot 6 \cdot 7 \cdot 11}
\end{array}
$$

overall, $a_{2 n}=\frac{(-1)^{n} a_{0}}{2 \cdot 3 \cdot(2 n)(2(2 n)-1)}=\frac{(-1)^{n} a_{0}}{2^{n} n!(4 n-1) \cdot 3 \cdot 7 \cdots}$

If we set $a_{0}=1$ then

$$
\begin{aligned}
y_{1}(t) & =a_{0}+a_{2} t^{2}+a_{4} t^{4}+\cdots \\
& =1-\frac{1}{2 \cdot 3} t^{2}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 7} t^{4}+\cdots \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} t^{2 n}}{2^{n} n!(4 n-1) \cdot 37 \cdots}
\end{aligned}
$$

is one solution of the diff. egn

Solution 2
$r=\frac{1}{2}$ Recall that we obtained the recurrence relation

$$
a_{n}=\frac{-a_{n-2}}{(n+r)(2(n+r)-1)} \text { for } n \geqslant 2
$$

Subst. $r=\frac{1}{2}$ we get $a_{n}=\frac{-a_{n-2}}{\left(n+\frac{1}{2}\right)\left(2\left(n+\frac{1}{2}\right)-1\right)}$

$$
\begin{aligned}
= & \frac{-a_{n-2}}{\frac{1}{2}(2 n+1)\left(\frac{12}{2}(2 n+1)-1\right)} \\
& =\frac{-2 a_{n-2}}{(2 n+1)(2 n+1-x)} \\
\Rightarrow a_{n} & =\frac{-a_{n-2}}{n(2 n+1)}, n \geqslant 2
\end{aligned}
$$

All the odd coefficients are as before zen since from (ii) we got $a_{1}=0$. The even coefficients are now given by

$$
\begin{array}{ll}
n=2 & a_{2}=\frac{-a_{0}}{2(5)} \\
n=4 & a_{4}=\frac{-a_{2}}{4(9)}=-\frac{1}{4(9)} \cdot \frac{-a_{0}}{2 \cdot 5}=\frac{a_{0}}{2 \cdot 4 \cdot 5 \cdot 9} \\
n=6 & a_{6}=\frac{-a_{4}}{6(13)}=-\frac{1}{6.13} \frac{a_{0}}{2 \cdot 4 \cdot 5 \cdot 9}=\frac{-a_{0}}{2 \cdot 4 \cdot 5 \cdot 6 \cdot 9 \cdot 13}
\end{array}
$$

Setting $a_{0}=1$ we get that the $2^{\text {nd }}$ solution is given by

$$
\begin{aligned}
y_{2}(t) & =a_{0}+a_{2} t^{2}+a_{4} t^{4}+\cdots \\
& =1-\frac{1}{2 \cdot 5} t^{2}+\frac{1}{2 \cdot 4 \cdot 5 \cdot 9} t^{4}+\cdots \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!2^{n}(4 n+1) 5 \cdot 9 \cdot \cdots} \quad, \quad 0<t<\infty .
\end{aligned}
$$

CHAPTER 3: Systems of differential equations
Section 3.1 Algebraic properties of solutions of linear systems We consider simultaneous $1^{\text {st }}$-order diff. equations in several variables:

$$
\left.\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
\frac{d x_{2}}{d t}=f_{2}\left(t, x_{1}, \ldots, x_{n}\right) \\
\vdots \\
\frac{d x_{n}}{d t}=f_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{array}\right\} \begin{aligned}
& \text { system of } n \text { first -order } \\
& \text { differential equations }
\end{aligned}
$$

The solution is n functions $x_{1}(t), \ldots, x_{n}(t)$ s.t. $\frac{d x_{j}}{d t}(t)=f_{j}\left(t, x_{1}(t), \ldots, x_{n}(t)\right.$, $j=1,2, \ldots, n$. We conn also impose initial conditions of the form

$$
\begin{aligned}
& x_{1}\left(t_{0}\right)=x_{1}^{0} \\
& x_{2}\left(t_{0}\right)=x_{2}^{0} \\
& \vdots \\
& x_{n}\left(t_{0}\right)=x_{n}^{0} .
\end{aligned}
$$

This would then make it an initial-value problem.
Note: Every $n^{\text {th}}$-order differential equation for the single variable y wan be converted into a system of n first-order equations for the variables

$$
x_{1}(t)=y, x_{2}(t)=\frac{d y}{d t}, \ldots, x_{n}(t)=\frac{d^{n-1} y}{d t^{n-1}}
$$

Example Convert the diff. eqn.

$$
a_{n}(t) \frac{d^{n} y}{d t^{n}}+a_{n-1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{0} y=0
$$

into a system of n first-order equations.

Let $x_{1}(t)=y, x_{2}(t)=\frac{d y}{d t}, \ldots, x_{n}(t)=\frac{d^{n-1} y}{d t^{n-1}}$

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=\frac{d y}{d t}=x_{2} \\
& \frac{d x_{2}}{d t}=\frac{d^{2} y}{d t^{2}}=x_{3} \\
& \vdots \\
& \frac{d x_{n-1}}{d t}=x_{n}
\end{aligned}
$$

and this implies that

$$
\begin{aligned}
& a_{n}(t) \frac{d x_{n}}{d t}+a_{n-1}(t) x_{n}+a_{n-2}(t) x_{n-1}+\cdots+a_{0} x_{1} \\
\Rightarrow & \frac{d x_{n}}{d t}=\frac{-\left(a_{n-1}(t) x_{n}+a_{n-2}(t) x_{n-1}+\cdots+a_{0} x_{1}\right)}{a_{n}(t)}
\end{aligned}
$$

Example : Convert the IVP $\frac{d^{3} y}{d t^{3}}+\left(\frac{d y}{d t}\right)^{2}+3 y=e^{t} ; y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=0$ into an IVP for $y_{1} \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}$
$\rightarrow \operatorname{set} x_{1}=y, \frac{d x_{1}}{d t}=\frac{d y}{d t}=x_{2}, \frac{d x_{2}}{d t}=\frac{d^{2} y}{d t^{2}}=x_{3}, \frac{d x_{3}}{d t}=\frac{d^{3} y}{d t^{3}}$

$$
\frac{d x_{3}}{d t}+x_{2}^{2}+3 x_{1}=e^{t}
$$

Thus the system of 1 st order diff-eqns is

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t}=x_{2} \\
\frac{d x_{2}}{d t}=x_{3} \\
\frac{d x_{3}}{d t}=-x_{2}^{2}-3 x_{1}+e^{t}
\end{array}\right.
$$

We also have to convert the initial conditions

$$
\begin{gathered}
y(0)=1 \Rightarrow x_{1}(0)=1 \\
y^{\prime}(0)=0 \Rightarrow x_{2}(0)=0 \\
y^{\prime \prime}(0)=0 \Rightarrow x_{3}(0)=0
\end{gathered}
$$

If each of the functions $f_{1}, f_{2}, \ldots, f_{n}$ is a linear function of the dependent variables x_{1}, \ldots, x_{n} then the system of equations is said to be linear.
Most general system of n first-order linear equations hos the form

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=a_{n}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+g_{1}(t) \\
& \vdots \\
& \frac{d x_{n}}{d t}=a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+g_{n}(t)
\end{aligned}
$$

r if each of g_{1}, g_{2}, \ldots $\downarrow g_{n}$ is identically zero then the system is homogeneous.
otherwise, it's called non homogeneous

Example

$$
\begin{aligned}
& \frac{d x}{d t}=x_{1}-x_{2}+x_{3}, \quad x_{1}(0)=1 \\
& \frac{d x_{2}}{d t}=3 x_{2}-x_{3}, \quad x_{2}(0)=0 \\
& \frac{d x_{3}}{d t}=x_{1}+7 x_{3}, \quad x_{3}(0)=-1 \\
& \underline{x}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 3 & -1 \\
1 & 0 & 7
\end{array}\right) \underline{x}, \underline{x}(0)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \text { where } \underline{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

constant c
Definitions (1) $c \underline{x}=c\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{n}\end{array}\right)=\binom{c x_{1}}{c x_{2}}$. The process of multiplying a vector \underline{x} by a number c is called scalar multiplication
(2) $\underline{x}+\underline{y}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ \vdots\end{array}\right)+\binom{y_{1}}{y_{2}}=\binom{x_{1}+y_{1}}{x_{2}+y_{2}}$. This process of adding two vectors together is collied vector addition

Theorem: Let $\underline{x}(t)$ and $y(t)$ be two solutions of $\underline{x}=\frac{d \underline{x}}{d t}=A \underline{x}$. Then
(i) $c \underline{x}(t)$ is a Solution for any constant c
(ii) $\underline{x}(t)+y(t)$ is again a solution

Coma : Let A be an $n \times n$ matrix. for any rectors x and y and constant c.
(i) $A(c \underline{x})=c A \underline{x}$
(ii) $A(\underline{x} \pm y)=A \underline{x}+A y$

Proof of theorem: (i) If $\underline{x}(t)$ is a solution of $\underline{x}=\frac{d x}{d t}=A \underline{x}$ then

$$
\frac{d(c \underline{x})}{d t}=c \frac{d \underline{x}}{d t}=c A \underline{x}=A(c \underline{x})
$$

Hence $c \underline{x}$ is also a solution
(ii) If $x(t)$ and $y(t)$ are solutions of $\dot{x}=\frac{d \underline{x}}{d t}=A \underline{x}$ then

$$
\frac{d}{d t}(\underline{x}+y)=\frac{d \underline{x}}{d t}+\frac{d y}{d t}=A \underline{x}+A y=A(\underline{x}+y)
$$

Hence $x(t)+y(t)$ is also a solution
Note: Any linear combination of solutions of $\frac{d x}{d t}=A \underline{x}$ is again a solution. i.e. if $\underline{x}^{\prime}(t), \ldots, \underline{x}^{j}(t)$ are j solutions of $\frac{d x}{d t}=A \underline{x}$ then $c_{1} \underline{x}^{\prime}(t)+\cdots+c^{j} \underline{x}^{j}(t)$ is again a solution for any choice of the constants $\frac{d x}{d t}, c_{2}, \ldots, c_{j}$.

Example Consider $\frac{d x_{1}}{d t}=x_{2}, \frac{d x_{2}}{d t}=-4 x_{1}$

$$
\Rightarrow \frac{d}{d t}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

This is derived from $\frac{d^{2} y}{d t^{2}}+4 y=0 \quad$ losing $x_{1}=y, \frac{d y}{d t}=x_{2}$) $\left.\begin{array}{rl}r^{2}+4=0 \Rightarrow r= \pm 2 i \Rightarrow y_{1}(t)=\cos (2 t) \\ y_{2}(t) & =\sin (2 t)\end{array}\right\}$ two solutions of the scalar equation.
e.g. $\quad x_{1}=y_{1}=\cos (2 t), \quad \tilde{x}_{1}=y_{2}=\sin (2 t)$

$$
\begin{aligned}
& x_{2}=\frac{d y_{1}}{d t}=-2 \sin (2 t), \tilde{x}_{2}=\frac{d y_{2}}{d t}=2 \cos (2 t) \\
& x(t)=\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{\cos (2 t)}{-2 \sin (2 t)}+c_{2}\binom{\sin (2 t)}{2 \cos (2 t)}=\binom{c_{1} \cos (2 t)+c_{2} \sin (2 t)}{-2 c \sin (2 t)+x_{2} \cos (2 t)} \\
& \text { is a solution for any choice of constants } c_{1} \text { and } c_{2}
\end{aligned}
$$

Section 3.8 : The eigenvalue-eigenvector method of finding solutions

$$
\dot{\vec{x}}=A \vec{x}, \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

From before: both $1^{\text {st }}$ order and $2^{\text {nd }}$ order linear homogeneous scalar eqns have exponential functions as solutions.
Let's fry $\vec{x}(t)=e^{\lambda t} \vec{v}$ where \vec{v} is a constant vector.

$$
\frac{d \vec{x}}{d t}=\lambda e^{\lambda t} \vec{v}=\lambda \vec{x}(t)
$$

and we also have $A\left(e^{\lambda t} \vec{v}\right)=e^{\lambda t} A \vec{v}$
Hence $\vec{x}(t)=e^{\lambda t} \vec{v}$ is a solution if and only if $\lambda e^{\lambda t} \vec{v}=e^{\lambda t} A \vec{v}$
Divide by $e^{\text {at }}$

$$
\lambda \vec{v}=A \vec{v} \quad(x)
$$

Def. A nonzero vector \vec{v} satisfying this condition is called an eigenvector of A with eigenvalue λ.

We cos rewrite (x) as $A \vec{V}-\lambda \vec{V}=\overrightarrow{0}$

$$
\begin{equation*}
\Rightarrow(A-\lambda I) \vec{v}=\overrightarrow{0} \tag{f}
\end{equation*}
$$

(t) has a nonzero solution \vec{V} only if $\operatorname{det}(A-\lambda I)=0$

$$
\text { i.e. } \quad \operatorname{det}\left(\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & \cdots & a_{n 2} & \cdots \\
a_{n n}-\lambda
\end{array}\right)=0
$$

Note for \vec{v} an evector of A with evalue λ :

$$
A(c \vec{v})=c A \vec{v}=c \lambda \vec{v}=\lambda(c \vec{v})
$$

for any constant c. So any constant multiple $(C \neq 0)$ of an evector of A is again an evector of A with the same evalue.

The general solution of $\dot{\vec{x}}=A \vec{x}$ is

$$
\vec{x}(t)=c_{1} e^{\lambda_{1} t} \vec{v}^{1}+c_{2} e^{\lambda_{2} t} \vec{v}^{2}+\cdots+c_{n} e^{\lambda_{n} t} \vec{v}^{n} .
$$

Thu When the matrix A has n distinct real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ w/ eigenvectors $\vec{v}^{\prime}, \vec{v}^{2}, \ldots, \vec{v}^{n}$, we are guaranteed that $\vec{V}^{\prime}, \vec{v}^{2}, \ldots, \vec{v}^{n}$ are linearly independent.

Example Find all solutions of the equation

$$
\dot{\vec{x}}=\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \vec{x}
$$

\rightarrow The characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right)$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}
1-\lambda & -1 & 4 \\
3 & 2-\lambda & -1 \\
2 & 1 & -1-\lambda
\end{array}\right)=0 \\
\Rightarrow & (1-\lambda)[(2-\lambda)(-1-\lambda)+1]+1[3(-1-\lambda)+2]+4[3-2(2-\lambda)]=0 \\
\Rightarrow & -(1-\lambda)(1+\lambda)(2-\lambda)+(1-\lambda)+[-3-3 \lambda+2]+4[3-4+2 \lambda]=0 \\
\Rightarrow & -(1-\lambda)(1+\lambda)(2-\lambda)+\underbrace{(-\lambda-3 \lambda-1+[-4+8 \lambda]}_{4 \lambda-4=4(\lambda-1)}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-(1-\lambda)[\underbrace{(1+\lambda)(2-\lambda)+4}_{-\lambda^{2}+\lambda+6}]=0 \\
& =-\left(\lambda^{2}-\lambda-6\right) \\
& =-(\lambda-3)(\lambda+2) \\
& \Rightarrow(1-\lambda)(\lambda-3)(\lambda+2)=0 \\
& \Rightarrow \lambda=-2,1,3
\end{aligned}
$$

Now let's find the eigenvectors:
(1)

$$
\begin{aligned}
& \lambda_{1}=-2 \quad(A-\lambda I) \vec{v}=\left(\begin{array}{ccc}
1-(-2) & -1 & 4 \\
3 & 2-(-2) & -1 \\
2 & 1 & -1-(-2)
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
3 & -1 & 4 \\
3 & 4 & -1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
&=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \begin{array}{l}
3 v_{1}-v_{2}+4 v_{3}=0 \\
3 v_{1}+4 v_{2}-v_{3}=0 \\
2 v_{1}+v_{2}+v_{3}=0
\end{array} \Rightarrow v_{3}=3 v_{1}+4 v_{2} \Rightarrow 3 v_{1}-v_{2}+4\left(3 v_{1}+4 v_{2}\right)=0 \\
& \Rightarrow 15 v_{1}+15 v_{2}=0 \\
& v_{1}+v_{2}=0
\end{aligned}
$$

Thus $v_{3}=3 v_{1}+4\left(-v_{1}\right)=-v_{1}$

$$
V_{2}=V_{3}
$$

Thus $\vec{v}=c\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue -2 . This implies that part of the solution is $\vec{x}(t)=e^{\lambda_{1} t \nabla_{1}}=e^{-2 t}\left[\begin{array}{c}-\eta \\ 1 \\ 1\end{array}\right]$.

Now let's do the same for the other eigenvalues.
(2) $\lambda_{2}=1$

$$
\begin{aligned}
\left(A-\lambda_{2}\right) \vec{v}= & \left(\begin{array}{ccc}
1-1 & -1 & 4 \\
3 & 2-1 & -1 \\
2 & 1 & -1-1
\end{array}\right) \vec{v}=\left(\begin{array}{ccc}
0 & -1 & 4 \\
3 & 1 & -1 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& -v_{2}+4 v_{3}=0 \\
3 v_{1}+v_{2}-v_{3}=0 & \Rightarrow 3 v_{1}+4 v_{3}-v_{3}=0 \\
& \Rightarrow 3 v_{1}=-3 v_{3} \\
& \Rightarrow v_{1}=-v_{3}
\end{aligned}
$$

Thus $\vec{v}=\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$ is an eigenvector of A with eigenvalue $\lambda=1$. This implies that part of the solution is $\vec{x}(t)=e^{\lambda_{2} t} \vec{v}_{2}=e^{t}\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$
(3)

$$
\begin{aligned}
& \left(3-\lambda_{3}=3 \quad\left(A-\lambda_{3}\right) \vec{v}=\left(\begin{array}{ccc}
1-3 & -1 & 4 \\
3 & 2-3 & -1 \\
2 & 1 & -1-3
\end{array}\right) \vec{v}=\left(\begin{array}{ccc}
-2 & -1 & 4 \\
3 & -1 & -1 \\
2 & 1 & -4
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right. \\
& \Rightarrow-2 v_{1}-v_{2}+4 v_{3}=0 \\
& 3 v_{1}-v_{2}-v_{3}=0 \\
& 2 v_{1}+v_{2}-4 v_{3}=0
\end{aligned}>v_{3}=3 v_{1}-v_{2} .
$$

Thus $\vec{v}=c\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ is an eigenvector of A with eigenvalue $\lambda=3$. This implies that part of the solution is $\vec{x}(t)=e^{\lambda_{3} t} \vec{v}_{3}=e^{3 t}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$

Therefore, the general solution is

$$
\begin{aligned}
\vec{x}(t) & =c_{1} e^{-2 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
-c_{1} e^{-2 t}-c_{2} e^{t}+c_{3} e^{3 t} \\
c_{1} e^{-2 t}+4 c_{2} e^{t}+2 c_{3} e^{3 t} \\
c_{1} e^{-2 t}+c_{2} e^{t}+c_{3} e^{3 t}
\end{array}\right)
\end{aligned}
$$

What do we do in the case of an IVP?
Same as prenously...
Example Solve the IUP $\dot{\vec{x}}=\left(\begin{array}{ll}1 & 12 \\ 3 & 1\end{array}\right) \vec{x}$ with $\vec{x}(0)=\binom{0}{1}$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 \Rightarrow & (1-\lambda)^{2}-36=0 \\
& \lambda^{2}-2 \lambda+1-36=0 \\
& \lambda^{2}-2 \lambda-35=0 \\
& (\lambda+5)(\lambda-7)=0 \\
& \lambda=-5.7
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{1}=-5 \Rightarrow\left(\begin{array}{cc}
6 & 12 \\
3 & 6
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow 6 v_{1}+12 v_{2}=0 & \Rightarrow v_{1}=-2 v_{2} \\
& \Rightarrow \vec{v}=c\binom{-2}{1}
\end{aligned}
$$

$$
\begin{gathered}
\lambda_{2}=7 \Rightarrow\left(\begin{array}{cc}
-6 & 12 \\
3 & -6
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow-6 v_{1}+12 v_{2}=0 \Rightarrow v_{1}=2 v_{2} \\
\vec{v}=c\binom{2}{1} \\
\vec{x}(t)=c_{1}\binom{-2}{1} e^{-5 t}+c_{2}\binom{2}{1} e^{7 t}=\binom{-2 c_{1} e^{-5 t}+2 c_{2} e^{7 t}}{c_{1} e^{-5 t}+c_{2} e^{7 t}}
\end{gathered}
$$

Now using $\vec{x}(0)=\binom{0}{1} \Rightarrow \begin{array}{r}-2 c_{1}+2 c_{2}=0 \Rightarrow c_{1}=c_{2} \\ c_{1}+c_{2}=1\end{array}$

$$
\begin{aligned}
c_{1}+c_{2}=1 & \Rightarrow c_{1}=\frac{1}{2} \\
& \Rightarrow c_{2}=\frac{1}{2}
\end{aligned}
$$

This implies that the solution to this IUP is

$$
\vec{x}(t)=\binom{-e^{-5 t}+e^{7 t}}{\frac{1}{2} e^{-5 t}+\frac{1}{2} e^{7 t}}
$$

Section 3.9: Complex roots
Lemma if $\lambda=\alpha+i \beta$ is a complex evalue of A with ejector $\vec{v}=\vec{y}+i \vec{z}$, then $\vec{x}(t)=e^{\lambda t} \vec{v}$ is a complex-valued solution of the eq. $\dot{\vec{x}}=A \vec{x}$.
Gives two real-valued solutions.
Pf If $\vec{v}(t)=\vec{y}(t)+i \vec{z}(t)$ is a complex - valued solution of $\dot{\vec{v}}=A \vec{v}$ then

$$
\begin{aligned}
\dot{\vec{v}}(t) & =\dot{\vec{y}}(t)+i \dot{\vec{z}}(t) \\
A \vec{v} & =A(\vec{y}+i \vec{z}) \\
& =A \vec{y}+i A \vec{z}
\end{aligned}
$$

Since $\dot{\vec{v}}=A \vec{v}$ we have $\dot{\vec{y}}+i \dot{\vec{z}}=A \vec{y}+i A \vec{z}$
Equating the real and imaginary parts we howe:
Re: $\quad \dot{\vec{y}}=A \vec{y}$
In: $\dot{\vec{z}}=A \vec{z}$
So both $\vec{y}(t)=\operatorname{Re}\{\vec{v}(t)\}$ and $\vec{z}(t)=\operatorname{Im}\{\vec{v}(t)\}$ are real-valued solutions of $\dot{\vec{v}}=A \vec{v}$.

Note. The complex-valued function $\vec{v}(t)=e^{(\alpha+i \beta) t}\left(\vec{v}^{\prime}+i \vec{v}^{2}\right)$ can be writhen as identity: $e^{i \beta t}=\cos (\beta t)+i \sin (\beta t)$

$$
\begin{aligned}
\vec{v}(t) & =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))\left(\vec{v}^{\prime}+i \vec{v}^{2}\right) \\
& =e^{\alpha t}\left[\left(\vec{v}^{\prime} \cos (\beta t)-\vec{v}^{2} \sin (\beta t)\right)+i\left(\vec{v}^{\prime} \sin (\beta t)+\vec{v}^{2} \cos (\beta t)\right)\right] \\
& =\vec{y}(t)+i \vec{z}^{2}(t)
\end{aligned}
$$

Thus $\vec{y}(t)=e^{\alpha t}\left[\vec{v}^{\prime} \cos (\beta t)-\vec{v}^{2} \sin (\beta t)\right]$ are tho real-valued solutions of $\vec{r}=A \vec{v}$,

$$
\vec{z}(t)=e^{\alpha t}\left[\vec{v}^{\prime} \sin (\beta t)+\vec{v}^{2} \cos (\beta t)\right]
$$

and they are also linearly independent.

