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First-order differential equations ↓

Section 1.1:Introduction

Adifferential equation is a relationship between a function oftime

and its derivatives.

Examples. -y =
cs(t)+by first-order diff.equ.

dey =e-y ++dysecond-order differ
e

The order ofa differential equation is the order of the highest
derivative

ofthe function thatappears in the equation.

A solution ofa differential equation is a continuous function y It) which

together with its derivatives satisfies the relationship.

e.g. Show thatyH):asint - cost is
a solution to theequation

LHS =.d2y +y =0S2t.i =RHS

show thatCHS =RHS

-dy =2cost+Esinone

dry =-2sit +cat

LHS =- 2sint+*coS2+ +(2s/nt -50s2t)
=COS2t

=RHS



Thus y(t) =csint-costis a solution to the given diff.equ.
&

Section 1.2:First-order linear differential equations

Assume thatour equation can be writtenas

y =fit,y). <- Given fly), find all
functions yIt) that satisfy
this diff.equ.

Def".The general first-order linear differential equation is

-ay +a(t) y =b(t)

This is linear because the dependent variable y appears by itself.

(That is, no terms like e-,y2, cosy, etc in the equation

e.g. y=y+sint (nonlinear because ofp)

dy =cS(t) y + 3
linearto

dy =ws y+ Chon linear because oflosy).

Det" the equation

-dy +a(t)y =0

(so with bit) = 0 from above) is cooled a homogeneous first-order linear

differential equation, whereas when bit) to from above, it is called the

nonhomogeneous first-order linear differential equation.



B
ex. Solve dy +actly =0

Use separation of variables:

dy= - a(t)y

(y =(-a(t)dt arbitrary2 constant

(n(y) =-Ja(t)dt + c of integration

Now taking exponentials of both sides. some constant,
-Saltidt+c Jaldt@ let's slit A

(y) =e =e

- Saltidt
=>(y) =Ae

lye
(act)d +) =A

Notice that we have a continuous function oftime on the LHS,

i.e. glt)efaltidtbut on the RIS we have a constant.

Butif the absolute value ofa continuous function g H)
is constant

then I itself must be constant. Why?

Ifg is nota constantthere exist two different times to, and to for

which glt,) => and 9(tz)=-c. By the IVT g must achieve all

values between -> and to which is impossible ifIg(t)=c.

-Salt)dt
=> We getthe equation yH) =Ae



This is the general solution ofthe homogeneous equation. 14

The constant Ais arbitrary. Thus, yaltly =0 has infinitely
many solutions;for each value of we obtain a

distinctsolution

y (t)

e.g. Find the general solution to dy +3ty =0

Here alt)
=st and the general solution is

y() =Ae
-Ja()dt

Thus y(t) =Ae
-(3 +d+=Ae

- 3t4z

e.g. Determine
the behavior as toofall solutions ofthe equation

dyt ay =0, a cons.

The general solution is
-(alt) dt

=Ae
-at

y(t) =Ac

So ifaco => as +-0,yIt) -> 0 (with the exception ofy =0

ifa>0 => as + -0,y(t)
->

0

Usually, we lookfor a FC solution y It) which at
some initial

time to has the valueyo. I.e.

Solve dy+a(t)y =0, y(t00
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This is rolled an initial-value problem.

dy =
- a(t)y

&y
=
- a(t)dt

y

Now integrateboth sides between to and

It D =

- It asses

[en(y)] = - Stassids
↑#1- enly(t0)

= - Jassids

entity
Taking exponentials on bothsides yields

- Sassids
(i)) =e

1 siest
asses

=

Ta:How do we decide whether it's identically I or ?

A.Let's evaluate att
=to:



o &

yesacds...i
↓

Hence 'yisestas,as =1

=>y(t) =y(t)e
E acsids

- Sacsids
Where y(t) =y. and so we gety(t) =goe

Example:Solve the IVP:

dy +(cost) y =0 with y(0) =a

solution is. Sassids=e-Stotcosds - sinstitsinto
y(t) =y.e

=52 ⑥

since to=0
- sin(t)

=>y(t) =ze

Method of integrating factor

Now back tononhomogeneous equations ...

dya(ty =bt).

Think ofexpressing it as (A) =b(t) and then integrating
both sides to get the solution.



so we need to ask:Whatshould be such that its derivative
w.r.t. t gives the LHsdytaltly ?

start with: y +a(t) y =b(t)

Multiply both
sides by a (u(t)y +u(t)a(t)y =ult)bt)
Its fan (H):

We will choose fult) so thatfultdy+Mlalty will be the

derivative ofjultly iffdult) =altfult)

(fucty) =dulty uctdy comparing thisto

M(t)dy+(u(t) a (ty we
↓are thatducts=puctlat).

Butd =utalt) is a first-order, linear homogeneous

equation for NIt) (a-alt)/n =0) and we know how to

solve it. I.e.