Example. Solve the IVP: $\dot{\vec{x}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right) \vec{x}, \vec{x}(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & -1 \\
0 & 1 & 1-\lambda
\end{array}\right)=0 \Rightarrow(1-\lambda)\left[(1-\lambda)^{2}+1\right]=0 \\
& \Rightarrow \quad(1-\lambda)\left(\lambda^{2}-2 \lambda+1+1\right)=0 \\
& \Rightarrow(1-\lambda)\left(\lambda^{2}-2 \lambda+2\right)=0 \\
& \lambda=1 \quad \lambda=\frac{2 \pm \sqrt{4^{-4(2)}}}{2}=1 \pm i \\
& \lambda=1 \Rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \vec{v}=c\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text {. Thus } \vec{x}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t} \\
& \lambda=1+i \Rightarrow\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & -1 \\
0 & 1 & -i
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \quad \begin{array}{l}
v_{2}-i v_{3}=0 \\
v_{2}=i v_{3}
\end{array} \\
& \vec{v}=c\left(\begin{array}{l}
0 \\
i \\
1
\end{array}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\vec{x}=c_{2}\left(\begin{array}{l}
0 \\
i \\
1
\end{array}\right) e^{(1+i) t} & =c_{2}\left[\begin{array}{c}
0 \\
i \\
1
\end{array}\right) e^{t}(\cos t+i \sin t) \\
& =c_{2} t\left[\left(\begin{array}{c}
0 \\
-\sin t \\
\cos t
\end{array}\right)+i\left(\begin{array}{c}
0 \\
\cos t \\
\sin t
\end{array}\right)\right]
\end{aligned}
$$

Thus $\vec{x}^{2}(t)=e^{t}\left(\begin{array}{c}0 \\ -\sin t \\ \text { cost } t\end{array}\right), \vec{x}^{3}(t)=e^{t}\left(\begin{array}{c}0 \\ \cos t \\ \operatorname{sint} t\end{array}\right)$, are real-valued solutions.
The three solutions $\vec{x}^{\prime}(t), \vec{x}^{2}(t), \vec{x}^{3}(t)$ are linearly independent since their initial values

$$
\vec{x}^{\prime}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \vec{x}^{2}(0)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \vec{x}^{3}(0)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

are linearly independent vectors.
The general solution is $\vec{x}(t)=c_{1} e^{t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}0 \\ -\sin t \\ \cos t\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}0 \\ \cos t \\ \sin t\end{array}\right)$
Setting $t=0$ we see that

$$
\begin{aligned}
& \quad\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
c_{1} \\
c_{3} \\
c_{2}
\end{array}\right) \\
& \Rightarrow c_{1}=1=c_{2}=c_{3}
\end{aligned}
$$

Thus the particular solution is

$$
\vec{x}(t)=e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+e^{t}\left(\begin{array}{c}
0 \\
-\sin t \\
\cos t
\end{array}\right)+e^{t}\left(\begin{array}{c}
0 \\
\cos t \\
\sin t
\end{array}\right)=e^{t}\binom{\sin t+\cos t}{\cos t+\sin t}
$$

Note If \vec{v} is an eigenvector of A with eigenvalue λ. then \vec{v} (the complex conjugate of \vec{v}) is an eigenvector of A with eigenvalue $\bar{\lambda}$.

Section 3.10: Equal roots
If $\operatorname{det}(A-\lambda I)=0$ does not have n distinct roots then A may not have n linearly independent eigenvectors.

Suppose that an $n \times n$ matrix A has only $k<n$ linearly independent eigenvectors. Then the diff. eqn. $\overrightarrow{\dot{x}}=A \vec{x}$ has only k linearly indef. solutions of the form $e^{\lambda t} \vec{v}$.
Q: How do we find an additional $n-k$ linearly independent solutions?
A: Since for a scalar diff. eqn we used $x(t)=e^{a t} c$ as the solution to $\dot{x}=a x$. for a constant C, we use $\vec{x}(t)=e^{A t} \vec{v}$ as the solution to the vector diff. eqn $\vec{x}=A \vec{x}$ for every constant vector \vec{v}.
What is $e^{A t}$ for A, a matrix?

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\cdots+\frac{A^{n} t^{n}}{n!}+\cdots
$$

We can also differentiate this infinite series term by term:

$$
\begin{aligned}
\frac{d}{d t}\left(e^{A t}\right) & =A+A^{2} t+\cdots+\frac{A^{n+1}}{n!} t^{n}+\cdots \\
& =A\left[I+A t+\cdots+\frac{A^{n}}{n!} t^{n}+\cdots\right] \\
& =A e^{A t}
\end{aligned}
$$

Therefore, $e^{A t} \vec{v}$ is a solution of $\overrightarrow{\dot{x}}=A \vec{x}$ for even g constant vector \vec{v} since

$$
\frac{d}{d t}\left[e^{A t} \vec{v}\right)=A e^{A t} \vec{v}=A\left(e^{A t} \vec{v}\right) .
$$

Properties. $\left(e^{A t}\right)^{-1}=e^{-A t}$ and $e^{A(t+s)}=e^{A t} e^{A s}$
Q. How do we find n linearly independent vectors \vec{v} for which the infinite series $e^{\text {At }} \vec{V}$ can be summed exactly?
A. $\quad e^{A t} \vec{v}=e^{(A-\lambda I) t} e^{\lambda I t} \vec{v}$ for any constant λ. Note $(A-\lambda I) \lambda I=\lambda I(A-\lambda I)$.

$$
e^{\lambda I t} \vec{v}=\left[I+\lambda I t+\frac{(\lambda I t)^{2}}{2!}+\cdots\right] \vec{v}=\left[1+\lambda t+\frac{\lambda^{2} t^{2}}{2!}+\cdots\right] \vec{v}=e^{\lambda t} \vec{v}
$$

Thus, $e^{A t} \vec{v}=e^{\lambda t} e^{(A-\lambda I) t} \vec{v}$.
Note also that if $(A-\lambda I)^{m} \vec{v}=\overrightarrow{0}$ for some integer m then $(A-\lambda I)^{m+l} \vec{v}$ is also zero for every positive integer l.

$$
(A-\lambda I)^{m+l} \vec{v}=(A-\lambda I)^{l}\left[(A-\lambda I)^{m} \vec{v}\right]=\overrightarrow{0}
$$

This implies that

$$
\begin{aligned}
e^{(A-\lambda I) t} \vec{v} & =\left[I+(A-\lambda I) t+\frac{(A-\lambda I)^{2} t^{2}}{2!}+\cdots+\frac{(A-\lambda I)^{m-1}}{(m-1)!} t^{m-1}\right] \vec{v} \\
& =\vec{v}+t(A-\lambda I) \vec{v}+t^{2} \frac{(A-\lambda I)^{2}}{2!} \vec{v}+\cdots t^{m-1} \frac{(A-\lambda I)^{m-1}}{(m-1)!} \vec{v}
\end{aligned}
$$

But we also showed that $e^{A t} \vec{v}=e^{\lambda t} e^{(A-\lambda I) t} \vec{v}$ which implies that

$$
e^{A t} \vec{v}=e^{\lambda t}\left[\vec{v}+t(A-\lambda I) \vec{v}+t^{2} \frac{(A-\lambda I)^{2}}{2!} \vec{v}+\cdots+t^{m-1} \frac{(A-\lambda I)^{m-1}}{(m-1)!} \vec{v}\right]
$$

Algorithm for finding n linearly independent solutions of $\overrightarrow{\dot{x}}=A \vec{x}$:
(1) Find all eigenvalues and eigenvectors of A.

If A has n linearly independent eigenvectors, then $\vec{x}=A \vec{x}$ has n linearly independent solutions of the form $e^{\lambda t} \vec{v}$.
Note. If \vec{v} is an eigenvector of A with eigenvalue λ then the infinite series $e^{(A-\lambda I) t} \vec{v}$ terminates after 1 term.
(2) Suppose A has only $k<n$ linearly independent eigenvectors

We have only k linearly independent solutions of the form $e^{\lambda t} \vec{v}$. For additional solutions we pick an eigenvalue λ of A and find \vec{v} s.t. $(A-\lambda I)^{2} \vec{v}=\overrightarrow{0}$ but $(A-\lambda I) \vec{v} \neq \overrightarrow{0}$.
For each $\vec{v}: \quad e^{A t} \vec{v}=e^{\lambda t} e^{(A-\lambda I) t} \vec{v}=e^{\lambda t}\left[\vec{v}+t(A-\lambda I) \vec{v}+t^{2}(\theta-\lambda I)^{2} \vec{v}+\ldots\right]$ is an additional solution of $\overrightarrow{\dot{x}}=A \vec{x}$. We repeat this \forall eigenvalues λ of A.
(3) If there are still not enough solutions, then we find all vectors \vec{v} s.t.

$$
(A-\lambda I)^{3} \vec{v}=\overrightarrow{0} \text { but }(A-\lambda I) \vec{v} \neq \overrightarrow{0} \text {. }
$$

For each $\vec{v}: \quad e^{A t} \vec{v}=e^{\lambda t} \int(A-\lambda I) t \vec{v}=e^{\lambda t}\left[\vec{v}+t(A-\lambda I) \vec{v}+t^{2} \frac{(A-\lambda I)^{2} \vec{v}}{2!}+\frac{t^{3}(A-\lambda I)^{3} \vec{v}}{3!}\right.$ is an additional solution of $\overrightarrow{\dot{x}}=A \vec{x}$.

$$
+\cdots]
$$

(4) We repeat this process until we obtain n linearly independent solutions.

Example. Find three linearly independent solutions of the diff. eqn.

$$
\overrightarrow{\dot{x}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \vec{x}
$$

\rightarrow Characteristic polynomial: $\quad \operatorname{det}\left(\begin{array}{ccc}1-\lambda & 1 & 0 \\ 0 & 1-\lambda & 0 \\ 0 & 0 & 2-\lambda\end{array}\right)=0$

$$
\Rightarrow(1-\lambda)^{2}(2-\lambda)=0
$$

Hence $\lambda=1$ with multiplicity 2

$$
\lambda=2
$$

$\lambda=1$

$$
(A-\lambda I) \vec{v}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \Rightarrow \begin{aligned}
& v_{2}=0 \\
& v_{3}=0 \\
& \\
& v_{1} \text { anything }
\end{aligned}
$$

$$
\Rightarrow \vec{x}^{\prime}(t)=e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Since A has only one lineany independent eigenvector with eigenvalue 1, we look for solutions of

$$
\left(A-\lambda^{\ell} I\right)^{\lambda=1} \vec{v}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \vec{v}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$\Rightarrow v_{3}=0$ and we can choose anything for v_{1} and v_{2}
The vector $\vec{v}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ satisfies $(A-\lambda I)^{2} \vec{v}=\overrightarrow{0}$ but $(A-\lambda I) \vec{v} \neq \overrightarrow{0}$. (So we can choose any $\vec{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ 0\end{array}\right)$ for which $\left.v_{2} \neq 0.\right) \rightarrow$ Since the other solution was $\vec{v}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
A solution is $\quad \vec{x}^{2}(t)=e^{A t}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=e^{t} e^{(A-I) t}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

$$
\begin{aligned}
& e^{\lambda t} e^{(A-\lambda I) t} \vec{V} \\
= & e^{t}[I+t(A-I)]\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
= & e^{t}\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right] \\
= & e^{t}\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right]
\end{aligned}
$$

$=e^{t}\left(\begin{array}{l}t \\ 1 \\ 0\end{array}\right)$ is the second linearly independent solution

$$
\lambda=2 \quad(A-\lambda I) \vec{v}=\overrightarrow{0}
$$

Recall that $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ and so $(A-\lambda I)=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$

$$
(A-\lambda I) \vec{v}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow v_{2}=0 \Rightarrow v_{1}=0
$$

and $v_{3}=$ anything

Thus $\vec{x}^{3}(t)=e^{2 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is the other linearly independent solution.
Example. Solve the ivf $\overrightarrow{\dot{x}}=\left(\begin{array}{ccc}2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2\end{array}\right) \vec{x}$ with $\vec{x}(0)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$

The characteristic polynomial is $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
& \Rightarrow \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 1 & 3 \\
0 & 2-\lambda & -1 \\
0 & 0 & 2-\lambda
\end{array}\right)=0 \\
& \Rightarrow(2-\lambda)\left[(2-\lambda)^{2}\right]-1(0)+3(0)=0 \\
& \Rightarrow \lambda=2 \text { w/ multiplicity } 3 .
\end{aligned}
$$

The eigenvector satisfy $(A-\lambda D) \vec{v}=\overrightarrow{0}$

$$
\begin{array}{r}
\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{array}{c}
v_{3}=0 \\
v_{2}+3 v_{3}=0 \Rightarrow v_{2}=0 \\
v_{1}
\end{array}=\text { anything }
\end{array}
$$

Thus $\vec{x}^{\prime}(t)=e^{2 t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is one of the solutions
We now should book for the other two knearly independent solutions. Let's try to solve for \vec{v} in $(A-\lambda I)^{2} \vec{v}=\overrightarrow{0}$.

$$
\begin{aligned}
&\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow \quad v_{3}=0 \text { and } v_{1}, v_{2}=a n y \text { thing }
\end{aligned}
$$

The vector $\vec{v}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ satisfies $(A-2 I)^{2} \vec{v}=\overrightarrow{0}$ but $(A-2 I) \vec{v} \neq \overrightarrow{0}$
Therefore, a $2^{\text {nd }}$ linearly independent solution is

$$
\begin{aligned}
\vec{x}^{2}(t) & =e^{A t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=e^{2 t} e^{(A-2 I) t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& =e^{2 t}[I+t(A-2 I)]\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& =e^{2 t}\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right] \\
& =e^{2 t}\left(\begin{array}{l}
t \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

We now look for the third linearly independent souction by computing \vec{v} that satisfies

$$
\left.\begin{array}{rl}
& (A-\lambda I)^{3} \vec{v}=\overrightarrow{0} \text { and }(A-\lambda I) \vec{v} \neq \overrightarrow{0} . \\
\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right) \underbrace{0}_{\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { (rom }(A-\lambda I)^{2} \text { above }} \begin{array}{c}
0 \\
0
\end{array} 0 & 0
\end{array}\right)\left[\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

So any \vec{v} satisfies the equation above For example $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ satisfies $(A-\lambda I)^{3} \vec{v}=\overrightarrow{0}$ and does not satisfy $(A-\lambda I)^{2} \vec{v}=\overrightarrow{0}$.

$$
\begin{aligned}
\vec{x}^{3}(t) & =e^{A t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=e^{2 t} e^{(A-2 I) t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =e^{2 t}\left[I+t(A-2 I)+\frac{t^{2}}{2!}(A-2 I)^{2}\right]\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =e^{2 t}\left[I+t\left(\begin{array}{ccc}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)+\frac{t^{2}}{2}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =e^{2 t}\left[\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right)+\frac{t^{2}}{2}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)\right] \\
& =e^{2 t}\left(\begin{array}{c}
3 t-t^{2} / 2 \\
-t \\
1
\end{array}\right)
\end{aligned}
$$

is a $3^{\text {rd }}$ linearly independent solution. The general solution is thus

$$
\vec{x}(t)=e^{2 t}\left[c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
t \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
3 t-t^{2} / 2 \\
-t \\
1
\end{array}\right)\right]
$$

The constants c_{1}, c_{2}, c_{3} are found using $\vec{x}(0)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)
$$

Thus the solution to this IUP is

$$
\begin{aligned}
\vec{x}(t) & =e^{2 t}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+2\left(\begin{array}{l}
t \\
1 \\
0
\end{array}\right)+\left(\begin{array}{c}
3 t-t^{2} / 2 \\
-t \\
1
\end{array}\right)\right] \\
& =e^{2 t}\left(\begin{array}{c}
1+2 t+3 t-t^{2} / 2 \\
2-t \\
1
\end{array}\right) \\
& =e^{2 t}\left(\begin{array}{c}
1+5 t-t^{2} / 2 \\
2-t \\
1
\end{array}\right)
\end{aligned}
$$

Theorem. CAYLEY-HAMICTON
Let $p(\lambda)=p_{0}+p_{1} \lambda+\ldots+(-1)^{n} \lambda^{n}$ be the characteristic polynomial of A.
Then $p(A)=p I+p_{1} A+\ldots+(-1)^{n} A^{n}=\overrightarrow{0}$.

Section 3.11: Fundamental matrix solutions; $e^{\text {At }}$
If $\vec{x}^{\prime}(t), \ldots, \vec{x}^{n}(t)$ are n linearly independent solutions of $\vec{x}=A \vec{x}$ then every solution $\vec{x}(t)$ can be written as

$$
\begin{equation*}
\vec{x}(t)=c_{1} \vec{x}^{\prime}(t)+c_{2} \vec{x}^{2}(t)+\ldots+c_{n} \vec{x}^{n}(t) . \tag{A}
\end{equation*}
$$

Let $\vec{x}(t)$ be a matrix whose columns are the solutions $\vec{x}^{\prime}(t), \ldots, \vec{x}^{n}(t)$. Then (t) can be written as $\vec{x}(t)=\vec{x}(t) \vec{c}$ where $\vec{c}=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.
Definition: A matrix $\vec{x}(t)$ is called a fundamental matin solution of $\vec{x}=A \vec{x}$ if its columns form a set of n linearly independent solutions of $\overrightarrow{\dot{x}}=A \vec{x}$.

Example. Find the fundamental matrix solution of

$$
\vec{x}=\left(\begin{array}{rrr}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \vec{x}
$$

This is the example we did in section 3.8 . There we found that the eigenvalues were $\lambda=-2,1,3$ and the associated eigenvectors were $v_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$, and they were linearly in dependent. Thus

$$
X(t)=\left(\begin{array}{ccc}
-e^{-2 t} & -e^{t} & e^{3 t} \\
e^{-2 t} & 4 e^{t} & 2 e^{3 t} \\
e^{-2 t} & e^{t} & e^{3 t}
\end{array}\right)
$$

is a fundamental matrix solution of this $\vec{x}=A \vec{x}$.

Theorem. Let $X(t)$ be a fundamental matrix solution of the differential eq. $\overrightarrow{\dot{x}}=A \vec{x}$. Then

$$
\left.e^{A t}=x(t) x^{-1} / 0\right)
$$

\rightarrow The product of any fundamental matrix solution of $\vec{x}=A \vec{x}$ with its inverse at $t=0$ must yield $e^{A t}$.

Lemma A matrix $X(t)$ is a fundamental matrix solution of $\overrightarrow{\dot{x}}=A \vec{x}$ iff $\dot{X}(t)=A X(t)$ and $\operatorname{det}(X(0)) \neq 0$.

Proof. Let $\vec{x}^{(1)}(t), \ldots \vec{x}^{n}(t)$ denote the n columns of $X(t)$. Observe that

$$
\dot{x}(t)=\left[\overrightarrow{\dot{x}}^{(1)}(t), \ldots, \overrightarrow{\dot{x}}^{(n)}(t)\right]
$$

and $A X(t)=\left[A \vec{x}^{(1)}(t), \ldots, A \vec{x}^{(n)}(t)\right]$.
The n vector equations $\overrightarrow{\dot{x}}^{(1)}(t)=A \vec{x}^{(1)}(t), \ldots \overrightarrow{\dot{x}}^{(n)}(t)=A \vec{x}^{-(n)}(t)$ are the same as $\dot{X}(t)=A X(t)$. n solutions $\vec{x}^{(1)}(t), \ldots, \vec{x}^{(n)}(t)$ are linearly independent iff $\vec{x}^{(1)}(0), \ldots, \vec{x}^{(n)}(0)$ are linearly indep. vectors of \mathbb{R}^{n}, which are linearly independent if $\operatorname{det} X(0) \neq 0$.
lemma. Let $X(t)$ and $Y(t)$ be two fundamental matrix sonetions of $\overrightarrow{\dot{x}}(t)=A \vec{x}(t)$. Then, there exists a constant matrix C s.t. $Y(t)=X(t) C$.

Proof. The columns $\vec{x}^{(1)}(t), \ldots, \vec{x}^{(n)}(t)$ of $x(t)$ and $\vec{y}^{(1)}(t), \ldots, \vec{y}^{(n)}(t)$ of $y(t)$ are linearly inced. Sets of solutions of $\vec{x}=A \vec{x}$. Thus, every column of $Y(t)$ can be written as a linear combination of the columns of $x(t) . \exists$ constants $c_{1}^{j}, c_{2}^{j}, \ldots, c_{n}^{j}$ s.t.

$$
\begin{equation*}
\vec{y}^{j}(t)=c_{1}^{j} \vec{x}^{1}(t)+c_{2}^{j} \vec{x}^{2}(t)+\ldots+c_{n}^{j} \vec{x}^{n}(t), \quad j=1, \ldots, n \tag{x}
\end{equation*}
$$

Let C be the matrix $\left(\vec{C}^{\prime}, \vec{C}^{2}, \ldots, \vec{c}^{n}\right)$ where

$$
\vec{c}^{j}=\left[\begin{array}{c}
c^{j} \\
\vdots \\
c_{n}^{j}
\end{array}\right]
$$

Then the n equations (t) are equivalent to the matrix equation $Y(t)=X(t) C$.

Example. Find $e^{\text {At }}$ if $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 5\end{array}\right)$.
We want 3 linearly indef. solutions of $\overrightarrow{\dot{x}}=A \vec{x}$. We first compute the characteristic polynomial

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 3-\lambda & 2 \\
0 & 0 & 5-\lambda
\end{array}\right)=0 \\
\Rightarrow(1-\lambda)[(3-\lambda)(5-\lambda)]=0 \\
\lambda=1,3,5
\end{gathered}
$$

$\lambda=1:$

$$
\begin{aligned}
& (A-\lambda I) \vec{v}=\overrightarrow{0} \\
& \left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{array}{l}
v_{3}=0 \\
v_{2}=0 \\
v_{1}=\text { anything }
\end{array} \quad \Rightarrow \vec{v}(1)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

Hence one solution is $\vec{x}^{(1)}(t)=e^{t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
$\lambda=3$:

$$
\begin{aligned}
& (A-\lambda I) \vec{v}=\overrightarrow{0} \\
& \left(\begin{array}{ccc}
-2 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{array}{l}
v_{3}=0 \\
-2 v_{1}+v_{2}+y_{3}=0 \\
0 \\
2 v_{1}
\end{array}=v_{2} \\
& \vec{v}(2)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) .
\end{aligned}
$$

Thus the other solution is $\vec{x}^{(2)}(t)=e^{3 t}\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.

$$
\begin{aligned}
\lambda=5 & (A-\lambda I) \vec{v}=\overrightarrow{0} \\
& \left(\begin{array}{ccc}
-4 & 1 & 1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
-2 v_{2}+v_{3}=0 & \Rightarrow v_{3}=v_{2} \\
-4 v_{1}+v_{2}+v_{5}=0 \\
v_{2}
\end{array}\right)
$$

Thus $\vec{v}^{(0)}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
The third solution is $\vec{x}^{(3)}(t)=e^{5 t}\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$.

The fundamental matrix solution is therefore

$$
X(t)=\left(\begin{array}{lll}
e^{t} & e^{3 t} & e^{5 t} \\
0 & 2 e^{3 t} & 2 e^{s t} \\
0 & 0 & 2 e^{5 t}
\end{array}\right)
$$

We now compute $X^{-1}(0) . \quad X(0)=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right) \Rightarrow X^{-1}(0)=\left(\begin{array}{ccc}1 & -1 / 2 & 0 \\ 0 & 1 / 2 & -1 / 2 \\ 0 & 0 & 1 / 2\end{array}\right)$

$$
\text { Thus } \begin{aligned}
e^{A t} & \left.=X(t) X^{-1} 10\right) \\
& =\left(\begin{array}{ccc}
e^{t} & e^{3 t} & e^{5 t} \\
0 & 2 e^{3 t} & 2 e^{5 t} \\
0 & 0 & 2 e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 / 2 & 0 \\
0 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{t} & -\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t} & -\frac{1}{2} e^{3 t}+\frac{1}{2} e^{5 t} \\
0 & e^{3 t} & -e^{3 t}+e^{5 t} \\
0 & 0 & e^{5 t}
\end{array}\right)
\end{aligned}
$$

Sedion 3.12 The nonhomogeneous equation, VARIATION OF PARAMETERS
Consider $\vec{x}=A \vec{x}+\vec{f}(t) \quad, \quad \vec{x}\left(t_{0}\right)=\vec{x}^{0}$.
Let $\vec{x}^{\prime}(t), \ldots, \vec{x}^{n}(t)$ be η linearly indep. solutions of $\overrightarrow{\dot{x}}(t)=A \vec{x}(t)$ 一 the homog. case. Since the general solution for this is $c_{1} \vec{x}^{\prime}(t)+\cdots+c_{n} \vec{x}^{n}(t)$, we seek a solution of the form

$$
\begin{equation*}
\vec{x}(t)=u_{1}(t) \vec{x}^{\prime}(t)+u_{2}(t) \vec{x}^{2}(t)+\cdots+u_{n}(t) \vec{x}^{n}(t) \tag{x}
\end{equation*}
$$

This an be written in the form $\vec{x}^{\prime}(t)=X(t) \vec{u}(t)$ where $X(t)=\left[\vec{x}{ }^{\prime}(t), \ldots, \vec{x}^{n}(t)\right]$ and $\vec{u}(t)=\left[\begin{array}{c}u_{1}(t) \\ \vdots \\ u_{n}(t)\end{array}\right]$. If we plug this into $\vec{x}=A \vec{x}+\vec{f}(t)$ we get

$$
\underbrace{\substack{x \\ \text { product rule }}}_{\text {from } \frac{d}{d t} \vec{x}(t)=\frac{d}{d t}(X(t) \vec{u}(t))}
$$

The matrix $X(t)$ is a fundamental matrix solution of the homogeneous problem $\vec{x}=A \vec{x}$. Thus $\dot{x}(t)=A x(t)$ and (t) reduces to

$$
\begin{aligned}
& \dot{x}(i) \vec{u}(t)+x(t) \vec{u}(t)=A x(t) \vec{u}(t)+\vec{f}(t) \\
& \Rightarrow x(t) \vec{u}(t)=\vec{f}(t)
\end{aligned}
$$

We already saw that the columns of $X(t)$ are linearly independent vectors of \mathbb{R}^{n} at every time t. Hence $x^{-1}(t)$ exists, and

$$
X(t) \vec{u}(t)=\vec{f}(t) \Rightarrow \vec{u}(t)=X^{-1}(t) \vec{f}(t) .
$$

Now we integrate between to and t to get:

$$
\begin{aligned}
& \vec{u}(t)-\underbrace{}_{-\left(t_{0}\right)}=\int_{t_{0}}^{t} X^{-1}(s) \vec{f}(s) d s \\
& \left.=X^{-1}\left(t_{0}\right) \vec{x}^{0} \text { (recall that we wrote }(x) \text { as } \vec{x}(t)=X(t) \vec{u}(t)\right) \\
& \begin{array}{ll}
\vec{u}(t) & =X^{-1}\left(t_{0}\right) \vec{x}^{0}+\int_{t_{0}}^{t} X^{-1}(t) \vec{f}(s) d s \\
X^{-1}(t) \vec{x}(t)
\end{array} \\
& \vec{x}(t)=X(t) X^{-1}\left(t_{0}\right) \vec{x}^{0}+X(t) \int_{t_{0}}^{t} X^{-1}(s) \vec{f}(s) d s .
\end{aligned}
$$

If $X(t)$ is the fundamental matrix solution $e^{A t}$ then we can write $X(t)=e^{A t}, X^{-1}(s)=e^{-A s}$

$$
\begin{aligned}
\Rightarrow \vec{x}(t) & =e^{A t} e^{-A t_{0}} \vec{x}^{0}+e^{A t} \int_{t_{0}}^{t} e^{-A s} \vec{f}(s) d s \\
& =e^{A\left(t-t_{0}\right)} \vec{x}^{0}+\int_{t_{0}}^{t} e^{A(t-s)} \vec{f}(s) d s .
\end{aligned}
$$

Example. Solve

$$
\begin{aligned}
& \overrightarrow{\dot{x}}=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right)}_{A} \vec{x}+\left(\begin{array}{l}
0 \\
0 \\
e^{t} \cos 2 t
\end{array}\right), \vec{x}(0)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right)=(1-\lambda)\left[(1-\lambda)^{2}+4\right]=(1-\lambda)\left[\lambda^{2}-2 \lambda+1+4\right] \\
& =(1-\lambda)\left(\lambda^{2}-2 \lambda+5\right)=0 \\
& \lambda=1 \quad \lambda=\frac{2 \pm \sqrt{4-4(5)}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i \\
& \lambda=1 \quad(A-\lambda I) \vec{v}=\overrightarrow{0} \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
2 & 0 & -2 \\
3 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{array}{c}
2 v_{1}-2 v_{3}=0 \\
v_{1}=v_{3}
\end{array} \\
& 3 V_{1}=-2 V_{2} \Rightarrow V_{1}=-\frac{2}{3} V_{2} \\
& \vec{v}^{(1)}=\left(\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right)
\end{aligned}
$$

Thus one of the solutions is $\vec{x}^{\prime}(t)=e^{t}\left(\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right)$.
Now we consider $\lambda=1+2 i$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-2 i & 0 & 0 \\
2 & -2 i & -2 \\
3 & 2 & -2 i
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\binom{0}{0} \\
& -2 i v_{1}=0 \Rightarrow v_{1}=0 \\
& y_{1}-i v_{2}-v_{3}=0 \Rightarrow v_{3}=-i v_{2} \quad \Rightarrow \vec{v}(2)=\left(\begin{array}{l}
0 \\
1 \\
-i
\end{array}\right)
\end{aligned}
$$

Thus $\vec{x}(t)=e^{(1+2 i) t}\left(\begin{array}{c}0 \\ 1 \\ -i\end{array}\right)=e^{t}(\cos 2 t+i \sin 2 t)\left(\begin{array}{c}0 \\ 1 \\ -i\end{array}\right)=e^{t}\left[\left(\begin{array}{c}0 \\ \cos 2 t \\ \sin 2 t\end{array}\right)+i\left(\begin{array}{c}0 \\ \sin 2 t \\ \cos 2 t\end{array}\right)\right]$ Which implies that $\vec{x}^{2}(t)=e^{t}\left(\begin{array}{c}0 \\ \cos 2 t \\ \sin 2 t\end{array}\right), \vec{x}^{3}(t)=e^{t}\left(\begin{array}{c}0 \\ \sin 2 t \\ -\cos 2 t\end{array}\right)$. are the real-valued solutions
of $\vec{x}=A \vec{x}$.

We check that they are linearly indep. by substituting $t=0$.
$\vec{x}^{2}(0)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \vec{x}^{3}(0)=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$. These are linearly independent. which implies that

$$
x(t)=\left(\begin{array}{ccc}
-2 e^{t} & 0 & 0 \\
3 e^{t} & e^{t \cos 2 t} & e^{t} \sin 2 t \\
-2 e^{t} & e^{t} \sin 2 t & -e^{t} \cos 2 t
\end{array}\right)
$$

is the fundamental matrix solution of $\vec{x}=A \vec{x}$.

$$
\begin{aligned}
X^{-1}(0)=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
3 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right)^{-1}= & \left.=\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
3 / 2 & 1 & 0 \\
1 & 0 & -1
\end{array}\right) \\
& \text { verify }
\end{aligned}
$$

Therefore $\left.e^{A t}=X(t) X^{-1} / 0\right)$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
-2 e^{t} & 0 & 0 \\
3 e^{t} & e^{t} \cos 2 t & e^{t} \sin 2 t \\
-2 e^{t} & e^{t} \sin 2 t & -e^{t} \cos 2 t
\end{array}\right)\left(\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
3 / 2 & 1 & 0 \\
1 & 0 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
-\frac{3}{2} e^{t}+\frac{3}{2} e^{t} \cos 2 t+e^{t} \sin 2 t & e^{t} \cos 2 t & -e^{t} \sin 2 t \\
e^{t}+\frac{3}{2} e^{t} \sin 2 t-e^{t} \cos 2 t & e^{t_{\sin 2 t} t} & e^{t} \cos 2 t
\end{array}\right) \text { the exponential factor out }
\end{aligned}
$$

Recall that $\vec{r}(t)=e^{A\left(t-t_{0}\right)} \vec{x}^{0}+\int_{t_{0}}^{t} e^{A(t-s)} \vec{f}(s) d s$. and the initial condition is
$\vec{x}(0)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Thus $t_{0}=0$

$$
\begin{aligned}
\Rightarrow \vec{x}(t) & =e^{A t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\int_{0}^{t} e^{A(t-s)}\left(\begin{array}{l}
0 \\
0 \\
e^{s} \cos 2 s
\end{array}\right) d s \\
& =\left(\begin{array}{l}
0 \\
e^{t} \cos 2 t-e^{t} \sin 2 t \\
e^{t} \sin 2 t+e^{t} \cos 2 t
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +e^{A t} \int_{0}^{t} e^{-A s}\left(\begin{array}{l}
0 \\
0 \\
e^{s} \cos 2 s
\end{array}\right) d s \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right) t \\
& e^{\text {At }} \int_{0}^{t} e^{-s}\left(\begin{array}{cccc}
1 & \cos 2 s & -\sin 2 s & 0 \\
-\frac{3}{2}+\frac{3}{2} \cos (-2 s)+\cos (-2 s) & 0-\sin (-2 s) & \sin (-2 s) \\
1+\frac{3}{2} \sin (-2 s)-\cos (-2 s) & \sin (-2 s) & \cos (-2 s)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-\sin 2 s \\
\cos 2 s \\
e^{5} \cos 2 s
\end{array}\right) d s \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+e^{A t} \int_{0}^{t} e^{-s}\left(\begin{array}{c}
0 \\
-e^{\delta} \cos (2 s) \sin (2 s) \\
e^{s} \cos ^{2}(2 s)
\end{array}\right) d s \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+e^{A t} \int_{0}^{t}\left(\begin{array}{c}
0 \\
-\frac{1}{2} \sin (4 s) \\
\frac{1}{2}+\frac{1}{2} \cos (4 s)
\end{array}\right) d s \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+e^{A t}\left[\binom{\frac{1}{8} \cos (4 s)}{\left.\frac{1}{2} s+\frac{1}{8} \sin 24 s\right)}\right]_{0}^{t} \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+e^{A t}\left(\begin{array}{c}
0 \\
\frac{1}{8} \cos (4 t)-\frac{1}{8} \\
\frac{1}{2} t+\frac{1}{8} \sin (4 t)
\end{array}\right) \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+ \\
& \left(\begin{array}{ccc}
-\frac{3}{2} e^{t}+\frac{3}{2} e^{t} \cos 2 t+e^{t} \sin 2 t & 0 & 0 \\
e^{t} \cos 2 t & -e^{t} \sin 2 t \\
e^{t}+\frac{3}{2} e^{t} \sin 2 t-e^{t} \cos 2 t & e^{t_{\sin 2 t} t} & e^{t \cos 2 t}
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{1}{8} \cos (4 t)-\frac{1}{8} \\
\frac{1}{2} t+\frac{1}{8} \sin (4 t)
\end{array}\right) \\
& =e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t-\sin 2 t \\
\sin 2 t+\cos 2 t
\end{array}\right)+e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t\left(\frac{1}{8} \cos 4 t-\frac{1}{8}\right)-\sin 2 t\left(\frac{1}{2} t+\frac{1}{8} \sin 4 t\right) \\
\sin 2 t\left(\frac{1}{8} \cos 4 t-\frac{1}{8}\right)+\cos 2 t\left(\frac{1}{2} t+\frac{1}{8} \sin 4 t\right)
\end{array}\right)
\end{aligned}
$$

CHAPTER 4: Qualitative theory of differential equations
In cases where $\overrightarrow{\dot{x}}=\vec{f}(t, \vec{x})$ where $\vec{f}(t, \vec{x})$ is a nonlinear function of $x_{1}, \ldots x_{n}$ we might not have the tools to solve for \vec{x}. However, oftentimes it's enough to know the qualitative properties of \vec{x}.
Properties of somtions of $\vec{x}=\vec{f}(t, \vec{x})$ we're interested in.
(1) Are there equilibrium values $\vec{x}^{0}=\left(\begin{array}{c}x_{1}^{0} \\ \vdots \\ x_{n}^{0}\end{array}\right)$ for which $\vec{x}(t)=\vec{x}^{\circ}$ is a
$\vec{x} \equiv \overrightarrow{0}$ if $\vec{x}(t) \equiv \vec{x}^{\circ}$. Hence \vec{x}^{0} is an equilibrium value of $\vec{x}=\vec{f}(t, \vec{x})$ if and only if $\vec{f}\left(t, \vec{x}^{0}\right) \equiv \vec{\sigma}$
(2) Let $\vec{\phi}(t)$ be a solution of $\overrightarrow{\dot{x}}=\vec{f}(t, \vec{x})$. Sup pose that $\vec{\psi}(t)$ is a $2^{\text {nd }}$ solution with $\Psi_{j}(0)$ very close to $\phi_{j}(0), j=1, \ldots, n$. Win $\vec{\psi}(t)$ remain very close to $\vec{\phi}(t)$ for all time? STABILITY
(3) What happens to solutions $\vec{x}(t)$ of $\vec{x}=\vec{f}(t, \vec{x})$ as $t \rightarrow \infty$?
(a) Do they approach equilibrium values?
(b) If not, do they approach a periodic solution?

Example. Find all equilibrium values of $\frac{d x_{1}}{d t}=1-x_{2}, \frac{d x_{2}}{d t}=x_{1}^{3}+x_{2}$.
$\rightarrow \vec{x}^{0}=\binom{x_{1}^{0}}{x_{2}^{0}}$ is an equilibrium value iff $\left.\begin{array}{c}1-x_{2}^{0}=0 \\ \left(x_{1}^{0}\right)^{3}+x_{2}^{0}=0\end{array}\right\} \Rightarrow \begin{aligned} & x_{2}^{0}=1 \\ & x_{1}^{0}=-1\end{aligned}$
Thus $\vec{x}^{\circ}=\binom{-1}{1}$ is the only equilibrium value of this system.

Example. Find all equilibrium solutions of

$$
\frac{d x}{d t}=(x-1)(y-1), \frac{d y}{d t}=(x+1)(y+1)
$$

$\rightarrow \vec{x}^{\circ}=\binom{x_{0}}{y_{0}}$ is an equilibrium value iff

$$
\left.\begin{array}{l}
\left(x_{0}-1\right)\left(y_{0}-1\right)=0 \\
\left(x_{0}+1\right)\left(y_{0}+1\right)=0
\end{array}\right\} \Rightarrow \begin{aligned}
& x_{0}= \pm 1 \\
& y_{0}= \pm 1
\end{aligned}
$$

Example. Let $y(t)$ denote the position of the particle relative to its equilibrium position. Determine the stability. The relevant equation is

$$
\frac{d^{2} y}{d t^{2}}+y=\cos 2 t
$$

and the initial condinons are $y(0)=1, y^{\prime}(0)=0$.
\rightarrow We first convert this $2^{\text {nd }}$-order diff. eqn. into a system of two $1^{\text {st }}$-order diff. eqn.s by setting

$$
\begin{array}{|c|}
x_{1}=y \\
x_{2}=y^{\prime}
\end{array}
$$

Thus $y^{\prime \prime}=x_{2}^{\prime} \Rightarrow x_{2}^{\prime}+x_{1}=\cos 2 t \Rightarrow x_{2}^{\prime}=-x_{1}+\cos 2 t$

$$
x_{1}^{\prime}=y^{\prime}=x_{2}
$$

$$
\binom{\frac{d x_{1}}{d t}}{\frac{d x_{2}}{d t}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos 2 t}
$$

If we solve the homogeneous problem $\overrightarrow{\dot{x}}=A \vec{x}$ we have

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 1 \\
-1 & 0-\lambda
\end{array}\right)=\lambda^{2}+1=0 \Rightarrow \lambda= \pm i \\
& \lambda=i \Rightarrow\left(\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \quad-i v_{1}+v_{2}=0 \\
& i v_{1}=v_{2}
\end{aligned} \vec{v}=\binom{1}{i}, ~\left(\begin{array}{l}
i t \\
\vec{x}(t)=e^{i t}\binom{1}{i}=(\cos t+i \sin t)\binom{1}{i}=\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}
\end{array}\right.
$$

Thus $\vec{x}^{\prime}(t)=\binom{\cos t}{-\sin t}, \quad \vec{x}^{2}(t)=\binom{\sin t}{\cos t}$
For the nonthomogenous partii.e. particular solution we have from variation of parameters that

$$
\begin{aligned}
& X(t)=\left[\vec{x} \cdot \overrightarrow{x^{2}}\right]=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \rightarrow x^{-1}(t)=\frac{1}{\cos ^{2} t+\sin ^{2} t}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& \vec{x}(t)=X(t) X^{-1}\left(t_{0}\right) \vec{x}^{0}+X(t) \int_{t_{0}}^{t} X^{-1}(s) \vec{f}(s) d s \\
& =\left(\begin{array}{c}
\cos t \sin t \\
-\sin t \\
\cos t
\end{array}\right)\left(\begin{array}{cc}
\cos 0^{1} & -\sin ^{\prime} 0 \\
\sin / 0 & \cos 0
\end{array}\right)\binom{1}{0}+\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \int_{0}^{t}\left(\begin{array}{cc}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right)\binom{0}{\cos 2 s} d s \\
& =\left(\begin{array}{ll}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\binom{1}{0}+\left(\begin{array}{ll}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \int_{0}^{t}\binom{-\sin s \cos 2 s}{\cos s \cos 2 s} d s \\
& =\binom{\cos t}{-\sin t}+\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\binom{\frac{2}{3} \cos ^{3} t-\cos t+\frac{1}{3}}{\sin t-\frac{2}{3} \sin ^{3} t} \int_{0}^{t}\binom{-\sin s\left(2 \cos ^{2} \delta-1\right)}{\cos s\left(1-2 \sin ^{2} s\right)} d s \\
& \left.\begin{array}{c}
=\binom{\cos t}{-\sin t}+\left(\begin{array}{c}
\frac{2}{3} \cos ^{4} t-\cos ^{2} t+\frac{1}{3} \cos t+\sin ^{2} t-\frac{2}{3} \sin ^{4} t \\
-\frac{2}{3} \cos ^{3} t \sin t+\sin t \cos t-\frac{1}{3} \sin ^{2} t \\
+\cos t \sin t-\frac{2}{3} \cos t \sin ^{3} t
\end{array}\right)=\left[\begin{array}{c}
-2 \cos ^{2} \delta \sin s+\sin s \\
\cos s-2 \sin ^{2} s \cos s
\end{array}\right) d s \\
\frac{2}{3} \cos ^{3} s-\cos s \\
\sin s-\frac{2}{3} \sin ^{3} s
\end{array}\right]_{0}^{t} . \\
& \text { First row of } 2^{\text {nd }} \text { matrix } \\
& \frac{2}{3} \cos ^{4} t-\cos ^{2} t+\frac{1}{3} \cos t+\sin ^{2} t-\frac{2}{3} \sin ^{4} t \\
& =\binom{\frac{2}{3} \cos ^{3} t-\cos t-\frac{2}{3}+1}{\sin t-\frac{2}{3} \sin ^{3} t} \\
& \left.=\frac{2}{3}\left(\cos ^{2} t+\sin ^{2} t\right) \cos ^{2} t-\sin ^{2} t\right)-\left(\cos ^{2} t-\sin ^{2} t\right) \\
& +\frac{1}{3} \cos t \\
& =\binom{\frac{2}{3} \cos ^{3} t-\cos t+\frac{1}{3}}{\sin t-\frac{2}{3} \sin ^{3} t} \\
& =-\frac{1}{3}\left(\cos ^{2} t-\left(\sin ^{2} t\right)+\frac{1}{3} \cos t\right. \\
& =-\frac{1}{3} \cos ^{2} t+\frac{1}{3}\left(1-\cos ^{2} t\right)+\frac{1}{3} \cos t \\
& =-\frac{2}{3} \cos ^{2} t+\frac{1}{3} \cos t+\frac{1}{3}
\end{aligned}
$$

Sewn row of $2^{\text {nd }}$ matrix

$$
\begin{aligned}
& -\frac{2}{3} \cos ^{3} t \sin t+\sin t \cos t-\frac{1}{3} \sin t+\cos t \sin t-\frac{2}{3} \cos t s \sin ^{2} t \\
& =-\frac{2}{3} \cos t \sin t\left(\cos ^{2} t+\sin ^{2} t\right)+2 \sin t \cos t-\frac{1}{3} \sin t \\
& =\frac{4}{3} \cos t \sin t-\frac{1}{3} \sin t
\end{aligned}
$$

$$
\begin{align*}
\text { Thus } \vec{x}(t) & =\binom{\cos t}{-\sin t}+\binom{-\frac{2}{3} \cos ^{2} t+\frac{1}{3} \cos t+\frac{1}{3}}{\frac{4}{3} \underbrace{\cos t \sin t}_{\frac{1}{2} \sin 2 t}-\frac{1}{3} \sin t} \\
=-\frac{2}{3}\left(\frac{1}{2}+\frac{1}{2} \cos 2 t\right) & =\left(\begin{array}{l}
-\frac{2}{3} \cos ^{2} t \\
=-\frac{4}{3} \cos t+\frac{1}{3} \\
\frac{2}{3} \sin 2 t-\frac{4}{3} \sin t
\end{array}\right) \\
= & \binom{-\frac{1}{3} \cos 2 t+\frac{4}{3} \cos t}{\frac{2}{3} \sin 2 t-\frac{4}{3} \sin t} \quad \text { (*) } \tag{*}
\end{align*}
$$

Section 4.2 Stability of linear oysters
Consider the stability of solutions of autonomous differential equations. Let $\vec{x}=\vec{\phi}(t)$ be a solution of $\overrightarrow{\dot{x}}=\vec{f}(\vec{x})$. Is $\vec{\phi}(t)$ stable or unstable?
at $t=0$ will it remain close to $\vec{\phi}(t) \forall t \geqslant 0$?

Def. The solution $\vec{x}=\vec{\phi}(t)$ of $\vec{x}=\vec{f}(\vec{x})$ is stable if every solution $\vec{\psi}(t)$ which starts sufficiently close to $\vec{\phi}(t)$ at $t=0$ must remain close to $\vec{\phi}(t)$ for all future time t. The solution $\vec{\phi}(t)$ is unstable if there exists at least one solution $\vec{\psi}(t)$ of $\overrightarrow{\dot{x}}=\vec{f}(\vec{x})$ which starts near $\vec{\phi}(t)$ at $t=0$ but which does not remain close to $\vec{\phi}(t)$ for all future time.