MIt) =eJaCtdt.
INTEGRATING

FACTOR
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So with this fult) we have

M(t) dy +mItaLEy
=m(t)b(t)

-d(((t)y) =((t)b(t)

and now integratethis:

M(t) y
=/flt)b(t) dt +c

Equivalently, this is

y
=T+)(/k(t)b(t)d

++1)

= TaCtidE(J(u(t)b(t)d+
+c

=

e

- JaCtidt J/k(tbIt)dt +C)(x)

With an initial condition, we would integrate from to to to get

M(t)y - M(to y0
=f.MCsib(s) ds

=>y
=wtH(hesto)3. +Tmcscb(s)ds](**)

Note.Do notmemorize (*) and (**). Instead, solve
all

nonhomogeneous equations by :



↑
(1) Multiplying both sides by MIH).

(2) Writing the new HTS as the derivative
ofIty (t)

(3) Integrating both sides ofthe equation.

examples. Find thegeneral solution ofCity =t

dy +a(t)y =b(t)

Here a(t) =-2t. (alt)dt
=

ef-2td t=e- E
Integrating factor:SI.F.):(L) =e

Multiply both sides of dy-Cty =t by I.F.

3
-

Ezdy- z
- z+y =e +

-
1/ productrule and chain rele

=>f(e- t-y) =et+

Now integrate both sides w.r.t. +:

e
- +y =(z++dt

e
-

y = - ze
- z+
c

y =etY- ze
-E

+cI
y
=

- z +cet



Example Find the solution to the I.V.P. po

dy +2ty =t,y(1) =2

S2tdt
=etI.F.(r() =2

Multiply both sides by et?:

etdy + stety =tet

↓f (ety) =tet

Integrate both sides w.r.t. + from to to t

etiy-etoy. = tsesias where to =1,y. =2

ety - i(z) =1
+
sesids

ety - 2 =(+95]t
ety - ze =et

-
ite

y =e
- 1/2+- ze+20]

y =z +e
- E
+
1
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Section 1.4:Separable equations &

We have already used this in sec. 1.2 butlet's look atthe general method:

Solve the general differential equation

y=grt,
where f and are continuous functions of y and t

Any equation which can be putinto this form, is
said to be separable.

Multiply both sides by fly):

f(y)dy=g(t)

q(F(y(t))) =g(t)
where Fly) is an antiderivative offly), Flyl

=Sfydy.

Upon integration w.r.t. + we get

F(y(t)) =Jg(t)dt +C

Then solve this for yet) to find the general solution.

Example. Find the general solution of dy = the
y2dy =t2



12-(53)= &

-3 =(t 'd+
+c

-
3
=1 +c

y =( +
3
+3c]

Example. Solve the 1.V.P.

eYdy- (t +13) =0,y) =

Rearrange into the form y =t
eydy =t+t3

(ey(t)) =t +t3

eY =f(t +t3)dt

e3 =

+1+c
Now since yU=) we come determine the constant of integration (

e
=
1 +

1+c =2 =
+c =c =2 -3
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23 =+1+e-

y =(n)E+1p+e -3

Example Solve the I.V.P. dy =(i +y) t, y() = - 1

#y dyt =t

It's dear from this thatif we plugin the initial condition y (0)=-

we will be dividing by 0.

-rt, we can see thaty (t)+is a solution of this I.V.P.

Check that it'sa solution:

LHS =y =(-1) =0

145 =x +y)t
=

(1(f))) t
=0

=> LHS =RHS

...y(t) = - is a solution.

Later in the class we will show that it's the only solution.



Section 1.9 Exactequations, and why we cannot solve very many
14

differential equations

Generally, we can solve all differential equations ofthe form

P(t,y) =0
for some p(t,y). To solve this we integrate both sides w.r.t.+ to obtain

P(t.g) =constant.

Then, ifpossible, solve for in terms of t

Example. Solve cas(t+y) +[1 +CS(t
+y)]dyt =0

-

=>(y +sin(t +y)] =0

I verification:y +cos(t +y). 1 +cos(t +y)dyf =0
~

from (sin(t+y)
once diff. the terms& then they term

dyt [1 +cs(t +y)] +cs(t+y) =0
↓

Thus from [y+sin(t+y)J =0 We see thatthe solution is

y +sin(t+y)
=const.

Butthis is an implicit equation in thatcannotbe solved for

y explicitlyin time.



which equations com be putinto the form (t,y) =0?
15

From thechain rule: P(t,y(t)) =20 +20 feet
I-
=M(t,y)

+N(t,y)dy
So a diff.equ.com be written in the form P(t,y) =0 if and only if

there exists a fan p(t,y) s.t.

M(t, y) =20and N(t,y)=oy
Does sucha function & H,y) exist?

Theorem.LetMity) and Nity) be continuous Ihave
continuous partial derivatives w.r.t.+andy in the
rectangle R consisting ofthose points (t,y) with
actcb andccy<d. There exists a function 4(t, y) s.t.
M(t,y) =80 and NCt,y) =20if

CM=
in R.

Prof. MA,y)=28 for some plt,y)iff (t,y) =JMIt,y)dt+ byS
M

arbitrary
Taking partial derivatives on both sides ofthis w.r.t.y, function ofy
we get

0 =JM(t,y) atthing red
Thus, this come be equal to NCt,y) iff



N(t,y) =J2M(t,y)d++by) 16

=>hicy) =NJOMyltyefor ofy
only

Butthis cannotbe true which means thatthe RHS
also has to be a

function of y alone. 1.2.

- [N(t,y) - JzM(t,y)dt] aN- Cyy =0
Therefore, ifNEM then there is no function Plt,D).t.

M =08, N=P. However, ifaN=CM then we cresolveof one

h(y) =f(N(t, y) - SOMLt,y)dE]dy
This implies thatm =o, N = 28 withthe

P(t,y) =fM(t,y)d+ +[[N(t,y) -Msty) dE]dy
(Recall that0 =JGNd++hiny) => p =SMd+ +h()

Definition.The diff.equ. MIt,y) +N(t.y) y=0 is said to be

exactifM =CN

Practically how do we choose P(t,y)?

Method 1:The equation Mit,y)
=odetermines p(t,y) upto an

arbitrary fan ofy alone, i.e.

P (t,y) =J M(t,y)dt +h(y)



&7We then take the derivative ofthis wort, the other variable, i.e. y

b =Jmdt this res
=>h(y) =20 - fMdt =N(t,y) - JEN et

which means thathly) can be determined from this equation

Method 2:IfN(t,y)
=

20then

P(t,y) =(N(t,y)dy +k(t)
a

arbitrary for of t alone

Now differentiate wirt. the other variable, i.e. 7

m ==fzNdy +k)t)

=> ((t) =M(t,y) - fulty) dy

①
Method 3:B =M(t,y) and OleWIt,y)

=> ↑ (t,y) =JM(t,y) dt +h(y) Integrating ①w.r.t.t
=> I↑(t,y) =fN(t,y)dy +k(t) I Integrating @ w.r.t.y

Then we can usually determine hly) and kC) by inspection.
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#amplethe general solutionto

3y +et +(rsy) =0

-

M(t,y) N(t,y)

This equation is exactifM
=EN

rm= 3 and CN =3 so this equations exacton

Thus, there exista s.t.

M =

20and N=
i.2. -0 =3y +et

20 =3t +cy

Let's find plt,y) now...

Mbod1:p =3y +et=> p(t,y) =f(3y +et)dt
+hy)

=3yt +e
++hy)

Differentiate this woty:

80 =3++h.(y) =3+ +cosy from deffofNS
m non

=>h'(y) =cosly)

h(y) =sin(y)



Thus, 9(t,y) =3yt +et
+sipy. 19

Method 2 o =3+cosy. · Integrate wit to getto

P(t,y)=3ty +siny +k(t)

Differentiatelott:cp =3y +k((t)
=

3y +et (
=m)

Thus k(t) =et=> k(t) =et

So we havep(,y)=3ty+siny + et (which isthe same as the
answer from Method 1).

method3:P(t,y)
=et+3ty +h(y)

p(t,y) =5ty
+sin y +k(t)

Now comparing this two it's dear that hly)=siny and k(t) =et

Hence, again, Plty):et+sty+siny.

Example.Find the solution ofthe IVP

4t3et+y ++4et
+

y +2t +(tPety +(y)y =0 .y10) =1

Verifythat this is an exact equation

Is M =2N? m =4tet
+

y++ 4y++y +2+

N =+ 4e+y +2y

#M =4(3et
+y
+t4et+y

EN
=4te+ ty ++Pet+y]M

=CN => extortion



Now integrate either w=cowrty or M =88 wrt: po

Integrating n =20 wrty is easier

P:JNdy =1(t4et
+

y
+2y) dy

=t4et+y +yz +k(t)

Now differentiate this wit :

20
=4t3etty++4et+y+k((t) =m =4t3et

+y
+t4et+y +at

So comparing the two we see thatk'(t) =2t => k(t) =th

Thus the general solution is p=t4etty
+yz ++

2
=c (since p=

is the SOM)

Now using the initial condition y (0) =1
we have

0 +1+02 =C

c
=1

=>te
ty +yz +2 =1

↓

suppose thatthe equation now isnot exact. Can we make it exact?

Yes, using a similar procedure to the integrating factor from before.