The solution $\vec{\phi}(t)$ is stable if for every $\varepsilon>0 \exists \delta=\delta(\varepsilon)$ such that

$$
\left|\Psi_{j}(t)-\phi_{j}(t)\right|<\varepsilon \text { if }\left|\Psi_{j}(0)-\phi_{j}(0)\right|<\delta(\varepsilon), j=1, \ldots, n
$$

for every solution $\psi(t)$.
The stability question can be completely reso lived

$$
\overrightarrow{\dot{x}}=A \vec{x}
$$

Theorem. (a) Every solution $\vec{x}=\vec{\phi}(t)$ of $\vec{x}=A \vec{x}$ is stable if all the eigenvalues of A have negative real part.
(b) Every solution $\vec{x}=\vec{\phi}(t)$ of $\vec{x}=A \vec{x}$ is unstable if at least one eigenvalue of A has positive real part.
(c) Suppose that all the eigenvalues of A have real part $\leqslant 0$ and $\lambda_{1}=i \sigma_{1}, \ldots$, $\lambda_{l}=i \sigma_{l}$ have zero real part. Let $\lambda_{j}=i \sigma_{j}$ have multiplicity k_{j}. This means that
the characteristic polynomial of A can be factored into the form

$$
\rho(\lambda)=\left(\lambda-i \sigma_{1}\right)^{k_{1}} \cdots\left(\lambda-i \sigma_{l}\right)^{k_{1}} \underbrace{q(\lambda)}_{\uparrow}
$$

all roots of $q(\lambda)$ have negative real part
Then every solution $\vec{x}=\vec{\phi}(t)$ of $\overrightarrow{\dot{x}}=A \vec{x}$ is stable if A has k_{j} linearly independent eigen vectors of each eigenvalue $\lambda_{j}=i \sigma_{j}$. Otherwise every solution $\vec{\phi}(t)$ is unstable.

Def ${ }^{n}$. Let $\vec{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ be a vector with n components, with x_{1}, \ldots, x_{n} real or complex. We define the length of \vec{x} as $\|\vec{x}\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\left|x_{n}\right|\right\}$.
So if $\vec{x}=\left(\begin{array}{c}2 \\ -1 \\ -4\end{array}\right)$ then $\|\vec{x}\|=4$ and if $\vec{x}=\left(\begin{array}{c}1+2 i \\ 2 \\ -1\end{array}\right)$ then $\|\vec{x}\|=\sqrt{5}$
Properties. 1. $\|\vec{x}\| \geqslant 0$ for any vector \vec{x} and $\|\vec{x}\|=0$ only if $\vec{x}=\overrightarrow{0}$.

$$
\text { 2. }\|\lambda \vec{x}\|=\begin{aligned}
& \text { max }\left\{\left|\lambda x_{1}\right|, \ldots, \mid \lambda x_{n} \|\right\}=|\lambda| \max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}=|\lambda| \cdot\|x\| . \\
& \leqslant \max \left\{\left|x_{1}+y_{1}\right|, \ldots,\left|x_{n}+y_{n}\right|\right\} \\
& \leqslant \max \left\{\left|x_{1}\right|+\left|y_{1}\right|, \ldots,\left|x_{n}\right|+\left|y_{n}\right|\right\} \quad \text { by triangle inequality } \\
&=\|\vec{x}\|+\|,\| x_{1} \mid, \ldots+\max \left\{\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right\}
\end{aligned}
$$

If all eigenvalues of A have $\operatorname{Re}(\lambda)<0$ then every solution $\vec{x}(t)$ of $\vec{x}=A \vec{x}$ approaches zero as $t \rightarrow \infty$. Therefore, not only is the equilibrium solution $\vec{x}(t) \equiv \overrightarrow{0}$ stable but every solution $\vec{\psi}(t)$ approaches it as $t \rightarrow \infty$. This is known as asymptotic stability.

Example. Is the solution $\vec{x}(t)$ of $\overrightarrow{\dot{x}}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1\end{array}\right) \vec{x}$ stable, asymptotically stable, or unstable?

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
-1-\lambda & 0 & 0 \\
-2 & -1-\lambda & 2 \\
-3 & -2 & -1-\lambda
\end{array}\right)= & (-1-\lambda)\left[(-1-\lambda)^{2}+4\right]=-(1+\lambda)\left[\lambda^{2}+2 \lambda+1+4\right] \\
& =-(1+\lambda)\left(\lambda^{2}+2 \lambda+5\right) \\
& =0 \\
\Rightarrow \lambda=-1, \lambda & =\frac{-2 \pm \sqrt{4-4(5)}}{2}=-1 \pm 2 i
\end{aligned}
$$

All 3 eigenvalues have negative real part and so every solution of $\vec{x}=A \vec{x}$ is asymptotically stable.

Example Determine the stability of every solution of $\vec{x}=\left(\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right) \vec{x}$.

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 5 \\
5 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}-25=\lambda^{2}-2 \lambda+1-25=\lambda^{2}-2 \lambda-24=(\lambda-6)(\lambda+4)=0 \\
& \Rightarrow \lambda=-4,6
\end{aligned}
$$

Since one eigenvalue of $\left(\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right)$ is positive, every solution $\vec{x}=\vec{\phi}(t)$ of $\overrightarrow{\dot{x}}=A \vec{x}$ is unstable.

Example. Show that every solution of $\vec{x}=\left(\begin{array}{cc}0 & -3 \\ 2 & 0\end{array}\right) \vec{x}$ is stable but not asymptotically stable.

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & -3 \\
2 & -\lambda
\end{array}\right)=\lambda^{2}+6=0 \Rightarrow \lambda= \pm \sqrt{6} i
$$

By part (c) of the Theorem, every solution $\vec{x}=\bar{\phi}(t)$ of $\vec{x}=A \vec{x}$ is stable. But, no solution is asymptotically stable.

Solving for $\vec{x}=\left(\begin{array}{cc}0 & -3 \\ 2 & 0\end{array}\right) \vec{x}$ we see that the eigenvectors are

$$
\begin{array}{r}
\lambda=\sqrt{6} i \Rightarrow\left(\begin{array}{cc}
-\sqrt{6} i & -3 \\
2 & -\sqrt{6} i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow \begin{array}{r}
-\sqrt{6} i v_{1}-3 v_{2}=0 \\
v_{2}
\end{array}=\frac{\sqrt{6} i}{3} v_{1}
\end{array}
$$

Thus $\begin{aligned} \vec{v}=\binom{3}{\sqrt{6} i}, \quad \vec{x}(t) & =e^{\sqrt{6} i t} \vec{v}=[\cos (\sqrt{6} t)+i \sin (\sqrt{6} t)]\binom{3}{\sqrt{6} i} \\ & =(3 \cos (\sqrt{6} t)+3 i \sin (\sqrt{6} t)\end{aligned}$

$$
\begin{aligned}
& =\binom{3 \cos (\sqrt{6} t)+3 \sin (\sqrt{6} t)}{\sqrt{6} i \cos (\sqrt{6} t)-\sqrt{6} \sin (\sqrt{6} t)} \\
& =\binom{3 \cos (\sqrt{6} t)}{-\sqrt{6} \sin (\sqrt{6} t)}+i\binom{3 \sin (\sqrt{6} t)}{\sqrt{6} \cos (\sqrt{6} t)}
\end{aligned}
$$

The general solution is thus

$$
\vec{x}(t)=c_{1}\binom{3 \cos (\sqrt{6} t)}{\sqrt{6} \sin (\sqrt{6} t)}+c_{2}\binom{3 \sin (\sqrt{6} t)}{\sqrt{6} \cos (\sqrt{6} t)} .
$$

So every solution $\vec{x}(t)$ is periodic, with period $2 \pi / \sqrt{6}$ and no solution $\vec{x}(t)$ (except $\vec{x}(t) \equiv \overrightarrow{0})$ approaches zero as $t \rightarrow \infty$.

Example. Show that every solution of $\overrightarrow{\dot{x}}=\underbrace{\left(\begin{array}{ccc}2 & -3 & 0 \\ 0 & -6 & -2 \\ -6 & 0 & -3\end{array}\right)}_{A} \vec{x}$ is unstable.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -3 & 0 \\
0 & -6-\lambda & -2 \\
-6 & 0 & -3-\lambda
\end{array}\right)=(2-\lambda)[(-6-\lambda)(-3-\lambda)]+3(-12) \\
& =(2-\lambda)[(\lambda+6)(\lambda+3)]-36 \\
& =(2-\lambda)\left(\lambda^{2}+9 \lambda+18\right)-36 \\
& \left.\left.=2 \lambda^{2}+18\right)+386-\lambda^{3}-9 \lambda^{2}-1\right) \lambda-36 \\
& =-\lambda^{3}-7 \lambda^{2} \\
& =-\lambda^{2}(\lambda+7) \\
& =0
\end{aligned}
$$

Thus $\lambda=-7,0$ ($\omega /$ multiplicity 2).

Every eigenvector of A with eigenvalue 0 must satisfy

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & -3 & 0 \\
0 & -6 & -2 \\
-6 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& 2 v_{1}-3 v_{2}=0 \Rightarrow v_{1}=\frac{3}{2} v_{2} \\
& -6 v_{2}-2 v_{3}=0 \Rightarrow v_{2}=-\frac{1}{3} v_{3}
\end{aligned}
$$

Thus $\vec{v}=\left(\begin{array}{c}-3 \\ -2 \\ 6\end{array}\right)$
Since there is only one linearly independent eigenvector, this means that every solution $\vec{x}=\phi(t)$ of $\vec{x}=A \vec{x}$ is unstable.

Section 4.3 Stability of equilibrium solutions
Now consider $\overrightarrow{\dot{x}}=A \vec{x}+\vec{g}(\vec{x})$ with $\vec{g}(\vec{x})=\left(\begin{array}{c}g_{1}(\vec{x}) \\ g_{2}(\vec{x}) \\ \vdots \\ g_{n}(\vec{x})\end{array}\right)$ very small compared to \vec{x}.
We assume that $\frac{g_{1}(\vec{x})}{\|\vec{x}\|}, \ldots, \frac{g_{n}(\vec{x})}{\|\vec{x}\|}$ are continuous functions of x_{1}, \ldots, x_{n} which vanish for $x_{1}=\cdots=x_{n}=0$.
e.g. If $\vec{g}(\vec{x})=\binom{x_{1} x_{2}{ }^{2}}{x_{1} x_{2}}$ then both $\frac{x_{1} x_{2}{ }^{2}}{\|\vec{x}\|}=\frac{x_{1} x_{2}{ }^{2}}{\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}}, \frac{x_{1} x_{2}}{\|\vec{x}\|}$ are continuous functions of $x_{11} x_{2}$ which vanish for $x_{1}=x_{2}=0$.

If $\vec{g}(\overrightarrow{0})=\overrightarrow{0}$ then $\vec{x}(t) \equiv \overrightarrow{0}$ is an equilibrium solution of $\vec{x}=A \vec{x}+g(\vec{x})$ We want to say whether it's stable or unstable.
If \vec{x} is very small then $g(\vec{x})$ is very small compared to $\vec{A} \vec{x}$. So we will determine the stability of the eqm solution $\vec{x}(t) \equiv \overrightarrow{0}$ from the stability of $\overrightarrow{\dot{x}}=A \vec{x} \quad(\omega / \circ \quad \vec{g}(\vec{x}))$

Theorem Suppose $\frac{\vec{g}(\vec{x})}{\|\vec{x}\|}$ is a continuous function of x_{1}, \ldots, x_{n} which vanishes for $\vec{x}=\overrightarrow{0}$. Then
(a) the em solution $\vec{x}(t) \equiv \overrightarrow{0}$ of $\vec{x}=A \vec{x}+\vec{g}(\vec{x})$ is asymptotically stable if the eqm solution $\vec{x}(t) \equiv \overrightarrow{0}$ of the linearized equation $\vec{x}=A \vec{x}$ is asymptotically stable.
$\Rightarrow \vec{x}(\vec{t}) \equiv \overrightarrow{0}$ of $\overrightarrow{\dot{x}}=A \vec{x}+\vec{g}(\vec{x})$ is asymptotically stable if all eigenvalues of A have negative real part.
(b) The eqm solution $\vec{x}(t) \equiv \overrightarrow{0}$ of $\overrightarrow{\dot{x}}=A \vec{x}+\vec{g}(\vec{x})$ is unstable if at least one eigenvalue of A has positive real part.
(c) The stability of $\vec{x}(t) \equiv \overrightarrow{0}$ cannot be determined from the stability of the eqm solution $\vec{x}(t) \equiv \overrightarrow{0}$ of $\vec{x}=A \vec{x}$ if all eigen values of A have real part $\leqslant 0$ but at least one eigenvalue of A has zero neal part.

Example. Consider $\frac{d x_{1}}{d t}=x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$

$$
\begin{equation*}
\frac{d x_{2}}{d t}=-x_{1}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) \tag{*}
\end{equation*}
$$

The linearized equation is $\binom{d x_{1} / d t}{d x_{2} / d t}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$
and the eigenvalues of the matrix are $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 1 \\ -1 & -\lambda\end{array}\right)=\lambda^{2}+1=0{ }^{134}$ $\lambda= \pm i$
To analyze the behavior of (*) we multiply the first eqn by x_{1} and the second equation by x_{2} and add them

$$
\begin{aligned}
& x_{1} \frac{d x_{1}}{d t}+x_{2} \frac{d x_{2}}{d t}=x_{1} x_{2}-x_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)-x / x_{2}-x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
&=-\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \frac{d}{d x}\left(\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}\right)=-\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \\
& \frac{1}{2} \frac{d}{d t}\left(x_{1}^{2}+x_{2}^{2}\right)=-\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \\
&\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \frac{d}{d t}\left(x_{1}^{2}+x_{2}^{2}\right)=-2 \\
&-\frac{1}{\left(x_{1}^{2}+x_{2}^{2}\right)}=-2 t+C \\
& t=0 \Rightarrow \quad-\frac{1}{\left(x_{1}^{2}(0)+x_{2}^{2}(0)\right)}=C
\end{aligned}
$$

Thus $\neq \frac{1}{\left(x_{1}^{2}(t)+x_{2}^{2}(t)\right)}=f 2 t-\frac{1}{\left(x_{1}^{2}(0)+x_{2}^{2}(0)\right)}$

$$
\begin{aligned}
& \frac{1}{x_{1}^{2}(t)+x_{2}^{2}(t)}=\frac{2 t\left(x_{1}^{2}(0)+x_{2}^{2}(0)\right)+1}{x_{1}^{2}(0)+x_{2}^{2}(0)} \\
\Rightarrow & x_{1}^{2}(t)+x_{2}^{2}(t)=\frac{x_{1}^{2}(0)+x_{2}^{2}(0)}{2 t\left[x_{1}^{2}(0)+x_{2}^{2}(0)\right]+1}
\end{aligned}
$$

This Implies that as $t \rightarrow \infty, x_{1}^{2}(t)+x_{2}^{2}(t) \rightarrow 0$ for any solution $x_{1}(t), x_{2}(t)$.
Thus $x_{1}(t) \equiv 0, x_{2}(t) \equiv 0$ is asymptotically stable.
Example. Now consider instead

$$
\left.\begin{array}{l}
\frac{d x_{1}}{d t}=x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \tag{t}\\
\frac{d x_{2}}{d t}=-x_{1}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right\}
$$

The linearized system is the same $\vec{x}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \vec{x}$.
However if we now follow the same process we have that

$$
\frac{1}{2} \frac{d}{d t}\left(x_{1}^{2}+x_{2}^{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}
$$

which gives

$$
x_{1}^{2}(t)+x_{2}^{2}(t)=\frac{x_{1}^{2}(0)+x_{2}^{2}(0)}{1-2 t\left[x_{1}^{2}(0)+x_{2}^{2}(0)\right]}
$$

Note that every solution $x_{1}(t), x_{2}(t)$ of (t) with $x_{1}{ }^{2}(0)+x_{2}{ }^{2}(0) \neq 0$ approaches infinity in finite time.
Thus $x_{1}(t) \equiv 0, x_{2}(t) \equiv 0$ is unstable.

Example. Consider $\frac{d x_{1}}{d t}=-2 x_{1}+x_{2}+3 x_{3}+9 x_{2}^{3}$

$$
\begin{aligned}
& \frac{d x_{2}}{d t}=-6 x_{2}-5 x_{3}+7 x_{3}^{5} \\
& \frac{d x_{3}}{d t}=-x_{3}+x_{1}^{2}+x_{2}^{2}
\end{aligned}
$$

Determine whelhes the equi librium solution $x_{1}(t) \equiv 0, x_{2}(t) \equiv 0, x_{3}(t) \equiv 0$ is stable or unstable.

We rewrite this system as $\overrightarrow{\dot{x}}=A \vec{x}+\vec{g}(\vec{x})$ where

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), A=\left(\begin{array}{rrr}
-2 & 1 & 3 \\
0 & -6 & -5 \\
0 & 0 & -1
\end{array}\right) \text { and } \vec{g}(\vec{x})=\left(\begin{array}{l}
9 x_{2}^{3} \\
7 x_{3}^{5} \\
x_{1}^{2}+x_{2}^{2}
\end{array}\right)
$$

The $\vec{g}(\vec{x})$ satisfies the hypothesis of the Theorem. I.e..
$\frac{\vec{g}(\vec{x})}{\|\vec{x}\|}=\frac{\vec{g}(\vec{x})}{\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}}$ is a continuous function of x_{1}, \ldots, x_{n} which vanisher for $\vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
-2-\lambda & 1 & 3 \\
0 & -6-\lambda & -5 \\
0 & 0 & -1-\lambda
\end{array}\right)=(-2-\lambda)[(-6-\lambda)(-1-\lambda)]=0 \\
\Rightarrow \lambda & =-6,-2,-1
\end{aligned}
$$

Since all the eigenvalues of A are negative, the equilibrium solution $\vec{x}(t) \equiv \overrightarrow{0}$ is asymptotically stable.

Section 4.4 The phase-plane
Consider the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{d y}{d t}=g(x, y)
\end{aligned}
$$

and observe that every solution $x=x(t), y=y(t)$ defines a curve in the 3D space (t, x, y).

Example. Solve $\begin{aligned} & \dot{x}=-y \\ & \dot{y}=x\end{aligned}$ and describe the curve the solutions trace out.

$$
\begin{aligned}
& \begin{array}{r}
\overrightarrow{\dot{x}}=(\underbrace{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)} \vec{x} \quad \operatorname{det}(A-\lambda I)=\lambda^{2}+1=0 \Rightarrow \lambda= \pm i \\
\lambda=i \Rightarrow\left(\begin{array}{ll}
-i & -1
\end{array}\right)\left(v_{1}\right)=\binom{0}{0} \Rightarrow
\end{array} \\
& \lambda=i \Rightarrow\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow-i v_{1}-v_{2}=0 \\
& \vec{v}=\binom{1}{-2} \\
& \begin{aligned}
\vec{x}=e^{i t}\left(\begin{array}{c}
1 \\
-i \\
-
\end{array}\right) & =(\cos t+i \sin t)\binom{1}{-i} \\
& =(\cos t+i \sin t)
\end{aligned} \\
& =\binom{\cos t+i \sin t}{-i \cos t+\sin t} \\
& =\binom{\cos t}{\sin t}+i\binom{\sin t}{-\cos t}
\end{aligned}
$$

$x(t)=\cos t, y(t)=\sin t$ is a solution. As t runs from 0 to 2π, the points $(x, y)=(\cos t, \sin t)$ trace out a circe of radius 1 and center $(0,0)$. lie. $x^{2}+y^{2}=1$. As t nuns from 0 to ∞, the set of points (costisin t) trace out this circe infinitely often.

Example it can be shown that a solution of

$$
\frac{d x}{d t}=6 \sqrt{\frac{y-7}{5}}, \frac{d y}{d t}=10 \sqrt{\frac{x-2}{3}}
$$

is $x=3 t^{2}+2, y=5 t^{2}+7$

$$
x \geqslant 2 \quad y \geqslant 7
$$

Solving for t we have $3 t^{2}=x-2 \Rightarrow t=\sqrt{\frac{x-2}{3}}, x \geqslant 2$

$$
\begin{gathered}
y=5\left(\frac{x-2}{3}\right)+7 \Rightarrow \frac{y=\frac{5}{3}(x-2)+7}{\uparrow} \text { so for } 2 \leqslant x<\infty \text {. } \\
\text { orbit of the solution. }
\end{gathered}
$$

An advantage of using the -orbit of a solution rather than the solution itself is that it's often possible to obtain the orbit of a solution $w / 0$ prior knowledge of the solution
Let $\left[\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right]$ be a solution of $\left[\begin{array}{l}\frac{d x}{d t}=f(x, y) \\ \frac{d y}{d t}=g(x, y)\end{array}\right]$. If $x^{\prime}(t) \neq 0$ at $t=t_{1}$ then we can solve for $t=t(x)$ in a neighborhood of $x_{1}=x\left(t_{1}\right)$. For t near t_{1} the orbit of $x(t), y(t)$ is the curve $y=y(t(x))$

Note that $\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{d y / d t}{d x / d t}=\frac{g(x, y)}{f(x, y)}$. Thus, the orbits of the solutions $x=x(t), y=y(t)$ are the solution curves of $\frac{d y}{d x}=\frac{g(x, y)}{f(x, y)}$.
\Rightarrow We do not need to find a solution $x(t), y(t)$ in order to compute its orbit. We only need to solve the single fist -order scalar diff. equ. $\frac{d y}{d x}=\frac{g(x, y)}{f(x, y)}$

Example Find the orbits of $\frac{d x}{d t}=y^{2}, \frac{d y}{d t}=x^{2}$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{x^{2}}{y^{2}}
$$

$$
\begin{aligned}
& \int y^{2} d y=\int x^{2} d x \\
\Rightarrow & \frac{y^{3}}{3}=\frac{x^{3}}{3}+C \\
y^{3} & =x^{3}+A \\
y & =\left(x^{3}+A\right)^{1 / 3} \quad \text { where } A \text { is a constant. }
\end{aligned}
$$

Orbits of $\frac{d x}{d t}=y^{2}, \frac{d y}{d t}=x^{2}$ are the set of all curves $y(x)=\left(x^{3}+A\right)^{1 / 3}$.
Example. Orbits of $\frac{d x}{d t}=y\left(1+x^{2}+y^{2}\right), \frac{d y}{d t}=-2 x\left(1+x^{2}+y^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{-2 x\left(1+x^{2}+y^{2}\right)}{y\left(1+x^{2}+y^{2}\right)}=-\frac{2 x}{y} \\
& \int y d y=\int-2 x d x \\
& \frac{y^{2}}{2}=-x^{2}+C \\
& \frac{y^{2}}{2}+x^{2}=c \quad \text { ellipses. }
\end{aligned}
$$

Section 4.7 : Phase portraits of linear systems

$$
\overrightarrow{\dot{x}}=A \vec{x}, \quad \vec{x}=\binom{x_{1}}{x_{2}}, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

A complete picture of all orbits of this linear diff. eqn. is called a phase portrait, and it depends almost completely on the eigenvalues of A. It also changes a lot when the eigenvalues of A change sign or become imaginary.

Cases:
(1) $\lambda_{2}<\lambda_{1}<0$ Let \vec{v}^{\prime} and \vec{v}^{2} be eigen vectors of A with eigen values λ_{1} and λ_{2}.

The arrows on l_{1} and l_{2} indicate in what direction $\vec{x}(t)$ moves along its orbit. $\vec{x}(t)=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}$ so every solution $\vec{x}(t)$ approaches $\binom{0}{0}$ as $t \rightarrow \infty$.
It's helpful to rewrite the general solution as $\vec{x}(t)=e_{\hat{\lambda}}^{\lambda_{1} t}\left(c_{1} \overrightarrow{v_{1}}+c_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \overrightarrow{v_{2}}\right)$
Observe that $\lambda_{2}-\lambda_{1}<0$. Thus, as long as $c_{1} \neq 0$ less
the term $c_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \overrightarrow{v_{2}}$ is negligible compared to $c_{1} \overrightarrow{v_{1}}$ for t sufficiently large. Therefore, as $t \rightarrow \infty$, the trajedory not only approaches the origin but also tends toward the line through \vec{v}_{1}.