I.F. ((t) =2
JR(t)dt

where R(t) =1am - CN)



Example. Find the general solution of 12/

12 +2yet
+(y +et)y =0

M =yz
+2yet =z

N =y +et =
EP

rm =y +cet

3orMFctrw =et

So we'll now find the integrating factor:

R(t) =H(zm - zn) =jz+(y
+2e

+

- et)

=Te
=

1
JRLtd t

So the I.F. is e = 2 and we heultiply the diff.equ.
to obtain the exactform of the equ

etzy+2yezt+(ety +e2t)y0
Check thatit's exact now:

2M =ety +z

2N =ety +2

P =fMdt =

ety +yezt +h()
zb =ety +et+h((y) =N =ety+e2t=) hify) =0 =h(y) =k



p =

ey+yezt =c Cquadratic equ for y) &

Thus the solution is

y(t) =
- e2t +V(e2t)"- 4/e)(-c

x(e+/x)
=et scet

et

=et =ve((e2++ex- t)
ex

=et =pezt +acet



Section 1.10:The existence -uniqueness theorem;Pilarditeration 13

Consider the IVp dyt =f(t,y), y(ts) =30

&(1)Does this up have solutions?How many solutions?

ALGORITHM FOR PROVINGEXISTENCE OFA SOLUTION Y(t)

(a) Construct a sequence offunctions Yult) which comecloser and closer to
solving the IVP.

-> (b) show that the sequence offunctions Yult) has a limity It) onasuitable
interval toats tota

-> (c) Prove that y(t) isa solution ofthe 10 on this interval.

(a) Write the up as y(t)=L(t,y(t)) where I may depend explicitlyony
and on integrals offunctions ofy.

y
=f(t,y)

Now we can integrate this wortt:dysas =ff(s,y(s))ds
=>y(t) -y(0) =f+f1s, ycs)is

=> L(t,y(t)) =y(t)=y. + f(s,y(s))ds (A) Integral equation

Conversely, ifyetis continuous and satisfies this then dy =f(t,y(t)



Scheme for constructing a sequence of approximate solutions Yu (t).
24

Our guess for y0(t) =3..To check if yout) isa solution of (we compute

y,(t) =y.
+ f(s,y.(s))ds

Ify, (t) =yo, then y(t) =y. is indeeda solution of (*

Ifnot, then we try y, it) as our nextguess.To check
if thatis a solution

of (4) we compute

yc(t) =y. +(tf(s,y,(s))ds

Thus, we define a sequence of functions y, 1t), Y.(t), ..., where

yn+1(t)
=

y. +St
t
f(s,yn(s))ds

↑
successive approximations/
Picard iterates

These Picard iterates always converge on a
suitable interval to a solution

y(t) of (*)

Example. Compute the Picard iterates for
the NVP

y' =y,y(0)=1 y' =f(t,y)

and show thatthey converge to thesolution y(t) et
for this example

#y the right-
hand

y
=((t, y(t)) where ((,y(t))

=

Y. +SBISS side

y(t)=1 +ftyds
=1 +1/ds
=

1 +t



Yz(t) =1 +( y,(s)ds 15
m

mv

=1 +5
+

(1+sds

=1 +(s +5]t
=1 +t+

and in generalyn(t) =1+yn-(s)ds
=

1 +1
+

(1+s+...
-hid's

= 1 +5+EY +.. +E Taylor series expansion of a
n!

Sinceet =1 +t +t.... th, the Picard
iterates yult) converge to the

solution y(t) ofthis NP.

HWIDue date Feb 6 (Monday) at11:59pm
on Gradescope.

Example Compute the Picard iterates y, (5). YIt) for the IP

y( =1+y3,y(k) =1

y(t) =y.
+(t f(s,y(s)ds

(25 -1)(25-1)2 y,(t) =1 +(,
F(1 +13)d5

=1 +2t -2 =2+-1

=(25 -1)(45 - 4s +1) Y(t) =1 +f
+

(1 +(25-1(3)ds
=893 - 85+25

=

1 +(,t(X853 -1252 +6s/) ds
- 452 +45 - 1

=853 -1252 +65 - 1 Easy-4sitesare+3)
=

2t
4
- 4+

3
+3+

2
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(b)Convergence of Picarditerates

The solutions may notexist for all
time.Thus the Picard iterates may

notconverge it. We try to find an interval in which all the Yult) are
uniformly bounded (i.e.Iyn (t)/: for some constant K).

emma Choose any two positive numbers
a and b, and letR be the rectangle

to <t=to +a, ly-y/<b. Compute

M =max1f(t,y)) and set2 =min/a,π
(t,y) in R

Then
(yn(t) -y.) =M(t- t) => - M(t - to) =yn(t) -y. =M(t

- to)

for tot = to+X.
Yo- M(t-t) =yn (t) =y.+M(t-to)

y+b
-

y +b
-

3.stmut Y. -
⑥Jult)

y=y.-m(t-to)
Y. -b- ~ Y. - b

-

to t +c to 10+a
x =a

a =b

proof We use induction on a

Observe thatlyu(t) -yol:M(t-to) is true form = 0 since

19.(t) - y0) =(y. - y0)=0 -M(t - to



Next, we mustshow thatlyn(t)-yol? M(t-to) is tree for m=j+
&

if true for n =>

Assume tree for 1yjH)-yr):MLt-to)