Tangent to the slow eigenvector
(2) $0<\lambda_{1}<\lambda_{2}$ both evalucs are positive $\overrightarrow{x_{1}}(t) \equiv \overrightarrow{0}$ is an UNSTABLE NODE

(3) $\lambda_{1}=\lambda_{2}<0$ Does A have 1 or 2 linearly independent eigenvectors?
\rightarrow If A has 2 linearly indep. evectors \vec{v}_{1} and $\vec{v}_{2} \omega /$ evalue $\lambda<0$ then even solution can be written as $\vec{x}(t)=e^{\lambda t}\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)$.
Every vector is an eigenvector with this eigenvalue λ.
\rightarrow Let 's write an arbitrary vector \vec{x}_{0} as a linear combination of two evectors: $\vec{x}_{0}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$. Then

$$
A \vec{x}_{0}=A\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=c_{1} \lambda v_{1}+c_{2} \lambda v_{2}=\lambda\left(c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}=\lambda \overrightarrow{x_{0}}\right.
$$

so $\overrightarrow{x_{0}}$ is also an eigenvector with eigenvalue λ.

\rightarrow If A has I linearly indep. evector \vec{V} with λ then

$$
\vec{x}(t)=c_{1} e^{\lambda t} \overrightarrow{v_{1}}+c_{2} e^{\lambda t}(\vec{u}+k t \vec{v})
$$

Every solution $\vec{x}(t)$ approaches $\binom{0}{0}$ as $t \rightarrow \infty$.
 Hence the tangent to the orbit of $\vec{x}(t) \longrightarrow \pm V$ as $t \rightarrow \infty$.
(4) $\lambda_{1}=\lambda_{2}>0$ Same as (3) above but w/ direction of arrows reversed.
(5) $\quad \overrightarrow{\lambda_{1}<0<\lambda_{2}} \quad \vec{x}(t)=c_{1} e^{\lambda_{t} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \overrightarrow{v_{2}}$

SADDLE POINT
(6)

$$
\begin{aligned}
& \text { (6) } \begin{array}{l}
\begin{array}{l}
\lambda_{1}=\alpha+i \beta \\
\lambda_{2}=\alpha-i \beta
\end{array}, \beta \neq 0 \\
\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0 \Rightarrow \begin{array}{r}
(a-\lambda)(d-\lambda)-b c=0 \\
\lambda^{2}-(a+d) \lambda+a d-b c=0
\end{array} \\
\text { We get complex } \lambda \text { if } \\
\begin{array}{l}
\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2} \\
(a+d)^{2}-4(a d-b c)<0
\end{array}
\end{array} . \begin{array}{l}
\text { W }
\end{array}
\end{aligned}
$$

Since $\beta \neq 0$ the eigenvalues are distinct and the general solution is still $\vec{x}(t)=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}$.

The $C_{1} \vec{v}$ are complex since the λ 's are. $\vec{x}(t)$ is a linear combination of $e^{(\alpha \pm i \beta) t}$. $B y$ Euler's identity $e^{i \beta t}=\cos (\beta t)+i \sin (\beta t)$ Thus $\vec{x}(t)$ is a combination of terms involving $e^{\alpha t} \cos (\beta t)$ and $e^{\alpha t} \sin (\beta t)$.

- Exponentially decaying oscillations if $\alpha=\operatorname{Re}(\lambda)<0$

- Exponentially growing oscillations if $\alpha=\operatorname{Re}(\lambda)>0$

- If the eigenvalues are purely imaginary, ie. $\alpha=0$ then the solutions are periodic with period $T=2 \pi / \beta$.

CENTER

Note: The direction of the arrows must be determined from the differential equation. $\overrightarrow{\dot{x}}=A \vec{x}$. The simplest way of doing this is to check the sign of \dot{x}_{2} when $x_{2}=0$
(1) If $x_{2}^{\cdot}>0$ for $x_{2}=0$ and $x_{1}>0$ then all the solutions $\vec{x}(t)$ move in the counterclockwise direction.
(2) If $\dot{x}_{2}<0$ for $x_{2}=0$ and $x_{1}>0$ then all solutions $\vec{x}(t)$ move in the clockwise direction.

Example Draw the phase portrait of the linear equation

$$
\begin{aligned}
& \vec{x}=A \vec{x}=\left(\begin{array}{cc}
-2 & -1 \\
4 & -7
\end{array}\right) \vec{x} \\
& \operatorname{det}\left(\begin{array}{cc}
-2-\lambda & -1 \\
4 & -7-\lambda
\end{array}\right)=0 \Rightarrow(-2-\lambda)(-7-\lambda)+4=0 \\
& \lambda^{2}+9 \lambda+14+4=0 \\
& \lambda^{2}+9 \lambda+18=0 \\
&(\lambda+3)(\lambda+6)=0 \\
& \lambda=-3,-6
\end{aligned}
$$

$$
\begin{gathered}
\lambda_{1}=-3:\left(\begin{array}{ll}
1 & -1 \\
4 & -4
\end{array}\right)\left(v_{2} v_{2}\right)=\binom{0}{0} \\
v_{1}-v_{2}=0 \Rightarrow v_{1}=v_{2} . \text { Thus } \vec{v}_{1}=\binom{1}{1} \\
\lambda_{2}=-6:\left(\begin{array}{ll}
4 & -1 \\
4 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \\
4 v_{1}-v_{2}=0 \\
v_{2}=4 v_{1} . \text { Thus } \vec{v}_{2}=\binom{1}{4}
\end{gathered}
$$

Stable node

Example Draw the phase portrait of $\vec{x}=\left(\begin{array}{cc}1 & -3 \\ -3 & 1\end{array}\right) \vec{x}$

$$
\left.\begin{array}{c}
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -3 \\
-3 & 1-\lambda
\end{array}\right)=0 \\
\Rightarrow(1-\lambda)^{2}-9=0 \\
\lambda^{2}-2 \lambda+1-9=0 \\
\lambda^{2}-2 \lambda-8=0 \\
(\lambda+2)(\lambda-4)=0 \\
\lambda_{1}=-2, \lambda_{2}=4
\end{array}\right] \begin{gathered}
\lambda_{1}=-2 \Rightarrow\left(\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow \begin{array}{c}
3 v_{1}-3 v_{2}=0 \\
v_{1}=v_{2}
\end{array} \Rightarrow \vec{v}_{1}=\binom{1}{1} \\
\lambda_{2}=4 \Rightarrow\left(\begin{array}{cc}
-3 & -3 \\
-3 & -3
\end{array}\right)\binom{v_{1}}{v_{2}}=\left(\begin{array}{l}
0 \\
0 \\
x_{2}
\end{array}\right) \Rightarrow \begin{array}{l}
v_{1}+v_{2}=0 \\
v_{1}=-v_{2} \Rightarrow v_{2}=\binom{-1}{1}
\end{array} .
\end{gathered}
$$

Example Draw the phase portrait of $\vec{x}=\left(\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right) \vec{x}$

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-1-\lambda & 1 \\
-1 & -1-\lambda
\end{array}\right)= & (-1-\lambda)^{2}+1=0 \\
& -1-\lambda= \pm i \Rightarrow \lambda=-1 \pm i \Rightarrow \text { stable spiral }
\end{aligned}
$$

to decide the direction of the arrows we look at $\dot{x}_{2}=-x_{1}-x_{2}$ and see that when $x_{2}=0$ (so along the horizontal axis) $\dot{x}_{2}<0$ when $x_{1}>0$, so the arrows go clockwise.

Stability properties of linear systems $\vec{x}=A \vec{x} \quad \omega / \operatorname{det}(A-\lambda I)=0$ and $\operatorname{det}(A) \neq 0$
Eigenvalues
$\lambda_{1}>\lambda_{2}>0$
$\lambda_{1}<\lambda_{2}<0$
$\lambda_{2}<0<\lambda_{1}$
$\lambda_{1}=\lambda_{2}>0$
$\lambda_{1}=\lambda_{2}<0$
$\lambda_{1}, \lambda_{2}=\alpha+i \beta$
$\alpha>0$
$\alpha<0$
$\lambda_{1}=i \beta, \lambda_{2}=-i \beta$

Type of critical point node
node
saddle point
proper or improper node
proper or improper node
spiral point
center

Stability unstable asympt.stable unstable unstable asympt. stable
unstable asympt. stable stable

Example Consider $\begin{aligned} \vec{x} & \left.\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \vec{x} . \text { Let } \begin{array}{rl}p & =a_{11}+a_{22}=\operatorname{trace}(A) \\ q & =a_{11} a_{22}-a_{12} a_{21}=\operatorname{det}\end{array}\right)\end{aligned}$
Show that the critical point $(0,0)$ is a
(a) node if $q<0$ and $\Delta \geqslant 0$
(b) saddle point if $q<0$
(c) spiral point if $p \neq 0$ and $\Delta<0$
(d) center if $p=0$ and $q>0$

Compute: $\operatorname{det}(A-\lambda I)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21}$

$$
\begin{aligned}
& =a_{11} a_{22}-\left(a_{11}+a_{22}\right) \lambda+\lambda^{2}-a_{12} a_{21} \\
& =\lambda^{2}-\frac{\left(a_{11}+a_{22}\right) \lambda}{p}+\underbrace{a_{22}-a_{12} a_{21}}_{11} \\
& =\lambda^{2}-p \lambda+q \\
& =0 \\
\lambda_{1,2}=\frac{p \pm \sqrt{p^{2}-4 q}}{2} & =\frac{p \pm \sqrt{\Delta}}{2}
\end{aligned}
$$

Note

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}=\left(\frac{p}{2}+\frac{\sqrt{\Delta}}{2}\right)\left(\frac{p}{2}-\frac{\sqrt{\Delta}}{2}\right)=\frac{p^{2}}{4}-\frac{\Delta}{4}=\frac{p^{2}}{4}-\frac{p^{x}}{4}+\frac{4 q}{4}=q \\
& \lambda_{1}+\lambda_{2}=\frac{p}{2}+\frac{\sqrt{\Delta}}{2}+\frac{p}{2}-\frac{\sqrt{x}}{2}=p
\end{aligned}
$$

(a) So if $q>0$ this implies that λ_{1} and λ_{2} have the same sign since $q=\lambda_{1} \lambda_{2}>0$ and if $\Delta \geqslant 0$ it means that λ_{1} and λ_{2} are real. So it has to be a node.
(b) If (q<0) it means that λ_{1}, λ_{2} have opposite signs so it's a saddle point
(c) if $p \neq 0$ and $\Delta<0$ this implies that λ_{1}, λ_{2} are complex eigenvalues so it must be a spiral
(d) if $p=0$ (real part $=0$) and $q>0 \Rightarrow \lambda_{1}, \lambda_{2}$ are the same sign. \Rightarrow center
\rightarrow Now show that the equilibrium point $[0,0)$ is
(a) asymptotically stable if $q>0$ and $p<0$
(b) stable if $q>0$ and $p=0$
(c) unstable if $q<0$ or $p>0$

$$
\begin{aligned}
& \begin{array}{c}
\text { asymp. stable, } \\
\text { asymp. Stable } \\
\text { node } \\
\Delta=\lambda_{1} \lambda_{2} \\
\text { spiral point }
\end{array} \\
& q=\frac{p^{2}}{4} \text { parabola in } p-q \text { axes. } \Rightarrow \text { proper/improper nodes } \\
& \leadsto \text { repeated, real values. } \\
& q>\frac{p^{2}}{4} \Rightarrow p^{2}-4 q<0 \Rightarrow \text { complex eigen values. } \\
& \text { above the } \\
& \text { parabola } \\
& \text { Along the } q \text {-axis, } p=0 \\
& \left(\lambda_{1}+\lambda_{2}=0\right) \\
& \text { Which implies that } \lambda_{1}, \lambda_{2} \text { are purely } \\
& \text { imaginary } \Rightarrow \text { center } \\
& q<\frac{p^{2}}{4} \Rightarrow p^{2}-4 q>0 \& q<0 \\
& \text { below the } \quad\left(\lambda_{1} \lambda_{2}<0\right) \Rightarrow \text { saddle point } \\
& \text { parabola }
\end{aligned}
$$

Section 2.9 : The method of Laplace transforms
We want to solve the IUP: $a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=f(t) ; \quad y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$
Usually useful when - $f(t)$ is a discontinuous function of time

- $f(t)$ is zero except for a very short time interval in which it is very large.

Definition Let $f(t)$ be defined for $0 \leq t<\infty$. The Laplace transform of $f(t)$, which is denoted by $F(s)$, or $\mathcal{L}\{f(t)\}$ is given by

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

where $\quad \int_{0}^{\infty} e^{-s t} f(t) d t=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} f(t) d t \quad$ improper integral

Example Compute the Laplace transform of $f(t)=1$

$$
\begin{aligned}
L\{f(t)\} & =\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} d t \\
& =\lim _{A \rightarrow \infty}\left[-\frac{1}{s} e^{-s t}\right]_{0}^{A} \\
& =\lim _{A \rightarrow \infty}\left[-\frac{1}{s} e^{-s A}+\frac{1}{s}\right] \\
\Rightarrow L\{1\} & =\left\{\begin{array}{l}
\frac{1}{5}, 5>0 \\
\infty, s \leq 0
\end{array}\right.
\end{aligned}
$$

Example Compute the Laplace transform of $e^{\text {at }}$

$$
\begin{aligned}
\mathcal{L}\left\{e^{a t}\right\} & =\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t_{e} a t} d t=\lim _{A \rightarrow \infty}\left[\frac{1}{(a-s)} e^{(a-s) t}\right]_{0}^{A} \\
& =\lim _{A \rightarrow \infty}\left[\frac{1}{a-s} e^{(a-s) A}-\frac{1}{a-s}\right] \\
\left.\Rightarrow \alpha s e^{a t}\right\} & = \begin{cases}\frac{1}{s-a}, s>a & (a-s)<0 \\
\infty, s \leqslant a & (a-s) \geqslant 0\end{cases}
\end{aligned}
$$

Example Compute the Laplace transform of $\cos (\omega t)$ and $\sin (\omega t)$

$$
\begin{aligned}
& \mathcal{L}\{\cos (\omega t)\}=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} \cos (\omega t) d t \\
& \begin{aligned}
& \mathcal{L}\{\sin (\omega t)\}=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} \sin (\omega t) d t \\
& \Rightarrow L\{\cos (\omega t)+i \sin (\omega t)\}=\mathcal{L}\left\{e^{i \omega t}\right\}=\int_{0}^{\infty} e^{-s t} e^{i \omega t} d t=\int_{0}^{\infty} e^{(i \omega-s) t} d t \\
&=\lim _{A \rightarrow \infty} \frac{e^{(i \omega-s) A}-1}{i \omega-s} \\
&=\left\{\begin{array}{c}
-\frac{1}{i \omega-s}=\frac{1}{s-i \omega \cdot} \cdot \frac{s+i \omega}{\delta+i \omega}=\frac{s+i \omega}{s^{2}+\omega^{2}} \quad s>0 \\
\text { undefined }
\end{array}\right.
\end{aligned} \begin{array}{l}
s \leqslant 0
\end{array}
\end{aligned}
$$

$$
\mathcal{L}\{\cos (\omega t)\}+i \mathcal{L}\{\sin (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}+i \frac{\omega}{s^{2}+\omega^{2}} \Rightarrow \begin{aligned}
& \mathcal{L} \cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}} \\
& \mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}, s>0
\end{aligned}
$$

Note Here we used the fact that the Laplace transform is a linear operator

$$
\begin{aligned}
\mathcal{L}\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)\right\} & =\int_{0}^{\infty} e^{-s t}\left[c_{1} f_{1}(t)+c_{2} f_{2}(t)\right] d t \\
& =c_{1} \int_{0}^{\infty} e^{-s t} f_{1}(t) d t+c_{2} \int_{0}^{\infty} e^{-s t} f_{2}(t) d t \\
& =c_{1} \mathcal{L}\left\{f_{1}(t)\right\}+c_{2} \mathcal{L}\left\{f_{2}(t)\right\}
\end{aligned}
$$

Lemmas Let $F(\delta)=\left\{\{f(t)\}\right.$. Then $\left.\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L} f(t)\right\}-f(0)=s F(s)-f(0)$
Proof. Use the formula and integrate by parts

$$
\begin{array}{rlrl}
\mathcal{L}\left\{f^{\prime}(t)\right\} & =\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} f^{\prime}(t) d t & u=e^{-s t} \quad \begin{array}{l}
\frac{d v}{d t}=f^{\prime}(t) \\
\\
\end{array} \lim _{A \rightarrow \infty}\left[e^{-s t} f(t)\right]_{0}^{A}+\lim _{A \rightarrow \infty} s \int_{0}^{A} e^{-s t} f(t) d t \\
& =-f(0)+\lim _{A \rightarrow \infty} \underbrace{A}_{F(t)} e^{-s t} f(t) d t \\
& =-f(0)+s F(s)
\end{array}
$$

Lemma, Let $F(s)=\mathcal{L}\{f(t)\}$. Then $L\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)$
Proof Using Lemma I twice:

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =S \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s[\underbrace{s\{f(t)\}}_{F(s)}-f(0)\}-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Now we can reduce the problem of solving the IUP

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}
$$

to that of solving an algebraic equation. Let $Y(s)=\mathcal{L}\{y(t)\}$ and $F(s)=\alpha\{f(t)\}$ Taking laplace transforms of both sides of the diff. eqn. gives

$$
\mathcal{L}\left\{a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)\right\}=F(s)
$$

By linearity of the Laplace transform we have:

$$
a\left\{\left\{y^{\prime \prime}(t)\right\}+b \mathcal{L}\left\{y^{\prime}(t)\right\}+c \mathcal{L}\{y(t)\}=F(s)\right.
$$

Using Lemmas 1 and 2:

$$
\begin{align*}
& a[s^{2} y(s)-\underbrace{y(0)}_{y_{0}}-\underbrace{y^{\prime}(0)}_{y_{0}^{\prime}}]+b[s y(s)-\underbrace{y(0)}_{y_{0}}]+c Y(s)=F(s) \\
\Rightarrow & Y(s)\left[a s^{2}+b s+c\right]-y_{0}(a s+b)-a y_{0}^{\prime}=F(s) \\
\Rightarrow & Y(s)=\frac{(a s+b) y_{0}}{a s^{2}+b s+c}+\frac{a y_{0}^{\prime}}{a s^{2}+b s+c}+\frac{F(s)}{a s^{2}+b s+c} \quad(*) \tag{*}
\end{align*}
$$

(*) tells us the Laplace transform of the solution $y(t)$ of the IUP To find $y(t)$ we must consult the inverse Laplace transform tables $y(t)=\mathcal{L}^{-1}\{y(s)\}$.

Example Solve $y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t}, \quad y(0)=1, y^{\prime}(0)=0$
Let $y(s)=L\{y(t)\}$. Taking the Laplace transform on both sides gives

$$
\begin{aligned}
& s^{2} y(s)-s y(\phi)-y^{\prime}(6)-3(s y(s)-y(s))+2 Y(s)=\underbrace{\frac{1}{s-3}}_{0} \\
& y(s)\left[s^{2}-3 s+2\right]=\frac{1}{s-3}+s-3 \\
& Y(s)=\frac{1}{(s-3)\left(s^{2}-3 s+2\right)}+\frac{s-3}{s^{2}-3 s+2}=\frac{1}{s-a} \\
& =\frac{1}{(s-3)(s-2)(s-1)}+\frac{s-3}{(s-2)(s-1)}
\end{aligned}
$$

To find $y(t)$ we expand the RHS in partial fractions

$$
\begin{aligned}
& \frac{1}{(s-1)(s-2)(s-3)}=\frac{A}{s-1}+\frac{B}{s-2}+\frac{C}{s-3} \\
& \Rightarrow A(s-2)(s-3)+B(s-1)(s-3)+C(s-1)(s-2)=1 \\
& \text { Let } s=1 \Rightarrow A(-1)(-2)=1 \Rightarrow A=1 / 2 \\
& s=2 \Rightarrow B(1)(-1)=1 \Rightarrow B=-1 \\
& s=3 \Rightarrow C(2)(1)=1 \Rightarrow C=1 / 2
\end{aligned}
$$

Thus $\frac{1}{(s-1)(s-2)(s-3)}=\frac{1}{2} \frac{1}{s-1}-\frac{1}{s-2}+\frac{1}{2} \frac{1}{s-3}$
Similarly $\frac{s-3}{(s-1)(s-2)}=\frac{A}{s-1}+\frac{B}{s-2}$

$$
\Rightarrow \quad s-3=A(s-2)+B(s-1)
$$

Let $s=1 \Rightarrow-2=-A \Rightarrow A=2$

$$
s=2 \Rightarrow-1=B \Rightarrow B=-1
$$

Thus $\frac{s-3}{(s-1)(s-2)}=\frac{2}{s-1}-\frac{1}{s-2}$
Overall, then we have

$$
\begin{aligned}
& Y(s)=\frac{1}{(s-3)(s-2)(s-1)}+\frac{s-3}{(s-2)(s-1)} \\
& =\frac{1}{2} \frac{1}{s-1}-\frac{1}{s-2}+\frac{1}{2} \frac{1}{s-3}+\frac{2}{s-1}-\frac{1}{s-2} \\
& =\frac{5}{2} \frac{1}{s-1}-\frac{2}{s-2}+\frac{1}{2} \frac{1}{\delta-3} \\
& \text { Laplace Laplace Laplacetransforms } \\
& \text { transform transform of } \frac{1}{2} e^{3 t} \\
& \text { of } \frac{5}{2} e^{t} \quad \text { of }-2 e^{2 t}
\end{aligned}
$$

Thus $y(s)=\mathcal{L}\left\{\frac{5}{2} e^{t}-2 e^{2 t}+\frac{1}{2} e^{3 t}\right\} \Rightarrow y(t)=\frac{5}{2} e^{t}-2 e^{2 t}+\frac{1}{2} e^{3 t}$.

Section 2.10: Some useful properties of Laplace transforms
Property_ If $\alpha\{f(t)\}=F(s)$, then $\alpha\{-t f(t)\}=\frac{d}{d s} F(s)$
Prof $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$. Let 's differentiate both sides.

$$
\begin{aligned}
\frac{d}{d s} F(s) & =\frac{d}{d s} \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} \frac{\partial}{\partial s}\left(e^{-s t}\right) f(t) d t \\
& =\int_{0}^{\infty}-t e^{-s t} f(t) d t \\
& =\mathcal{L}\{-t f(t)\}
\end{aligned}
$$

Example: Compute the Laplace transform of tet.

$$
\frac{d}{d s} F(s)=-\mathcal{L}\{t f(t)\} \Rightarrow \alpha\left\{t e^{t}\right\}=-\frac{d}{d s} \frac{1}{s-1}=+\frac{1}{(s-1)^{2}}
$$

Example: Compute the Laplace transform of t^{20}
Using Property li i.e. $\mathcal{L}\{-t f(t)\}=\frac{d}{d s} F(s) \quad 20$ times yields

$$
\mathcal{L}\left\{t^{20}\right\}=(-1)^{20} \frac{d^{20}}{d s^{20}} \mathcal{L}\{1\}=(-1)^{20} \frac{d^{20}}{d s^{20}} \frac{1}{s}=\frac{(20)!}{s^{21}}
$$

Example What function has Laplace transform $-\frac{1}{(s-2)^{2}}$?

$$
-\frac{1}{(s-2)^{2}}=\frac{d}{d s} \frac{1}{s-2} \text { and } \frac{1}{s-2}=\mathcal{L}\left\{e^{2 t}\right\}
$$

So if we use $\mathcal{L}\{-t f(t)\}=\frac{d}{d s} F(s)$ we have

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{d}{d s} F(s)\right\}=-t f(t) \\
\Rightarrow & \mathcal{L}^{-1}\left\{-\frac{1}{(s-2)^{2}}\right\}=-t e^{2 t}
\end{aligned}
$$

Example What function has Laplace transform $\frac{-4 s}{\left(s^{2}+4\right)^{2}}$?
Use : $\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s)$

$$
\begin{array}{r}
\frac{-4 s}{\left(s^{2}+4\right)^{2}}=\frac{d}{d s}\left(\frac{2}{s^{2}+4}\right) \text { and } \mathcal{L}\{s \sin (2 t)\}=\frac{2}{s^{2}+4} \\
\uparrow \\
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
\end{array}
$$

Thus, using Property 1:

$$
\begin{aligned}
& \mathcal{L}\{t \sin (2 t)\}=-\frac{d}{d s}\left(\frac{2}{s^{2}+4}\right)=\frac{4 s}{\left(s^{2}+4\right)^{2}} \\
& \Rightarrow \mathcal{L}^{-1}\left\{-\frac{4 s}{\left(s^{2}+4\right)^{2}}\right\}=-t \sin 2 t
\end{aligned}
$$

Property 2: If $F(s)=\alpha\{f(t)\}$ then $\alpha\left\{e^{a t} f(t)\right\}=F(s-a)$
Proof: $\mathcal{L}\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t$

$$
=F(s-a)
$$

This states that the Laplace transform of $e^{a t} f(t)$ evaluated at the point s equals the laplace transform of $f(t)$ evaluated at sa.