For aj+(yj(t) - y0) =1f(s.yj(s()as -10)
v.+(t)

=((I f(s,yj(s)ds/
-> (t(f(s,yj(s))/ds

since
->

<M(t - to)
m =max If(t,y)
[t,y)inR

for to t-totd. Thus, lynCt)-yol:MCt-to) is true for
all , by induction

is

Next, we show thatthe Picardliterates [Yn1t)converge for each to
in the interval to itsto+d, ifofexists and is continuous.
Write Yult) as follows

Ye(t) =y(t) +(Xy(t) -y(t)) +(y(t) -x(t))
+... +(YnX(t) - y(z(t))+(yn(t) - y-(t))



So the iterates [y(t)] are a partial sum for the series 28
Y.(t)

+[B(Yn(t) - yn+te)

Clearly Jult) converges if the infinite series

[y,(t) -y.(t)] +[yz(t) -y,(t)] +..+[YuLt) -Yne(ts]
converges. So we need to show that

z(Yn(t) - yn+(t) <0

(Yn(t) - yn -(t)) =1/Bo+Sef(s,yn-(S))ds -X0-SFfls,Bn->(s1)ds
=St 1f(s,yn +(s)) - f(s,yn-z(s)) ds

=St f (s,B(s)) (yn+(s) - yn -z)ds
where 3(s) lies between Yn +(s) and Yn-2(s). Note we have

f(s,y,) - f(s,yz)=fy.f(s,t)dt,anden
(f(s,y,) - f(s,yz))=(yy)of(s,t)/dts fffCs.3(s)/(y, -y1.

Itfollows from the lemma that the points (S.3(s)) lie in the
rectangle R for S<to+X.

=> lyn(t) - yn., (t)) =2Slyn., (S) - yn -2(s)/ds, to stito+=
↑

2 =

maxofre
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Setting n =c gives

192(t) - y, (t))
<2f/y,(s) - y0(si)ds
-> LMCs - to) ds by the lemma

=LM (S - to
I

This implies that

(Yg(t) - yz(t))=2flyc(s) - y,1s11ds
=LSI M(s - to-ds
=

m(t- t)3

Proceeding with induction, we have that

Iyu(t) - yn -, (t)) <("
-

M(t-to)" for tots toc

n!

Therefore, for to itstoa

(y,(t) - Yo(t)) +(yc(t) -y,(t)( +...-M(t
- to +[M(t

- t)2 +M(t-to)"+...

Csince t= to+X

=> t - tox)
Imd +qz -zmaem ...
=

M(L +2x +1 +..]
=(ex- 1) < a

So we managed to show that the Picard iterates Yult) converge for
each

in the interval to itstota. We denote the limit of the sequence YuLt) by y(t).

1



30

Proof that y(t) satisfies the (p y=f(t,y) , y(ts)
=

yo. and is ats.

The Picarditerates Yult) are defined recursively through

Yu+(t) =10 +(V f(s,yn(sL)ds
Taking limits ofboth sides we get

y(t) =y. +STf(s.yn(s)ds
We want to show that

this equals St fls,ylslids

We mustshow thatIff(s.ycsilds - SetfCs, y(s))ds approaches
zer as 7-0.

((+f(s,y(s))ds -ff(s.yn(s))ds)- T(f(s,y(s)) - f(s,yn(s()(ds

-QS+ly(s)-yelslSS

-> Estimate ly(s)-Yn(s)

2 =

maxsft,y
as borne

y(s) -yn(s) =s[yj(s) -yj-Bis
since y(s) =y0

+20[yj (s) -yj, (s)] and Yn(s) =9.5[yj(s) - yj+(5)]



pl
(y(s) -yu(x) =100+[yj(s) -yj-(s)]

& 8/yj1s) -yj-(s)) and previously we showed
j =n+1 2 lYnCt)-Yn-, (t) ->infMLt-toe
< (j +M(s - to)]
j =n+1 π

-zoM since to tota =>t-to =6.

LX=Azoics.joc=>
=Inalhelto as n-by rationsin

Ratio testhimacanines-1o'**-no(n-)y
=0 4

Therefore line (fls, yulsids-flsyssilds
where ylt) satisfies

n ->1

the integral equation y (t)
=3.+StfCs, y(si)ds.

Recall this is whatwe wanted to show:

We mustshow thatIff(s,ycsilds - SetfCs, ycsi)ds approaches
zer as 7-0.



32
1

Now we show thatthelimityltis continuous. If we mustshow that

for all 330]a S20S.t. (y(t +k) -y(t)/<> ifInk8.

Wedonotknow y(t) explicitly.
So... we choose a large N-L

and observe that

y(t
+h) - y(t) =(y(t+h) -y,(t +h)]

+[Yw(t +H) - Yw(t)]
+[y,(t) - y(t)]

We choose theinteger N large enough s.t.