Example Compute the Laplace transform of $e^{3 t} \sin t$
Recall that the Laplace transform of $\sin t$ is $\frac{1}{s^{2}+1} . \quad L\{\sin \omega t\}=\frac{\omega}{s^{2}+\omega^{2}}$ So to compute $\mathcal{L}\left\{e^{\left.3 t_{\text {sin }} t\right\}}\right.$ we need to only replace s by $s-3$:

$$
\mathcal{L}\left\{e^{3 t} \sin t\right\}=\frac{1}{(\delta-3)^{2}+1^{2}}=\frac{1}{(\delta-3)^{2}+1}
$$

Example What function $g(t)$ has Laplace transform

$$
G(s)=\frac{s-7}{25+(s-7)^{2}}
$$

Note that $\mathcal{L}\{\cos \omega t\}=\frac{s^{\prime}}{s^{2}+\omega^{2}}$ and so $\mathcal{L}\{\cos 5 t\}=\frac{s}{s^{2}+25}$ Thus $G(s)$ is obtained from $\mathcal{L}\{\cos 5 t\}=\frac{s}{\sigma^{2}+25}$ by replacing every s by $5-7$. Thus by Property 2 , we have

$$
\mathcal{L}^{-1}\left\{\frac{s-7}{2 s+(s-7)^{2}}\right\}=e^{7 t} \cos (5 t)
$$

Example What function has Laplace transform $\frac{1}{\left(s^{2}-4 s+9\right)}$?

$$
\frac{1}{\left(s^{2}-4 s+9\right)}=\frac{1}{(s-2)^{2}-4+9}=\frac{1}{(s-2)^{2}+5}=\frac{1}{(s-2)^{2}+(\sqrt{5})^{2}}=\frac{\sqrt{5}}{\sqrt{5}(s-2)^{2}+(\sqrt{5})^{2}}
$$

completing the square

$$
\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{5}} \frac{(\sqrt{5})^{2}}{(5-2)^{2}+(\sqrt{5})^{2}}\right\}=\frac{1}{\sqrt{5}} \mathcal{L}^{-1}\left\{\frac{\sqrt{5}}{(s-2)^{2}+(\sqrt{5})^{2}}\right\}=\frac{1}{\sqrt{5}} \sin (\sqrt{5} t) e^{2 t}
$$

Example What function has Laplace transform $\frac{s}{\left(s^{2}-4 s+9\right)}$? it to:

$$
\begin{aligned}
\frac{s}{\left(s^{2}-4 s+9\right)} & =\frac{s}{(s-2)^{2}-4+9}=\frac{s}{(s-2)^{2}+5}=\frac{s-2+2}{(s-2)^{2}+5} \quad\left\{\{\cos \omega t\}=\frac{s}{\omega^{2}+s^{2}}\right. \\
& =\frac{s-2}{(s-2)^{2}+5}+\frac{2}{(s-2)^{2}+5}\left\{\frac{\omega}{\sqrt{5}} \cdot \frac{\sqrt{5}}{(s-2)^{2}+5}\right. \\
& =\frac{s-2}{(s-2)^{2}+5}+\frac{2}{\sqrt{5}} \frac{\sqrt{5}}{(s-2)^{2}+5} \\
& \Rightarrow L^{-1}\left\{\frac{s}{\omega^{2}+s^{2}}\right. \\
& =e^{2 t-4 s+9} \cos (\sqrt{5} t)+\frac{2}{\sqrt{5}} \sin (\sqrt{5} t) e^{2 t}
\end{aligned}
$$

Lastly, we consider

$$
\cosh (a t)=\frac{e^{a t}+e^{-a t}}{2}, \quad \sinh (a t)=\frac{e^{a t}-e^{-a t}}{2}
$$

Therefore, by the linearity of the Laplace transform:

$$
\begin{aligned}
\mathcal{L}\{\cosh (a t)\} & =\mathcal{L}\left\{\frac{1}{2}\left(e^{a t}+e^{-a t}\right)\right\}=\frac{1}{2} \mathcal{L}\left\{e^{a t}\right\}+\frac{1}{2} \mathcal{L}\left\{e^{-a t}\right\} \\
& =\frac{1}{2}\left[\frac{1}{s-a}+\frac{1}{s+a}\right]=\frac{1}{2}\left[\frac{s+h+s-\nless}{s^{2}-a^{2}}\right]=\frac{1}{2}\left[\frac{\not x s}{s^{2}-a^{2}}\right]=\frac{s}{s^{2}-a^{2}} \\
\mathcal{L}\{\sinh (a t)\} & =\mathcal{L}\left\{\frac{1}{2}\left(e^{a t}-e^{-a t}\right)\right\}=\frac{1}{2}\left\{\left\{e^{a t}\right\}-\frac{1}{2} \mathcal{L}\left\{e^{-a t}\right\}\right. \\
& =\frac{1}{2}\left[\frac{1}{s-a}-\frac{1}{s+a}\right]=\frac{1}{2}\left[\frac{s+a-s+a}{s^{2}-a^{2}}\right]=\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

Section 2.ll Differential equations with discontinuous right-hand sides
Consider again ac" + by' $+c y=f(t)$ where $f(t)$ now has a jump discontinuity at one or more points.

The simplest example is $H_{c}(t)=\left\{\begin{array}{ll}0, & 0 \leqslant t<c \\ 1, & 1 \geqslant c\end{array}\right.$. This is called the Heaviside fan

- Its Laplace transform is $\mathbb{C}\left\{H_{c}(t)\right\}=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} H_{c}(t) d t$

$$
\begin{aligned}
& =\lim _{A \rightarrow \infty} \int_{c}^{A} e^{-s t} d t=\lim _{A \rightarrow \infty}\left[\frac{1}{-s} e^{-s t}\right]_{c}^{A} \\
& =\lim _{A \rightarrow \infty} \frac{e^{-s c}-e^{-s A}}{s} \\
& =\frac{e^{-c s}}{s} \text { for } s>0
\end{aligned}
$$

Next we let f be any function defined on the interval $0 \leq t<\infty$ and let g be the function obtained from m by shifting the graph of f, c units to the right, i.e.

So we have $g(t)=\left\{\begin{array}{l}0, \quad 0 \leqslant t<c \\ f(t-c), \quad t \geqslant c\end{array}\right.$
An alternative way of writing down this function is $g(t)=H_{c}(t) f(t-c)$
Property 3: Let $F(s)=\left\{\{f(t)\}\right.$. Then $\quad \alpha\left\{H_{c}(t) f(t-c)\right\}=e^{-c s} F(s)$
Proof Using the definition we have

$$
\begin{aligned}
\mathcal{L}\left\{H_{c}(t) f(t-c)\right\} & =\int_{0}^{\infty} e^{-s t} H_{c}(t) f(t-c) d t \\
& =\int_{c}^{\infty} e^{-s t} f(t-c) d t
\end{aligned}
$$

Using int egration by substitution we have $u=t-c \Rightarrow d u=d t$
when $t=c \Rightarrow u=0$
Thus $L\left\{H_{c}(t) f(t-c)\right\}=\int_{0}^{\infty} e^{-s(u+c)} f(u) d u$

$$
\begin{aligned}
& =e^{-s c} \underbrace{\int_{0}^{\infty} e^{-s u} f(u) d u}_{\mathcal{L}\{f(u)\}} \\
& =e^{-s c} \mathcal{L}\{f(t)\}
\end{aligned}
$$

Example. What function has Laplace transform $\frac{e^{-s}}{s^{2}}$?
Note that $\alpha\{t\}=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} t d t=\lim _{A \rightarrow \infty}\left[-\frac{t}{5} e^{-s t}\right]_{0}^{A}+\frac{1}{S} \int_{0}^{A} e^{-s t} d t$

$$
\begin{aligned}
& u=t \quad \frac{d v}{d t}=e^{-s t} \\
& \frac{d u}{d t}=1 \quad v=-\frac{1}{s} e^{-s t} \\
= & \lim _{A \rightarrow \infty}-\frac{A}{S}-s A+\frac{1}{s}\left[-\frac{1}{S} e^{-s t}\right]_{0}^{A} \\
= & \lim _{A \rightarrow \infty}-\frac{1}{\delta^{2}} e^{-s A}+\frac{1}{s^{2}} \\
= & \frac{1}{\delta^{2}}
\end{aligned}
$$

Thus by Property 3, ie. $\mathcal{L}\left\{H_{c}(t) f(t-c)\right\}=e^{-s c} \mathcal{L}\{f(t)\}$, we have that $\frac{e^{-s}}{s^{2}}$ is the Laplace transform of $H_{1}(t) f(t-1)$.

Example What function has Laplace transform $\frac{e^{-3 s}}{s^{2}-2 s-3}$?
Note first that $\frac{1}{s^{2}-2 s-3}=\frac{1}{(s-1)^{2}-1-3}=\frac{1}{(s-1)^{2}-4}=\frac{1}{(s-1)^{2}-2^{2}}$
We know that $\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}-2^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s-1)^{2}-2^{2}}\right\}=\frac{f^{t}}{2} \sinh (2 t)$
Recall $\alpha\{\sinh (a t)\}=\frac{a}{s^{2}-a^{2}}$ and $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$
Thus from property 3 we have

$$
\mathcal{L}^{-1}\left\{\frac{e^{-3 S}}{s^{2}-2 s-3}\right\}=H_{3}(t) f(t-3)=H_{3}(t) \frac{e^{t-3}}{2} \sinh (2(t-3)) .
$$

Example Solve the IUP $\quad y^{\prime \prime}-3 y^{\prime}+2 y=f(t)=\left\{\begin{array}{lll}1, & 0 \leq t<1 ; 0, & 1 \leqslant t<2 \\ 1, & 2 \leqslant t<3 ; & 0, \\ 3 \leqslant t<4 \\ 1, & 4 \leqslant t<5 ; & 0, \\ & 5 \leqslant t<\infty\end{array}\right.$ and $y(0)=0, y^{\prime}(0)=0$.
\rightarrow Let $y(s)=\mathcal{L}\{y(t)\}$ and $F(s)=\mathcal{L}\{f(t)\}$. Taking the Laplace transforms of both sides of the diff. eqn. gives

$$
\begin{aligned}
& s^{2} Y(s)-s y(s)-y^{\prime}(6)-3 s Y(s)+3 y(0)+2 Y(s)=F(s) \\
& Y(s)\left[s^{2}-3 s+2\right]=F(s) \\
& Y(s)=\frac{F(s)}{s^{2}-3 s+2}=\frac{F(s)}{(s-2)(s-1)}
\end{aligned}
$$

How do we compute $F(s)$?

Method I
and $\mathcal{L}\left\{H_{c}(t)\right\}=\frac{e^{-c s}}{s}$ for $\delta>0$

$$
\begin{aligned}
F(t)= & {\left[H_{0}(t)-H_{1}(t)\right] } \\
& +\left[H_{2}(t)-H_{3}(t)\right] \\
& +\left[H_{4}(t)-H_{5}(t)\right]
\end{aligned}
$$

where $H_{c}(t)= \begin{cases}0, & 0 \leqslant t<c \\ 1, & 1 \geqslant c\end{cases}$
By the linearity property of Laplace transforms we have

$$
F(s)=\frac{1}{s}-\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s}+\frac{e^{-4 s}}{s}-\frac{e^{-5 s}}{s}
$$

Method 2

A second way of computing $F(S)$ is to evaluate

$$
\begin{aligned}
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t & =\int_{0}^{1} e^{-s t} d t+\int_{2}^{3} e^{-s t} d t+\int_{4}^{5} e^{-s t} d t \\
& =\left[-\frac{1}{s} e^{-s t}\right]_{0}^{1}+\left[-\frac{1}{s} e^{-s t}\right]_{2}^{3}+\left[-\frac{1}{s} e^{-s t}\right]_{4}^{s} \\
& =-\frac{1}{s} e^{-s}+\frac{1}{s}-\frac{1}{s} e^{-3 s}+\frac{1}{s} e^{-2 s}-\frac{1}{s} e^{-s s}+\frac{1}{s} e^{-4 s} \\
& =\frac{1}{s}\left[1-e^{-s}+e^{-2 s}-e^{-3 s}+e^{-4 s}-e^{-5 s}\right]
\end{aligned}
$$

Thus $Y(s)=\frac{1-e^{-s}+e^{-2 s}-e^{-3 s}+e^{-4 s}-e^{-5 s}}{s(s-1)(s-2)}$

Use partial fractions

$$
\frac{1}{s(s-1)(s-2)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s-2} \Rightarrow 1=A(s-1)(s-2)+B s(s-2)+C s(s-1)
$$

Let $s=0 \Rightarrow 1=A(-1)(-2) \Rightarrow A=\frac{1}{2}$

$$
\begin{aligned}
& s=1 \Rightarrow 1=B(-1) \Rightarrow B=-1 \\
& s=2 \Rightarrow 1=2 C \Rightarrow C=\frac{1}{2}
\end{aligned}
$$

Thus $\frac{1}{s(s-1)(s-2)}=\frac{1}{2} \frac{1}{s}-\frac{1}{s-1}+\frac{1}{2} \frac{1}{s-2}$.

$$
\mathcal{L}^{-1}\left\{\frac{1}{2} \frac{1}{s}-\frac{1}{s-1}+\frac{1}{2} \frac{1}{s-2}\right\}=\frac{1}{2}-e^{t}+\frac{1}{2} e^{2 t}
$$

So now that we have to compute

$$
\mathcal{L}^{-1}\{y(s)\}=\mathcal{L}^{-1}\left\{\frac{1-e^{-s}+e^{-2 s}-e^{-3 s}+e^{-4 s}-e^{-5 s}}{s(s-1)(s-2)}\right\}
$$

By property 3,

$$
\begin{aligned}
y(t)= & \frac{1}{2}-e^{t}+\frac{1}{2} e^{2 t}-H_{1}(t)\left[\frac{1}{2}-e^{(t-1)}+\frac{1}{2} e^{2(t-1)}\right] \\
& +H_{2}(t)\left[\frac{1}{2}-e^{(t-2)}+\frac{1}{2} e^{2(t-2)}\right]-H_{3}(t)\left[\frac{1}{2}-e^{(t-3)}+\frac{1}{2} e^{2(t-3)}\right] \\
& +H_{4}(t)\left[\frac{1}{2}-e^{(t-4)}+\frac{1}{2} e^{2(t-4)}\right]-H_{5}(t)\left[\frac{1}{2}-e^{(t-5)}+\frac{1}{2} e^{2(t-5)}\right]
\end{aligned}
$$

Section 5.2: Intro to Partial Differential Equations

A partial differential equation is a relation involving one or more functions of several variables, and their partial derivatives.

The order of a PDE is the order of the highest partial derivative that appears in the equation.

Example $\quad \frac{\partial^{2} u}{\partial t^{2}}=2 \frac{\partial^{2} u}{\partial x \partial t}+u$
Both are second order PREs.

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Some classic PDEs of order 2
HEAT EQUATION $\quad \frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$
WAVE EQUATION $\quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
LAPLACE'S EQUATION $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
Section 5.3 Heat equation, separation of variables
Consider the boundary-value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, \\
\left.\begin{array}{c}
u(x, 0)=f(x), \quad 0<x<l ; \\
\text { initial condition }
\end{array} \quad \begin{array}{r}
\text { boundary condi }
\end{array} \text { (} 0, t\right)=u(l, t)=0
\end{gathered}
$$

We want to find $u\left(x_{i} t\right)$.

Recall that when we were considering the $\operatorname{IV} P\left[\begin{array}{l}y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \\ y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}\end{array}\right]$
$y(t)$ here is a fan of a single vanable \Rightarrow ODE

We first showed that $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ is linear and so any linear combination of solutions of this would again be a solution. So our solution was $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for two linearly indep. solutions $y_{1}(t) \& y_{2}(t)$.
\Rightarrow Any linear combination of $c_{1} u_{1}(x, t)+\ldots+c_{n} u_{n}(x, t)$ of solutions $u_{1}(x, t), \ldots$ $u_{n}(x, t)$ of $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ is again a Solution, and we also want the boundary conditions to be satisfied.

StRATEGY
Step 1 Find as many solutions $u_{1}(x, t), u_{2}(x, t), \ldots$ as we can of the BVP

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}} ; u[0, t)=u(l, t)=0
$$

Step 2 Find the solution $u(x, t)$ by taking an appropriate linear combination of the functions $u_{n}\left(x_{1} t\right), n=1,2, \ldots$

Regarding step 1 . We reduce the problem to solving one or more ODEs.
Set $u(x, t)=X(x) T(t) \leftarrow$ this is why the method is called "SEPARATION OF VARIABLES"
Computing $\frac{\partial u}{\partial t}=X T^{\prime}$ and $\frac{\partial^{2} u}{\partial x^{2}}=X$ "T we see that $u(x, t)=X(x) T(t)$ is
a solution of $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ if $\quad X T^{\prime}=\alpha^{2} X^{\prime \prime} T$
Dividing both sides by $\alpha^{2} X T$ we obtain

$$
\begin{aligned}
& \frac{X T^{\prime}}{\alpha^{2} x^{T}}=\frac{\alpha^{\prime} x^{\prime \prime} T}{\mathscr{L}^{2} x^{\top} T} \\
\Rightarrow & \underbrace{}_{\begin{array}{c}
\frac{T^{\prime}}{\alpha^{2} T} \\
\text { function of } \\
t \text { alone }
\end{array}}=\underbrace{x^{\prime \prime}}_{\text {function of }}
\end{aligned}
$$

Therefore, this implies that $\frac{x^{\prime \prime}}{x}=-\lambda$ and $\frac{T^{\prime}}{\alpha^{2} T}=-\lambda$, for some constant λ. [this is belowse the only way that a function of x wan equal a function of t is if both are constant.)

The boundary conditions $0=u(0, t)=X(0) T(t)$

$$
0=u(l, t)=X(l) T(t)
$$

imply that $X(0)=0$ and $X(t)=0$ (otherwise, u must be identically zero).
So we have $X^{\prime \prime}+\lambda X=0$ and $X(0)=0, X(l)=0$

$$
T^{\prime}+\alpha^{2} \lambda T=0
$$

Note that $X^{n}+\lambda X=0$ is a $2^{n d}$ order $O D E$

$$
\begin{aligned}
& m^{2}+\lambda=0 \\
& m= \pm i \sqrt{\lambda}
\end{aligned}
$$

and $X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)$, which upon using $X(0)=0=X(l)$
will determine A, B 入

$$
\begin{aligned}
& X(0)=0 \Rightarrow 0=A \\
& X(l)=0 \Rightarrow 0=B \sin (\sqrt{\lambda} l) \Rightarrow \begin{array}{l}
B \neq 0 \text { and } \\
\sqrt{\lambda} l=n \pi \\
\lambda=\left(\frac{n \pi}{l}\right)^{2}
\end{array}
\end{aligned}
$$

Thus $X(x)=X_{n}(x)=\sin \left(\frac{n \pi}{l} x\right)$
Similarly, we have $T^{\prime}+\alpha^{2} \lambda T=0$ but we already have $\lambda=\left(\frac{n \pi}{l}\right)^{2}$

$$
\begin{array}{r}
\frac{T^{\prime}}{T}=-\alpha^{2} \lambda \Rightarrow \frac{T^{\prime}}{T}=-\frac{\alpha^{2} n^{2} \pi^{2}}{l^{2}} \\
\ln |T|=-\frac{\alpha^{2} n^{2} \pi^{2}}{l^{2}} t \\
T(t)=T_{H}(t)=e^{-\frac{\alpha^{2} n^{2} n^{2} t}{l^{2}}}
\end{array}
$$

We would multiply both $X_{n}(t)$ and $T_{n}(t)$ by constants but we omit these constants here since we will soon be taking linear combinations of the functions $X_{n}(x) T_{n}(t)$
$\Rightarrow \quad u_{n}(x, t)=\sin \left(\frac{n \pi x}{l}\right) e^{\frac{-\alpha^{2} n^{2} \pi^{2}}{l^{2}} t}$ is a nontrivial solution of the Evp for every positive integer n.

Suppose that $f(x)$ is a finite linear combination of $\sin \left(\frac{n \pi x}{l}\right)$. that is

$$
f(x)=\sum_{n=1}^{N} c_{n} \sin \left(\frac{n \pi x}{l}\right)
$$

Then $u(x, t)=\sum_{n=1}^{N} c_{n} \sin \left(\frac{n \pi x}{l}\right) e^{-\frac{\alpha^{2} n^{2} \pi^{2}}{l^{2}} t}$ is the desired solution as it also satisfies the initial condition $u(x, 0)=\sum_{n=1}^{N} c_{n} \sin \left(\frac{n \pi \lambda}{l}\right)=f(x), 0<x<l$.

Section 5.4 : Fourier series
An arbitrary function $f(x)$ could be expanded in an infinite series of sines and cosines. Let $f(x)$ be de fined on $-l \leq x \leq l$ and compute

$$
\begin{aligned}
a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x, a_{n} & =\frac{1}{l} \int_{-l}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x, n=1,2, \ldots \\
b_{n} & =\frac{1}{l} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x, n=1,2
\end{aligned}
$$

Then we have

$$
f(x) \approx \frac{a_{0}}{2}+a_{1} \cos \frac{\pi x}{l}+b_{1} \sin \frac{\pi x}{l}+\cdots=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \left(\frac{n \pi x}{l}\right)\right]
$$

Example . Let f be $f(x)=\left\{\begin{array}{ll}0, & -1 \leqslant x<0 \\ 1, & 0 \leqslant x \leqslant 1\end{array}\right.$. Compute the Fourier series for f on the interval $-1 \leqslant x \leqslant 1$.