Mco(asse

Then from whatwe showed before, i.e. that

(y(s) - yn(s)) -(1)(A)
We have theat

|y(t+h)-y(t)=(y(t +h)
- yN(t+h)/ <- from (4)

this is
+(YN(t +h)-yN(t)) (t)
+ (YN (t) -y(t)/ <- from (A) this isa

4- +1 +=

for (h) < 8.

Regarding (), we constructyN(t)
by N repeated integrations of continuous

functions so it's itself continuous.
This implies thatwe choose so so small

thatlyN(t+h) -yN(t)/<e for In8.



Thus ylt) is a
continuous solution ofthe integral equation 33

y(t) =0. +Stf(s,y(s))ds

and this finishes our proofthat y(t) satisfies
the IVP.

D
We just proved the following theorem:

Theorem:Letf and of be continuous in the rectangle R:toItstota,
19-9011b. Compute m =max(f(t,y)) and setx

=min(a,b). Then
It,y)tR

the NVP y =f(t,y),y(to)
=yo has at leastone

solution y (t) on
the interval

to = t =to+x.

Uniquess ofsolutions ofy
=f(t,y), y (to) =90

Consider y' = sin(atly"/3, y(0) =0

Note that0 is a solution.

If we ignore the I.C.g10)
= 0 then the general solution is found using

separation ofvariables

Jy"s dy =(sin(2t) dt

3y23 =-lcos(2tC
So then ify (0 =0, we get 0 =

- +c =c=

=>5y2/3 =a
-

z
wS(2t) =sin(2t)

=>y2/3 =zsin2(2t)
=>y =psins
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&

f(t,y)
-

So why are there multiple solutions to this NP?y'IsinGaty's
But this RHS does nothave a

ofaty.

(Notef =gsiR(2t)y3)

New theorem lett and ofbe continuous in R:to-t. to +a, ly-y.1

Compute m =max Ifft,y) I, and seta
=min(a.).Then the NP

(t,y)tR

dy =f(t,y), y(0) ·
hasa unique solution yet) on the interval to it:

to+. I.e. ify (t)
& Z(t)

are two solutions ofthe IP then y(t) =2(t) for to it:
to +.

Proof. By the previous theorem, there exists
at least one solution yet)

Suppose E(t) is a second solution.Then both satisfy
t

y(t) =y. +(t f(s,y(s))dS
z(t) =y. +(1 f (s,z(5))ds

Now, ifwe subtract the two we get

ly(t) - z(t)) =100+Sf (s,y(s()ds - - Sf(sisids/
=St (f(s,y(s)) - f(s,z(s))/ds
-> h/Y(y(s) - z(s))ds

↑

maxlo



55
=> y(t)

=2(t). So the IVP has a unique solution yst).

Why is ly(t)-z(t)/:2/tlycs) -zCsi/ds?

Leroma let with be a non-negative function with

WCt) -> cStwCsids. If
Then WIt) is identically zero.

Example. Show thatthe solution ylt) ofthe NP

dy =e
--
-3,y.1

exists for ot? 19, and in this interval, Oxy 12.

to =0 and a=
->Let R be the rectangle to t= to +a,

in thiscase out?
|y - y0) =b 0 =y = 2.

(y - 11 Ib =)
- b+12yzb+1(s0b =1)

Compute M =max(f(t,y)) =max(e-tfy3 =(20 +23) =9
(t,y)tR 0xt=

a cy=2

We see thatylt) exists forof mind, and in this interval

02y?2. to itstota

where x =min(a.E)
=min(, )
=
1

9



6

#xample show that the solution yet) ofthe IVP

-dy =t+e
-y,y(0) =0

exists for 0-t?and inthis interval by (t)/=).

->Let R be the rectangles.t.
tottoa where to0 and a=

|y-y.(zb =(y -0/2b =b =1

Compute m =max(f(t,y)) =max( t
2
+e
- yY =(z)"+20

St,y) tR 0:t=z
- (y 1)

=I+1 =

Thus we have a=min(a,2) =min(z) (4)) =min(z . 5) =2
=> to itstois outand in this internal ly (t) 1:1.



Section 1.13:Numerical approximations;fuler's method
$7

As we'vealready discussed, oftentimes it is not possible to write down an

analyticalsolution
to theIVP y =f(t,y) , y(ts) =y0

In this section, we'll learn numerical methods to compute accurate

approximations of the solution y (t).

We'll compute approximate values y,.....Yw of yet at a finite number

of points t,tz....,tN

The simplest approximation at some pointtoto is to use the Taylor

series approximation:

y(t) =y(t0) +y' (t0). (t - to

Using the information available, we have dy =y(t,) -y(t)
⑭to

y(t)iy(t0) +f(to,y.). (t
- to) =h

=f(to,10)
If we look attot, ... and text-te=h, there

y (t,)
=y(t) +h f(to,Y0) <- this is

known as

EXPLICITEULER method

Pictorially: small approximating steps

y'(to) they
↓·

Yo~....
i



To summarize:ye=ylte) 38

Define y1+ 1
=

ye
+hf(te,ye)
⑥

approximation to y'He) (since
we donotknow the

trueye)

Example y'(t)
=1 +(y - t)

>

y(t0)
=

30

Explicit Euler:Ye +1
=ye +h(1+(ye - te)Y)

Error analysis

Recall the Taylor series:

y(t)
=y(t0) +y.(t0)(t-E) +yi(t0)(+-t)+...

Taylor's theorem says that ifwe trencate
this, then

y(t)
=y(ts) +y.(ts)(t- b) +yi(9)(t-E↑
EQUALS

↑ 3 is some number in the

interval [to,t].

To find the error in fuller's method we

examiney-yteevalue
Euler:Ye+1

=

ye +hf(te,ye)

Taylor:y(tex) =y(te) +y.(te)h
+yitzre

2-)



Ye+1 - y(te+1) =ye - y(te) +h[f(te,ye) - y((te)]
- y(x)3ph 59

Note thatfite.ye) - f(te,y(tel) =f(te,ye)
- f(te,y(ts)) (ye - y(te))

--Ite
& some ye

=>(ye+1 -y(te+1)) =(ye - y(te)) +h(f(te,ye)/(ye - yzte)) +1+1)/h
SetG=(ye -y(te)/ <- error

=>fe+1
=- +1 (te.4e)/tcb

+1/b>
=(1 +h/z(t,,4)))) -e

+1BB/h
=(1 +n7)Eg +hz

with L =max(f), D
=maxly "I

andnote y"
=fy' = f(ty) =of +efdy=c +ofthe

To summarize:

Ge+=(1+hL)fe+ hefor 1 =0,. . . , N-1

Note thatfo = 0 since yltol:go. So if11 Afe +B , 8 =

0



with A =1th) and B =Dh then can we say anything
aboutto

independent oftee?

IfGkH:AG +B, then we can show that

↳ (=E(Ak -1)
for how A-1

this follows
= h+((1 +12)" - 1)

see pages x+yLf
92-93 of
your textbook =

1h (l +hz)"
-1)

2L
-

↓ ->oas h ->0

①

as k+0

We can also obtain an estimate for to that is independent of k

Note that(1thL)<ehsince from the Taylor series expansion

of the exponential function we have

eht =1 +ht +(L-+Cht .... these
1

↑

positive

Therefore. (e-ph(Jen" - 1) =hencee)

Since hi-a, we haveGa-ph(e5-1) where a is the one from the

existence and uniquess theorem.

=> fuler's scheme is FIRST-ORDER CONVERGENT.
I.e. ifh> e then

Gx -Gk/2.



Example Consider dy=Ety?yo. in ↑

11) show thatyet) exist atleast for 0.11 and that in this interval ->Iy(t)=)

Let R be the rectangle Ot
=1. - 12y?1.

m =max(f(t,y)) =max ItyY =1 =1

(t,y)tR
0.st=1
1=y=)

a=min(a,b) =min(), f) =1

Hence by the existenceand uniqueness theorem, YH)
exists at least for

tot= to+a => 0t 1 |
and in this interval -cy.

(b) Let N be a large positive integer. Setup fuler's scheme to find approximate

values of y at the points t
=k/N, k =0,1 . . . ., N.

Euler's scheme:YAH =

YA+ hf(ti,YK) since de =stye
Y(s+1 =y,b) type

tiids....↓=

y, +(k((k)+y,y)
with K=0, ..., N- and Yo =0.

since y() =0

(2) Determine the stepsize h=
so that the error we make in approximating

y(ti) by Yi, does not exceed 10-4

In this example fity):ty" and so of =y, c = t



Renall thaty'-dy' =gf =
0f +EAyFf =7+fof =t +Ety

so we have ly(ts-yrl?hle"-) where
L =max(zy) =1
D

=max(y") =1 + 1) =2
Hence ly(tm) -y,)zzh(e-1) =h(e - 1) -10

-4

so the stepsize mustbe he
s

Interpreted in terms of the exact solution:
NVP: y'(t) =f(t,y), y(to) =Yo

-
f3

Integrate both sides of the diff.equ.

=>y(t) =y0+(t f(s,y)ds i
=Yo +(t- to) f(to,y(to) to iit
=y0 +hf(to,y.)
-

Culler's method obtained by approximating this integral

In this case, the value ofatto was used. Alternatively we could have

used thevalueof t:

yct,) =y0 +St f(s,ycslds
~ Y. +(t,- to) f(t, y(t,l)

Now, the equation y
=90+hf(t,,y.) most be solved for the value of

Yo.This is known as IMPLICIT EULER. The error is similar, butthe

stability isbetter.