In this problem $l=1$ and so $a_{0}=\int_{-1}^{1} f(x) d x=\int_{0}^{1} 1 d x=1$

$$
\begin{aligned}
a_{n} & =\int_{-1}^{1} f(x) \cos (n \pi x) d x=\int_{0}^{1} \cos (n \pi x) d x=\left[\sin (n \pi x) \frac{1}{n \pi}\right]_{0}^{1} \\
& =\frac{\sin (n \pi)}{n \pi}-0=0 \text { for } n \geqslant 1 \\
b_{n} & =\int_{-1}^{1} f(x) \sin (n \pi x) d x=\int_{0}^{1} \sin (n \pi x) d x=\left[-\frac{1}{n \pi} \cos (n \pi x)\right]_{0}^{1} \\
& =-\frac{1}{n \pi} \cos (n \pi)+\frac{1}{n \pi}=\frac{(-1)^{n+1}}{n \pi}+\frac{1}{n \pi}=\frac{1}{n \pi}\left[1-(-1)^{n}\right]
\end{aligned}
$$

for $n \geqslant 1$

Note that when $n=$ even, $b_{n}=0$

$$
n=o d d, \quad b_{n}=\frac{2}{n \pi}
$$

Thus, the Fourier series for f on the interval $-1 \leqslant x \leqslant 1$ is

$$
\begin{aligned}
f(x) \approx & \frac{e_{0}}{2}+\sum_{n=1}^{1}[0 \cdot \rho_{n}^{0} \cos \left(\frac{n \pi x}{x}\right)+\underbrace{b_{n}}_{\substack{0 \text { when } \\
n \text { is even, }}} \sin \left(\frac{n \pi x}{f}\right)] \\
& \frac{2}{n \pi} \text { when } n \text { is od } \\
= & \frac{1}{2}+\frac{2}{\pi} \sin (\pi x)+\frac{2}{3 \pi} \sin (3 \pi x)+\frac{2}{5 \pi} \sin (5 \pi x)+\cdots
\end{aligned}
$$

Example. Let f be defined as $f=\left\{\begin{array}{l}1 \text { for }-2 \leqslant x<0 \\ x \text { for } 0 \leqslant x \leqslant 2\end{array}\right.$
Compute the fourier series for f on the interval $-2 \leqslant x \leqslant 2$.

In this problem $l=2$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{1}{2} \int_{-2}^{0} d x+\frac{1}{2} \int_{0}^{2} x d x=\frac{1}{2}[x]_{-2}^{0}+\frac{1}{2}\left[\frac{x^{2}}{2}\right]_{0}^{2} \\
&=\frac{1}{2}(0+2)+\frac{1}{2}\left(\frac{4}{2}-0\right)=1+1=2 \\
& a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-2}^{0} \cos \left(\frac{n \pi x}{2}\right) d x+\frac{1}{2} \int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x \\
&=\frac{1}{2}\left[\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{-2}^{0}+\frac{1}{2}\left[x \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \quad \frac{b y \operatorname{parls}}{u=x} \quad \frac{d u}{d x}=\cos \left(\frac{n \pi x}{2}\right) \\
&-\frac{1}{2} \int_{0}^{2} \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{4}{n \pi} \sin (h \pi)-0\right)-\frac{1}{n \pi}\left[-\frac{2}{n \pi} \cos \left[\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =\frac{2}{(n \pi)^{2}}(\cos (n \pi)-1)=\frac{2}{(n \pi)^{2}}\left((-1)^{n}-1\right) \text { for } n \geqslant 1 \\
& = \begin{cases}\frac{-4}{(n \pi)^{2}} & n \text { odd } \\
0 & n \text { even }\end{cases} \\
& b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-2}^{0} \sin \frac{n \pi x}{2} d x+\frac{1}{2} \int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x \\
& \text { by parts } \\
& \begin{array}{ll}
=\frac{1}{x}\left(-\frac{x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right]_{-2}^{0}+\frac{1}{2 x}\left[-\frac{K}{n \pi} x \cos \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} & \begin{array}{ll}
u=x & \frac{d v}{d x}=\sin \left(\frac{n \pi x}{2}\right) \\
+\frac{1}{2} \int_{0}^{2} \frac{K}{n \pi} \cos \left(\frac{n \pi x}{2}\right) d x & v=-\frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)
\end{array}
\end{array} \\
& =-\frac{1}{n \pi}+\frac{1}{n \pi} \frac{\cos (-n \pi)}{\cos ^{\prime \prime}(n \pi) \text { since } \cos \text { is even } \frac{1}{n \pi}(2) \cos (n \pi)+\frac{1}{n \pi}(0) \cos (0)} \\
& =(-1)^{n} \\
& +\left[\frac{2}{(n \pi)^{2}} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =\frac{1}{n \pi}\left(-1+(-1)^{n}\right)-\frac{2}{n \pi}(-1)^{n} \\
& =-\frac{1}{n \pi}\left(1+(-1)^{n}\right) \text { for } n \geqslant 1 \\
& =\left\{\begin{array}{cc}
0 & n \text { odd } \\
-\frac{2}{n \pi} & n \text { even }
\end{array}\right.
\end{aligned}
$$

Hence the fourier series for f on $-2 \leqslant x \leqslant 2$ is

$$
f(x) \approx 1-\frac{4}{\pi^{2}} \cos \left(\frac{\pi x}{2}\right)-\frac{1}{\pi} \sin (\pi x)-\frac{4}{9 \pi^{2}} \cos \left(\frac{3 \pi x}{2}\right)-\frac{1}{2 \pi} \sin (2 \pi x)+\cdot
$$

$$
=1-\frac{4}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\cos (2 n+1) \pi x / 2}{(2 n+1)^{2}}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n \pi x}{n} .
$$

Note Orthogonality of the Sine and Cosine functions
The standard INNER PRODUCT (u, v) of two-real-valued functions u and v on the interval $\alpha \leqslant x \leqslant \beta$ is defined by

$$
(u, v)=\int_{\alpha}^{B} u(x) v(x) d x
$$

The functions u and v are orthogonal on $\alpha \leq x \leq \beta$ if their inner product is zero, that is:

$$
\int_{\alpha}^{B} u(x) v(x) d x=0
$$

A set of functions is mutually orthogonal 4 each distinct pair of functions in the set is orthogonal.
The functions $\sin \left(\frac{n \pi x}{l}\right)$ and $\cos \left(\frac{n \pi x}{l}\right), n=1,2, \ldots$ form a mutually orthogonal set of functions on the interval $-l \leq x \leq l$. They satisfy the following orthogonality relations:

$$
\begin{aligned}
\int_{-l}^{l} \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right) d x= & \frac{1}{2} \int_{-1}^{l} \cos \left(\frac{(n+m) \pi x}{l}\right)+\cos \left(\frac{(n-m) \pi x}{l}\right) d x \\
= & \frac{1}{2}\left[\frac{1}{(n+m) \pi} \sin \left(\frac{(n+m) \pi x}{l}\right)+\frac{l}{(n-m) \pi} \sin \left(\frac{(n-m) \pi x}{l}\right)\right]_{-l}^{l} \\
= & \frac{1}{2}\left[\frac{1}{(n+m) \pi} \sin (n+m) \pi\right)+\frac{l}{(n-m) \pi} \sin ((n-m) \pi) \\
& \left.-\frac{1}{(n+m) \pi} \sin (-(n+m) \pi)-\frac{1}{(n-m) \pi} \sin (-\sin (n-m) \pi)\right] \\
= & \left.\frac{1}{2}\left[\frac{121}{(n+m) \pi} \sin (n+m) \pi\right)+\frac{l l}{(n-m) \pi} \sin ((n-m) \pi)\right] \\
= & 0
\end{aligned}
$$

as long as m th and $n-m$ are not zero (aherurse we are dividing by 0) 172 Since m and n are positive, $n+m \neq 0$. On the other hand if $n-m=0 \Rightarrow n=m$ and the integral must be evaluated in a different way.
using

$$
\begin{aligned}
& \cos \left(\frac{n \pi x}{l}+\frac{m \pi x}{l}\right)=\cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right)-\sin \left(\frac{n \pi x}{l}\right) \sin \left(\frac{n \pi x}{l}\right) \\
+ & \cos \left(\frac{n \pi x}{l}-\frac{m \pi x}{l}\right)=\cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right)+\sin \left(\frac{n \pi x}{l}\right)=\sin \left(\frac{m \pi x}{l}\right) \\
& \cos \left(\frac{n+m) \pi x}{l}\right)+\cos \left(\frac{(n-m) \pi x}{l}\right)=2 \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right) \\
\Rightarrow & \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right)=\frac{1}{2}\left[\cos \left(\frac{(n+m 7 \pi x}{l}\right)+\cos \left(\frac{n-m) \pi x}{l}\right)\right]
\end{aligned}
$$

(f $n=m$ then

$$
\begin{aligned}
\int_{-1}^{l} \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right) d x & =\int_{-p}^{1}\left(\cos \left(\frac{n \pi x}{l}\right)\right)^{2} d x \\
& =\int_{-1}^{l}\left[\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 n \pi x}{l}\right)\right] d x \\
& =\left[\frac{1}{2} x+\frac{1}{2} \frac{1}{2 n \pi} \sin \left(\frac{2 n \pi x}{l}\right)\right]_{-l}^{l} \\
& =\frac{1}{2} l+\frac{1}{4 n \pi} \sin (2 n \pi)+\frac{l}{2}-\frac{l}{4 n \pi} \sin (-2 n \pi) \\
& =l
\end{aligned}
$$

So $\int_{-l}^{l} \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{m \pi x}{l}\right) d x= \begin{cases}0, & n \neq m \\ l, & n=m\end{cases}$
and similarly, we have that

$$
\begin{aligned}
& \int_{-1}^{l} \cos \left(\frac{n \pi x}{l}\right) \sin \left(\frac{m \pi x}{l}\right) d x=0 \text { for all } n, m \\
& \int_{-1}^{l} \sin \left(\frac{n n x}{l}\right) \sin \left(\frac{m \pi x}{l}\right) d x= \begin{cases}0, & n \neq m \\
l, & n=m\end{cases}
\end{aligned}
$$

Theorem (The fourier convergence theorem)
Suppose that f and f^{\prime} are piecewise continuous on the interval $-l \leq x<l$.
Further, suppose that f is defined outside $-l \leq x<l$ so that it's periodic with period $2 l$. Then f has a fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{e}\right)+b_{n} \sin \left(\frac{n \pi x}{e}\right)\right)
$$

Whose coefficients are given by $a_{n}=\frac{1}{l} \int_{-1}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x, n=0,1,2, \ldots$

$$
b_{n}=\frac{1}{e} \int_{-1}^{e} f(x) \sin \left(\frac{n \pi x}{e}\right) d x, \quad n=1,2, \ldots
$$

The Fourier series converges to $f(x)$ at all points where f is continuous, and to $\frac{\left[f\left(x_{+}\right)+f\left(x_{-}\right)\right]}{2}$ at all points where f is discontinuous.

Note: $\frac{\left[f\left(x_{4}\right)+f\left(x_{-}\right)\right]}{2}$ is the mean value of the right - and left - hand limits at the point x.

Section S.1 Boundary value problems
Q what values of λ give nontrivial functions $y(x)$ that satisfy

$$
\left.\begin{array}{rl}
y^{\prime \prime}+\lambda y=0 ; & \quad \begin{array}{l}
a y(0)+b y^{\prime}(0)=0 \\
c y(l)+d y^{\prime}(l)=0
\end{array}
\end{array}\right\} \begin{aligned}
& ? \\
& \text { boundary-value } \\
& \text { problem }
\end{aligned}
$$

Example. What values of λ give nontrivial solutions for

$$
y^{\prime \prime}+\operatorname{tr} y=0, \quad y(0)=0, y(l)=0 ?
$$

$\lambda=0 \quad y^{\prime \prime}=0 \Rightarrow y=a x+b$ for some constants a and b.

$$
\begin{aligned}
& y(0)=0 \Rightarrow b=0 \\
& y(1)=0 \Rightarrow a l=0 \Rightarrow a=0
\end{aligned}
$$

This implies that $y(x)=0$ is the only solution of the BUP for $\lambda=0$.
$\lambda<0 \quad y^{\prime \prime}+\lambda y=0 \Rightarrow y(x)=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$
characteristic eq: $\gamma^{2}+\lambda=0$

$$
\gamma= \pm \sqrt{-\lambda}
$$

Now using the B.C.s we get

$$
\begin{aligned}
& y(0)=0 \Rightarrow 0=c_{1}+c_{2} \\
& y(l)=0 \Rightarrow 0=c_{1} e^{\sqrt{\lambda l}}+c_{2} e^{-\sqrt{-\lambda} l}
\end{aligned}
$$

These two equations have a nonzero solution $C_{1} C_{2}$ iff
from $\quad\left(\begin{array}{cc}1 & 1 \\ e^{\sqrt{\lambda l} l} & e^{-\sqrt{-\lambda l} l}\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}$ we have

$$
\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
e^{\sqrt{-\lambda}} \ell & e^{-\sqrt{-\lambda 1}}
\end{array}\right)=e^{-\sqrt{-\lambda} l}-e^{\sqrt{-\lambda} l}=0
$$

Thus, $e^{-\sqrt{-\lambda} l}=e^{\sqrt{-\lambda} l} \Rightarrow e^{2 \sqrt{-\lambda} l}=1 \quad$ but
 we know that $e^{z}>1$ for $z>0$.

Thus $c_{1}=c_{2}=0$ and the boundany-value problem has no nontrivial solutions $y(x)$ when λ is negative.
$\lambda>0$ From the characteristic equation $r^{2}+\lambda=0 \Rightarrow r= \pm i \sqrt{\lambda}$ we have that the solution of $y^{\prime \prime}+\lambda y=0$ is of the form
B.Cs

$$
y(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) .
$$

$$
\begin{aligned}
& y(0)=0 \Rightarrow c_{1}=0 \\
& \begin{aligned}
y(l)=0 \Rightarrow c_{2} \sin (\sqrt{\lambda} l)=0 \quad \text { but } c_{2} \neq 0 \Rightarrow \quad \sqrt{\lambda} l & =n \pi \\
\sqrt{\lambda} & =\frac{n \pi}{l} \\
\lambda & =\left(\frac{n \pi}{l}\right)^{2} \text { for some } n \in \mathbb{Z}
\end{aligned}
\end{aligned}
$$

Thus the BVP was nontrivial solutions

$$
y(x)=c_{2} \sin \left(\frac{n \pi x}{\rho}\right) \text { for } n=1,2, \ldots
$$

Theorem The BVP has nontrivial solutions $y(x)$ only for a denumerable' Set of values $\lambda_{1}, \lambda_{2}, \ldots$ where $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots$ and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. These special values of λ are called eigenvalues and the nontrivial sontions $y(x)$ are called eigenfunctions

Note. In the precious example the eigenvalues are $\lambda=\frac{\pi^{2}}{l^{2}}, \frac{4 \pi^{2}}{l^{2}}, \frac{9 \pi^{2}}{l^{2}}, \ldots$ and the eigenfunctions are all constant multiples of $\sin \left(\frac{\pi}{e}\right), \sin \left(\frac{2 \pi y}{l}\right), \ldots$

Q Why do we use th is terminology?
A Let \vec{V} be the set of all functions $y(x)$ which have two continuous derivatives and satisfy $a y(0)+b y^{\prime}(0)=0, \quad c y(l)+d y^{\prime}(l)=0 . \vec{V}$ is a vector space of infinite dimension.
Consider now the linear operator or transformation L, given by

$$
[L y](x)=-\frac{d^{2} y}{d x^{2}}(x)
$$

The two solutions $y(x)$ of the $B \cup P$ are those functions y in \vec{V} for which $L y=\lambda y$. (since $L y=-y^{\prime \prime}$ and the eqn is $y^{\prime \prime}+\lambda y=0$)

Example find the eigenvalues and eigenfienctions of the sup

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)+y^{\prime}(0)=0, \quad y(1)=0
$$

$\lambda=0$

$$
\begin{gathered}
y^{\prime \prime}=0 \Rightarrow \quad y=c_{1} x+c_{2} \\
y^{\prime}(x)=c_{1} \\
c_{2}+c_{1}=0 \quad\left\{\text { from both B.c. } c_{1}=-c_{2}\right. \\
c_{1}+c_{2}=0
\end{gathered}
$$

I able to be counted by a one-to one correspond once with the infinite set of integers

$$
y(x)=c_{1} x+c_{2}=c_{1}(x-1) \text { for } c_{1} \neq 0
$$

So the eigenfunction is $y(x)=c_{1}(x-1)$ and the eigenvalue is zero
$\lambda<0$ Every solution $y(x)$ of $y^{\prime \prime}+\lambda y=0$ is given by

$$
y(x)=c_{1} \cosh (\sqrt{-\lambda} x)+c_{2} \sinh (\sqrt{-\lambda} x)
$$

Γ Why this and not $y(x)=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$?

$$
\cosh (\sqrt{-\lambda} x)=\frac{e^{\sqrt{-\lambda} x}+e^{-\sqrt{-\lambda} x}}{2} \cdot \sinh (\sqrt{-\lambda} x)=\frac{e^{\sqrt{-\lambda} x}-e^{-\sqrt{-\lambda} x}}{2}
$$

So if we use the B.C $y(0)+y^{\prime}(0)=0, y(1)=0$ we have

$$
\begin{gathered}
c_{1} \cosh (\sqrt{-\lambda})+c_{2} \sinh (\sqrt{-\lambda})=0 \\
y(x)=c_{1} \sqrt{-\lambda} \sinh (\sqrt{-\lambda} x)+c_{2} \sqrt{-\lambda} \cosh (\sqrt{-\lambda} x) \\
c_{1} \cosh (0)+c_{2} \sinh (0)+c_{1} \sqrt{-\lambda} \sinh (0)+c_{2} \sqrt{-\lambda} \cosh (0)=0
\end{gathered}
$$

Thus $\quad c_{1} \cosh (\sqrt{-\lambda})+c_{2} \sinh (\sqrt{-\lambda})=0$

$$
c_{1}+c_{2} \sqrt{-\lambda}=0
$$

This implies that the system of equations has a nontrivial solution C_{1}, C_{2} If

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
\cosh (\sqrt{\lambda \lambda}) & \sinh (\sqrt{-\lambda}) \\
1 & \sqrt{-\lambda}
\end{array}\right)=\cosh (\sqrt{-\lambda}) \sqrt{-\lambda}-\sinh (\sqrt{-\lambda})=0 \\
& \Rightarrow \sinh (\sqrt{-\lambda})=\sqrt{-\lambda} \cosh (\sqrt{-\lambda})
\end{aligned}
$$

But this equation has no solution for $\lambda<0$. To see this we ret and then consider $h(z)=z \cosh z-\sinh z$.

Note $h(0)=0$ and $h(z)>0$ for $z>0$ since

$$
h^{\prime}(z)=\cosh f+z \sinh z-\cosh z=z-\sinh z>0
$$

for $z>0$. Thus no $\lambda<0$ con satisfy $\sinh (\sqrt{-\lambda})=\sqrt{-\lambda} \cosh (\sqrt{-\lambda})$
$\lambda>0$ Every solution $y(x)$ of $y^{\prime \prime}+\lambda y=0$ is of the form

$$
y(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

for some $c_{1} c_{2}$ constants.
From the B.Cs $y(0)+y^{\prime}(0)=0$ and $y(1)=0$ we have

$$
\begin{gathered}
c_{1} \cos (\sqrt{\lambda})+c_{2} \sin (\sqrt{\lambda})=0 \\
y^{\prime}(x)=-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x) \\
c_{1}+c_{2} \sqrt{\lambda}=0
\end{gathered}
$$

Thus $\operatorname{det}\left(\begin{array}{cc}\cos (\sqrt{\lambda}) & \sin (\sqrt{\lambda}) \\ 1 & \sqrt{\lambda}\end{array}\right)=\sqrt{\lambda} \cos (\sqrt{\lambda})-\sin (\sqrt{\lambda})=0$

$$
\Rightarrow \tan (\sqrt{\lambda})=\sqrt{\lambda}
$$

So how do we solve this? We set $\zeta=\sqrt{\lambda}$, and $t y$ to find the intersection points between the graph of $y=\tan (\xi)$ and $y=\xi$, for $\xi>0$

More generally, the curves $y \in \mathcal{\xi}$ and $y=\tan \xi$ intersect exactly once in the interval $\frac{(2 n-1) \pi}{2}<\xi<\frac{(2 n+1) \pi}{2}$ and this occurs at a point $\xi_{n}>n \pi$. Note also that they don't intersect in $0<\xi<\frac{\pi}{2}$. To show this set $h(\xi)=$ tan $\xi-\xi$ $h^{\prime}(\xi)=\sec ^{2} \xi-1=\tan ^{2} \xi>0$ for $0<\xi<\frac{\pi}{2} \Rightarrow h(\xi)>0$ for $\xi \in\left[0, \frac{\pi}{2}\right)$
Thus the eigenvalues are $\lambda_{1}=\xi_{1}^{2}, \lambda_{2}=\xi_{2}^{2}, \ldots$ and the eigenfunctions are from $\xi=\sqrt{\lambda}$ all constant multiples of the functions $\sqrt{\lambda_{1}} \cos \left(\sqrt{\lambda_{1}} x\right)+\sin \left(\sqrt{\lambda_{1}} x\right)$,

$$
-\sqrt{\lambda_{2}} \cos \left(\sqrt{\lambda_{2}} x\right)+\sin \left(\sqrt{\lambda_{2}} x\right), \ldots
$$

We cannot compute λ_{n} exactly (analytically), but we know that

$$
n^{2} \pi^{2}<\lambda_{n}<\frac{(2 n+1)^{2} \pi^{2}}{4} \quad \text { (look at blue highlight above) }
$$

Section 63: Hermitian operators (orthogonal bases)

Defn A set of vectors is orthogonal if the inner product of any two distinct vectors in the set is zero.

Lemma 1: let $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{N}$ be mutually orthogunal, that is

$$
\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle=0 \quad i \neq j
$$

\square
inner product notation
Then $\vec{x}_{1}, \overrightarrow{x_{2}}, \ldots, \vec{x}_{N}$ are linearly independent.
Proof Sup pose that $c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\cdots+c_{N} \vec{x}_{n}=\overrightarrow{0}$
Taking inner products of both sides with \vec{x}_{j} gives

$$
c_{1}\left\langle\vec{x}_{1}, \vec{x}_{j}\right\rangle+c_{2}\left\langle\vec{x}_{2}, \vec{x}_{j}\right\rangle+\ldots+c_{N}\left\langle\vec{x}_{N}, \vec{x}_{j}\right\rangle=0
$$

$\Rightarrow c_{j}\left\langle\vec{x}_{j}, \vec{x}_{j}\right\rangle=0$ from the condition that $\left\langle\vec{x}_{i}, \vec{x}_{j}>0\right.$ for if j
$\Rightarrow \quad c_{j}=0$ for $j=1,2, \ldots, N$ since $\left\langle\vec{x}_{j}, \vec{x}_{j}\right\rangle>0$.

Another advantage of working with orthogonal bases is that it's easy to find the coordinates of a vector wit a given orthogonal basis.

Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ be a mutually orthogonal set of vectors in a real n-dimensional vector space V. By lemma 1 , this set of vectors is also a basis for V and every vector $\vec{x} \in V$ can be expanded in the form

$$
\vec{x}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{n} \vec{u}_{n} .
$$

Taking inner products of both sides of the en with \vec{u}_{j} gives $\left\langle\vec{x}, \vec{u}_{j}\right\rangle=c ;\left\langle\vec{u}_{j}, \vec{u}_{j}\right\rangle$ 50 that

$$
c_{j}=\frac{\left\langle\vec{x}, \vec{u}_{j}\right\rangle}{\left\langle\vec{u}_{j}, \vec{u}_{j}\right\rangle}, \quad j=1,2, \ldots, n .
$$

Example. Let $V=\mathbb{R}^{2}$, and define $\langle\vec{x}, \vec{y}\rangle=\binom{x_{1}}{x_{2}} \cdot\binom{y_{1}}{y_{2}}=x_{1} y_{1}+x_{2} y_{2}$ The vector $\vec{u}_{1}=\binom{1}{1}$ and $\vec{u}_{2}=\binom{1}{-1}$ are orthogonal and thus form a basis for \mathbb{R}^{2}. So from $\left[\begin{array}{ll}\vec{x}=c_{1} \overrightarrow{u_{1}}+c_{2} \overrightarrow{u_{2}} & \\ c_{j}=\frac{\left\langle\vec{x}, \vec{u}_{j}\right\rangle}{\left\langle\overrightarrow{u_{j}}, \overrightarrow{u_{j}}\right\rangle} & \\ j=1,2\end{array}\right]$, any vector $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ can be written as

$$
\begin{aligned}
\vec{x}=\binom{x_{1}}{x_{2}} & =c_{1}\binom{1}{1}+c_{2}\binom{1}{-1} \\
& \left.=\frac{\left\langle\overrightarrow{x_{1}}, \overrightarrow{u_{1}}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle}\binom{1}{1}+\frac{\left\langle\vec{x}, \overrightarrow{u_{2}}\right\rangle}{\left\langle\vec{u}_{2}, \vec{u}_{2}\right\rangle}\right\rangle\binom{ 1}{-1} \\
& =\frac{\binom{x_{1}}{x_{2}} \cdot\binom{1}{1}}{2}\binom{1}{1}+\frac{\binom{x_{1}}{x_{2}} \cdot\binom{1}{-1}}{2}\binom{1}{-1} \\
& =\frac{x_{1}+x_{2}}{2}\binom{1}{1}+\frac{x_{1}-x_{2}}{2}\binom{1}{-1}
\end{aligned}
$$

Theorem (Gram-Schmidt) Every n-dimensional Eudidean space V has an orthogonal basis
Proof Choose a basis $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ for v. We will inductively construct an orthogonal basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ by taking suitable combinations of the vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$. Let $\vec{v}_{1}=\vec{u}_{1}$ and set $\vec{v}_{2}=\vec{u}_{2}+\lambda \vec{v}_{1}$

Taking the inner product of \vec{v}_{2} with \vec{v}_{1} gives

$$
\left\langle\vec{v}_{2}, \overrightarrow{v_{1}}\right\rangle=\left\langle\vec{u}_{2}^{\prime}+\lambda \vec{v}_{1}, \overrightarrow{v_{1}}\right\rangle
$$

$$
=\left\langle\vec{u}_{2}, \vec{v}_{1}\right\rangle+\lambda\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle
$$

So that $\overrightarrow{v_{2}}$ will be orthogonal to \vec{v}_{1} if $\lambda=-\frac{\left\langle\overrightarrow{u_{2}}, \overrightarrow{v_{1}}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle}$.
Note that $\vec{v}_{2} \neq \overrightarrow{0}$ since $\vec{v}_{2}=\vec{u}_{2}+\lambda \overrightarrow{v_{1}}=\overrightarrow{u_{2}}+\lambda \overrightarrow{u_{1}}$ and $\overrightarrow{u_{1}}$ \& $\overrightarrow{u_{2}}$ are linearly ind pendent.

Proceeding inductively, let's assume that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \overrightarrow{v_{k}}$ are mutually orthog ronal and set

$$
\vec{v}_{k+1}=\vec{u}_{k+1}+\lambda_{1} \vec{v}_{1}+\cdots+\lambda_{k} \vec{v}_{k} .
$$

The requirement that $\vec{V}_{k H}$ is orthogonal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$ gives

$$
\lambda_{j}=\frac{-\left\langle\vec{u}_{k+1}, \vec{v}_{j}\right\rangle}{\left\langle\vec{v}_{j}, \vec{v}_{j}\right\rangle} \text { for } j=1, \ldots, k
$$

For this case of $\lambda_{1}, \ldots, \lambda_{k}$ the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{v}_{k+1}$ are mutually orthogmol. Also $\vec{v}_{k+1} \neq \overrightarrow{0}$ because of the linear independence of $\vec{u}_{1}, \ldots, \vec{u}_{k+1}$.

Proceeding inductively until) $k=n$, we obtain n mutually ot hog anal nonzero vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$.

The above outline is known as the GRAM-SCHMIDT ORTHOGONALZATION PROCEDURE

Example Let V be the space of all polynomials of degree $n-1$ and define

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

\forall fens f and $g \in V$. It's easy to verify that

$$
\begin{aligned}
& f_{0}(x)=1 \\
& f_{1}(x)=x \\
& \vdots \\
& f_{n-1}(x)=x^{n-1}
\end{aligned}
$$

form a basis for V. Applying the Gram-Schmidt orthogonalization procedure to $f_{0}(x), f_{1}(x), \ldots, f_{n-1}(x)$ gives

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=f_{1}(x)+\lambda_{0} p_{0}(x)=x+\lambda=x+\left(-\frac{\left\langle f_{1}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle}\right) \\
& =x-\frac{\int_{-1}^{1} x d x}{\int_{-1}^{1} 1 d x}=x \\
& P_{2}(x)=f_{2}(x)+\lambda_{0}\left(P_{0}(x)+\lambda_{1} P_{1}(x)=x\right. \\
& =x^{2}+\left(-\frac{\left\langle f_{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle}\right) 1+\left(-\frac{\left.-\frac{\left.f_{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle}\right) x .}{}\right. \\
& \left\lceil\frac{-\int_{-1}^{1} x^{2} d x}{\int_{-1}^{1} 1 d x}=\frac{-\left[\frac{x^{3}}{3}\right]_{-1}^{1}}{[x]_{-1}^{1}}=\frac{-\left(\frac{1}{3}-\frac{(-1)^{3}}{3}\right)}{2}=-\frac{1}{3} \quad \frac{-\int_{-1}^{1} x^{2} x d x}{\int_{-1}^{1} x^{2} d x}=\frac{-\left[\frac{x^{4}}{4}\right]_{-1}^{1}}{\left[\frac{x^{3}}{3}\right]_{-1}^{1}}=0\right. \\
& \Rightarrow P_{2}(x)=x^{2}-\frac{1}{3} \\
& p_{3}(x)=f_{3}(x)+\lambda_{0} p_{0}(x)+\lambda_{1} p_{1}(x)+\lambda_{2} p_{2}(x) \\
& \lambda_{0}=\frac{-\left\langle f_{3}, p_{0}\right\rangle}{\left\langle p_{0} \cdot p_{0}\right\rangle}=\frac{-\int_{-1}^{1} x^{3} d x}{\int_{-1}^{1} 1 d x}=\frac{-\left[\frac{x^{4}}{4}\right]_{-1}^{1}}{2}=0 \\
& \lambda_{1}=-\frac{\left\langle f_{3} \cdot p_{1}\right\rangle}{\left\langle p_{1} \cdot p_{1}\right\rangle}=\frac{\int_{-1}^{1} x^{3} \cdot x d x}{\int_{-1}^{1} x^{2} d x}=\frac{-\left[\frac{x^{5}}{5}\right]_{-1}^{1}}{\left[\frac{x^{3}}{3}\right]_{-1}^{1}}=\frac{-\frac{2}{5}}{\frac{2}{3}}=-\frac{3}{5}
\end{aligned}
$$

$$
\lambda_{2}=\frac{-\left\langle f_{3} \cdot p_{2}\right\rangle}{\left\langle p_{2} \cdot p_{2}\right\rangle}=\frac{-\int_{-1}^{1} x^{3}\left(x^{2}-\frac{1}{3}\right) d x}{\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x}=\frac{-\left[\frac{x^{6}}{6}-\frac{x^{4}}{12}\right]_{-1}^{1} \int_{-1}^{1}\left(x^{4}-\frac{2}{3} x^{2}+\frac{1}{9}\right) d x}{184}=0
$$

Thus $p_{3}(x)=x^{3}-\frac{3}{5} x$

Section 2.12 The Dirac delta function
Consider the IUP $\frac{a}{} \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=f(t), \quad y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$
where $f(t)$ is not known explicitly and $f(t)$ is identically zero except a very short time interval $t_{0} \leqslant t \leqslant t_{1}$
 impulsive function $f(t)$ and its integral over this time interval is $I_{0} \neq 0$.

Method proposed by Dirac:
Let $t_{1} \rightarrow t_{0}$. Then the function $\frac{f(t)}{I_{0}} \rightarrow$ a function equal to $\begin{cases}0 & \text { for } t \neq t_{0} \\ \infty & \text { for } t=t_{0}\end{cases}$ and whose integral is equal to $10 v e r$ any interval containing to. We denote this function by $\delta\left(t-t_{0}\right)$ and call it the Dirac delta function.

If we set $f(t)$ in $a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=f(t)$ as $I_{0} \delta\left(t-t_{0}\right)$ and impose the condition

$$
\int_{a}^{b} g(t) \delta\left(t-t_{0}\right)= \begin{cases}g\left(t_{0}\right) & \text { if } a \leq t_{0} \leq b \\ 0 & \text { otherwise }\end{cases}
$$

for any continuous function $g(t)$, we'll always obtain the correct solution $y(t)$.

Note Suppose that $f(t)$ is an impulsive function that is positive for $t_{0}<t<t_{\text {, }}$ and zero otherwise, and whose integral over $t_{0} \leq t \leq t_{1}$ is 1 . For any continuous function $g(t)$

$$
\begin{aligned}
& {\left[\min _{t_{0} \leqslant t \leqslant t_{1}} g(t)\right] f(t) \leqslant g(t) f(t) \leqslant\left[\max _{t_{0} \leqslant t \leqslant t_{1}} g(t)\right] f(t) } \\
\Rightarrow & \int_{t_{0}}^{t_{1}} \underbrace{\left[\min _{t_{0} \leqslant t \leqslant t_{1}} g(t)\right.}] f(t) d t \leqslant \int_{t_{0}}^{t_{1}} g(t) f(t) d t \leqslant \int_{t_{0}}^{t_{1}}[\underbrace{\left.\max _{t_{0} \leqslant t \leqslant t_{1}} g(t)\right]} f(t) d t
\end{aligned}
$$

can pull out of the integral and we know that the integ ral of $f(t)$ over $t_{0} \leqslant t \leqslant t_{1}$ is I

$$
\Rightarrow \min _{t_{0} \leqslant t \leqslant t_{1}} g(t) \leq \int_{t_{0}}^{t_{1}} g(t) f(t) d t \leq \max _{t_{0} \leqslant t \leqslant t_{1}} g(t)
$$

So as $t_{1} \rightarrow t_{0} \Rightarrow \int_{t_{0}}^{t_{1}} g(t) f(t) d t \rightarrow g\left(t_{0}\right)$.
SOLUTION OF $a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=f(t)$ BY THE METHOD OF LAPLACE TRANSFORMS
Apply the definition of the Laplace transform and the property

$$
\int_{a}^{b} g(t) \delta\left(t-t_{0}\right) d t=\left\{\begin{array}{l}
g\left(t_{0}\right) \text { if } a \leqslant t_{0} \leqslant b \\
0, \text { otherwise }
\end{array}\right.
$$

to Obtain

$$
\alpha\left\{\delta\left(t-t_{0}\right)\right\}=\int_{0}^{\infty} e^{-s t} \delta\left(t-t_{0}\right) d t=e^{-s t_{0}} \quad\left(\text { for } t_{0} \geq 0\right)
$$

Example Find the solution of the IVP: $y^{\prime \prime}-4 y^{\prime}+4 y=3 \delta(t-1)+\delta(t-2)$ with $y(0)=1$ and $y^{\prime}(0)=1$.
\rightarrow Let $Y(s)=\{\{y(t)\}$. Taking Laplace transforms on both sides of the ODE gives

$$
\begin{aligned}
& s^{2} y(s)-s y(s)-y^{\prime}(s)-4(s Y(s)-y(s))+4 Y(s)=3 e^{-s(1)}+e^{-s(2)}{ }^{187} \\
& Y(s)\left[s^{2}-4 s+4\right]-s-1+4=3 e^{-s}+e^{-2 s} \\
& Y(s)=\frac{3 e^{-s}+e^{-2 s}+s-3}{s^{2}-4 s+4}=\frac{3 e^{-s}+e^{-2 s}+s-3}{(s-2)^{2}} \\
& \Rightarrow Y(s)=\frac{s-3}{(s-2)^{2}}+\frac{3 e^{-s}}{(s-2)^{2}}+\frac{e^{-2 s}}{(s-2)^{2}} \\
& y \\
& \frac{s-2-1}{(s-2)^{2}}=\frac{s-2}{(s-2)^{2}}-\frac{1}{(s-2)^{2}} \\
& =\frac{1}{s-2}-\frac{1}{(s-2)^{2}}
\end{aligned}
$$

So inf we want to invert $Y(s)$ we have

$$
\begin{aligned}
& y(t)=e^{2 t}-t e^{2 t}-3 H_{1}(t)(t-1) e^{2(t-1)}+H_{2}(t)(t-2) e^{2(t-2)} \\
& \\
& =(1-t) e^{2 t}-3 H_{1}(t)(t-1) e^{2(t-1)}+H_{2}(t)(t-2) e^{2(t-2)}
\end{aligned}
$$

Recall that
$\alpha\{-t f(t)\}=\frac{d}{d s} F(s)$ and so we show that $\mathcal{L}\left\{t e^{t}\right\}=\frac{1}{(s-1)^{2}}$ Additionally $\mathcal{L}\left\{H_{c}(t) f(t-c)\right\}=e^{-c s} F(s)$

Example Solve the IVP

$$
\begin{array}{r}
\frac{d^{2} y}{d t^{2}}+\frac{2 d y}{d t}+y=e^{-t}+3 \delta(t-1) \cdot y(0)=0 \\
y^{\prime}(0)=0
\end{array}
$$

Using Laplace transforms:

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y_{0}^{\prime}(6)+2(s y(s)-y(0))+Y(s)=\alpha\left\{e^{-t}\right\}+3 \alpha\{\delta(t-1)\} \\
& Y(s)[\underbrace{s^{2}+2 s+1}_{0}]=\frac{1}{s+1}+3 e^{-s} \\
& Y(s)=\frac{1}{(s+1)^{2}}+\frac{3 e^{-s}}{(s+1)^{2}}
\end{aligned}
$$

Inverting this we get

$$
y(t)=\frac{t^{2} e^{-t}}{2}+3 H_{1}(t)(t-1) e^{-(t-1)}
$$

For $\mathcal{L}^{-1}\left\{\frac{1}{(s t 1)^{3}}\right\}$ we will use $\mathcal{L}\left\{-t_{f}(t)\right\}=\frac{d}{d s} F(s)$.
let's integrate $\frac{1}{(s+1)^{3}}$ to get $-\frac{1}{2(s+1)^{2}}$ which means that $F(S)=-\frac{1}{2} \frac{1}{(s+1)^{2}}$ The function whose Laplace transform is $F(S)$ is $-\frac{1}{2} t e^{-t}$
Thus $\alpha\left\{-t\left(-\frac{1}{2} t e^{-t}\right)\right\}=\frac{d}{d s}\left(-\frac{1}{2(s+1)^{2}}\right)=\frac{1}{(s+1)^{3}}$

$$
\Rightarrow \mathcal{L}\left\{\frac{1}{2} t^{2} e^{-t}\right\}=\frac{1}{(s+1)^{3}}
$$

Example Find the solution of the IVP

$$
\begin{aligned}
& 2 y^{\prime \prime}+y^{\prime}+2 y=\delta(t-5) \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

Apply Laplace transform

$$
\begin{gathered}
2 s^{2} Y(s)-2 s y(s)-2 y^{\prime}(6)+s y(s)-y(0)+2 Y(s)=e^{-5 s} \\
{\left[2 s^{2}+s+2\right] Y(s)=e^{-5 s}} \\
Y(s)=\frac{e^{-5 s}}{2\left(s^{2}+\frac{1}{2} s\right)+2}=\frac{e^{-5 s}}{2\left[\left(s+\frac{1}{4}\right)^{2}-\frac{1}{16}\right]+2}
\end{gathered}
$$

Complete the square

$$
\begin{aligned}
& =\frac{e^{-5 s}}{2\left(s+\frac{1}{4}\right)^{2}-\frac{1}{8}+\frac{16}{8}}=\frac{e^{-5 s}}{2\left(s+\frac{1}{4}\right)^{2}+\frac{15}{8}} \\
& =\frac{1}{2} \frac{e^{-5 s}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \alpha^{-1}\left\{\frac{1}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}}\right\}=\alpha^{-1}\left\{\frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{\left(s+\frac{1}{4}\right)^{2}+\left(\frac{\sqrt{15}}{4}\right)^{2}}\right\} \\
& \quad=\frac{4}{\sqrt{15}} \sin \left(\frac{\sqrt{15}}{4} t\right) e^{-\frac{1}{4} t}
\end{aligned}
$$

Thus, by the theorem

$$
y(t)=\alpha^{4}\{y(s)\}=\frac{2}{\sqrt{15}} H_{5}(t) e^{-(t-5) / 4} \sin \left(\frac{\sqrt{15}}{4}(t-5)\right) .
$$

The convolution integral
Theorem if $F(s)=\alpha\{f(t)\}$ and $G(s)=\alpha\{g(t)\}$ both exist for $s>0$ then

$$
H(s)=f(s) G(s)=\{\{h(t)\} \quad, \quad s>0,
$$

ω here

$$
h(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

τ this follows from the change of variables
The function h is known as the convolution of f and g.

$$
\begin{aligned}
& t-\tau=\xi \\
& \tau=t-\xi] \\
& d \tau=-d \xi \\
& \text { if } \tau=0 \Rightarrow \xi=t \\
& \tau=t \Rightarrow \xi=0
\end{aligned}
$$

The convolution integral can be thought of as a"generalized product" by writing

$$
h(t)=(f * g)(t)
$$

meaning the integral in
the theorem above.
The convolution $f * g$ has many of the properties of ordinary multiplication It can be shown that

$$
\begin{aligned}
f * g & =g * f \quad \text { (commutative law) } \\
f *\left(g_{1}+g_{2}\right) & =f * g_{1}+f * g_{2} \\
(f * g) * h & \text { (distributive law) }
\end{aligned}
$$

$f * 0=0 * f=0$. \leftarrow this is not the number 0 but the function that has the value 0 for each value of t

But there are also properties of ordinary multiplication that the convolution integral does not have. for example it is not in general true that $f * 1$ is equal to f.
Note: $(f * 1)(t)=\int_{0}^{t} f(t-\tau) \mid d \tau=\int_{0}^{t} f(t-\tau) d \tau$
If for example $f(t)=\cos t$:

$$
\begin{aligned}
(f(x))(t) & =\int_{0}^{t} \cos (t-\tau) d \tau=[\sin (t-\tau)]_{0}^{t}=-\sin (-t) \\
& =\sin t
\end{aligned}
$$

dearly $(f * 1)(t) \neq f(t)$ in this lose.
Proof of theorem first we note that $F(s)=\int_{0}^{\infty} e^{-s\}} f(\xi) d \xi$

$$
\begin{aligned}
& G(s)=\int_{0}^{\infty} e^{-s \tau} g(\tau) d \tau \\
& F(s)=\int_{0}^{\infty} e^{-s \xi f} f(\xi) d \xi \int_{0}^{\infty} e^{-s \tau} g(\tau) d \tau
\end{aligned}
$$

Since the integrand of the first in tegral does not depend on the integration variable of the second we can write $F(s) G(s)$ as an iterated integral

$$
\begin{aligned}
& F(s) G(s)=\int_{0}^{\infty} e^{-s \tau} g(\tau)\left[\int_{0}^{\infty} e^{-s \xi} f(\xi) d \xi\right] d \tau \\
& \text { let } \xi=t-\tau \\
& d \xi=d t \\
&=\int_{0}^{\infty} e^{-s t} g(\tau)\left[\int_{\tau}^{\infty} e^{\left.-s(t-)^{-s}\right)} f(t-\tau) d t\right] d \tau \\
&=\int_{0}^{\infty} g(\tau)\left[\int_{\tau}^{\infty} e^{-s t} f(t-\tau) d t\right] d \tau
\end{aligned}
$$

Region of integration in $F(s) G(s)$:

$$
=\int_{0}^{\infty} e^{-s t}\left[\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right] d t
$$

$$
=\int_{0}^{\infty} e^{-s t} h(t) d t
$$

$$
=\alpha\{h(t)\}
$$

Example Find the inverse laplace transform of

$$
H(s)=\frac{a}{s^{2}\left(s^{2}+a^{2}\right)}
$$

It's convenient to think of $H(s)$ as the product of $\frac{1}{s^{2}}$ and $\frac{a}{s^{2}+a^{2}}$ which have inverse Laplace transforms of t and $\sin (a t)$, respectively By the theorem. the inverse transform of $H(s)$ is

$$
\begin{aligned}
& h(t)=\int_{0}^{t}(t-\tau) \sin (a \tau) d \tau \\
&=t \int_{0}^{t} \sin (a \tau) d \tau-\int_{0}^{t} \tau \sin (a \tau) d \tau \\
& u=\tau \quad \frac{d v}{d \tau}=\sin (a \tau) \\
& \frac{d u}{d \tau}=1 \quad v=-\frac{1}{a} \cos (a \tau)
\end{aligned}
$$

$$
\begin{aligned}
=t\left[-\frac{1}{a} \cos (a \tau)\right]_{0}^{t}+ & {\left[\frac{1}{a} \tau \cos (a \tau)\right]_{0}^{t} } \\
& -\frac{1}{a} \int_{0}^{t} \cos (a \tau) d \tau \\
= & t\left[-\frac{1}{a} \cos (a t)+\frac{1}{a}\right]+\frac{t}{a} \cos (a t)-\frac{1}{a^{2}}[\sin (a \tau)]_{0}^{t} \\
= & \frac{t}{a}-\frac{1}{a^{2}} \sin (a t)
\end{aligned}
$$

Note that we can also find $h(t)$ using partial fractions
Alternative:

$$
\begin{aligned}
& H(s)=\frac{a}{s^{2}\left(s^{2}+a^{2}\right)}=\frac{A}{s^{2}}+\frac{B}{s^{2}+a^{2}} \\
& A\left(s^{2}+a^{2}\right)+B s^{2}=a
\end{aligned}
$$

Let $S=0 \Rightarrow A a^{2}=a \Rightarrow A=\frac{1}{a}$

$$
\begin{aligned}
s=a \Rightarrow \quad A\left(2 a^{2}\right)+B a^{2} & =a \\
\frac{1}{a}\left(2 a^{2}\right)+B a^{2} & =a \\
2 q+B a^{2} & =q \\
B a & =-1 \\
B & =-\frac{1}{a}
\end{aligned}
$$

Thus $H(s)=\frac{1}{a} \frac{1}{\delta^{2}}-\frac{1}{a} \frac{1}{s^{2}+a^{2}} \cdot \frac{a}{a}$

$$
h(t)=\frac{t}{a}-\frac{1}{a^{2}} \sin (a t)
$$

Which is the same answer as above.

Example Find the solution to the IVP

$$
\begin{gathered}
y^{\prime \prime}+4 y=g(t), y(0)=3, y^{\prime}(0)=1 \\
s^{2} Y(s)-s y(\phi)-y^{\prime}(\phi)+4 y(s)=G(s) \\
Y(s)\left[s^{2}+4\right]=G(s)+3 s-1 \\
Y(s)=\frac{G(s)}{s^{2}+4}+3 \frac{s}{s^{2}+4}-\frac{1}{s^{2}+4} \frac{2}{2} \\
=\frac{1}{2} \frac{G(s) 2}{s^{2}+4}+3 \frac{s}{s^{2}+4}-\frac{1}{2} \frac{2}{s^{2}+4} \\
y(s)=\frac{1}{2} \int_{0}^{t} \sin (2(t-\tau)) g(\tau) d \tau+3 \cos (2 t)-\frac{1}{2} \sin (2 t)
\end{gathered}
$$

If a specific forcing function g is given then the integral can be evaluated.