STABILITY OF EULER ↑3

Examine the model problem y'=- by, with 650.
y 1+1

=ye
+hf(te,ye)

Explicit fuler.Ye+1
=

ye - hbyy =(1-hy) Ye

The true solution is y=cest, and yetto as to (since (10).

In order for Y,to, we require

y=(1 - 4x)y.

32 =(1 -4x(y,
=4- 1x(4 -hy(y.] =(1 -4x2y.

thatIl-hall and therefore since so, has, we require

-11 - 1541 =) - 24 - hy<8

0<hx <2

a<h=
This means that the stepsize a mustbe in this interval to ensure

stability.

IMPLICITGULER

Ye+1
=

ye - 4+ ye1

solve for yet to obtain Y(+(1 +45)
=

ye => yc+1
=Ctus) Ye
:hje+1 Yo

Thefactor is always / ifhi0,630, and therefore1+hx

implicit foler is A-stable.



Section 1.15Improved toler method ↑44
Consider the 108 y'(t) =f(z,y), y(t) =90.

Integrating the diff.equ. between ti and tith gives:

y(t,,+1) =y(t,)
+(tk

+

4f(t,y(t))dt
-

We mustapprox.
the area under the

curve fit,y) beth th and tith

Pictorially
f (t,y(t))

A

f(t,y(t)) f(t,1,4,2)). =1
f(tp,yp).................... f(tk,y,)...- T

i R i i ·
>

b't t tk+k t

Area R =f(tk,y,2)(Ath --c) AreaT= (f(t,,y ,2)+f(tk+1,9,1+1)
=hf(tk,yk)

the area ofthe trapezoid T isamuch better approximation of the

area under the curve compared to the area of the rectangle R

So ifwe replace the integral in y(tkti) =y(t,c) +54th f(t,y(t))dt
with the area under the trapezoid, we getthe following numerican
scheme:



(*) Y,+1 =yk +[f(tx,y,z) +f(ty+1,y,ct)] 145

we cannotdetermine fitfrom Y
because yetalso appears on the RHS.

On the RHS we can then use Euler's method. I.e.

Y,+1
=

y, +hf(t,yz)

Thus (*) becomes

Y(+1 =y, + f(tk,yz) +f(t+1 Tus+hf(tx,y,))],30=y(t)

↑ t+k
this is called IMPROVEDtULER METHOD

Example Write down the improved tular method to approximate the
-

solution ylt) to the IP

y( =1+(y- t)-,y(0)=

atpoints tic -with k=1, .. . , N.

-> Improved Erler method:

Yk+1
=

ypt) (1+(y,- t,)Y) - fx+1))
f(tk,yk) f(tk+1,yp +hf(tk,y,)

with h = 9 =1. The integer k =0, ..., N-.



Section 1.16:The Runge
- Kulta method 16

k =0,1,..., N-1

Y(+1
=y,+242.2

+242,3 +4x4].

where yo
=y(to) and think of this as an average slope

L,) =f(tk,y,z)

42,z =f(tp +1h,y,
+1h4c,1)

42,3 =f(tk+zb,y,c +zh(,z)
Lk,p =f(tx+b,y,c+44,3)

The Runge-Kutta method is much more accurate that fuler's methodand
the

improved Euler method.

Note from above thatthere are functional evaluations ateach step

for Runge-Kutta whereas in the Euler method we perform only one
functional evaluation ateach step. However, theRunge-Rutta method is
still much more accurate.

SUMMARY

First-orderaccurate methods

Forward (explicit) Guler:YkH =

Yk +hf(tk,yk)

Backward (implicit) Euler:YkH =y,. +hf(tk+1,Y(c+1)

Second-order accuratemethod

Improved Euler =Y(H) =y, f(tk,yz) +f(t,H1, T,s+hf(tx,y,))]
Fourth-order accurate method

Runge-Kulta:Y(+1 =y,
+5[L,<,1 +242.2+242,3

+4x4] with (p,1.4,z,
(2,3,Lk,4

from above



#7
Let's say we have a numerical methods thathave an error

34,1142,4244
If we require

& decimal places accuracy, then the step sizes hi, ha, be

of these three schemes must satisfy ⑲
=300

error:3h,118
-8 => 3(,) =10

-8
=> N,4,3410

million

error =11hz = 10-8 =>N2,Nx104234000

errors
:42h, < 10-8 => N3>4(2x10 =260
--

number of iterations
to reach 8 d.p. of
accuracy.



&8
Chapter 2:Second-order linear differential equations

A 2nd-order differential equ is of the form

dry =f(t,y,ye)

If this is an 18 then the I.C.s are ofthe form

y(t0) =70
y'(t0) =y0

We'll learn to solve a second-order neardifferential equation.This is
of the form

dry+p(t)dy +q(t)y =e)
Linear because bothy and iappear by themselves.

2.g. yetdy+cy=hiarone

dry +3dy (sint)y =etlamere

diy+5/dye = nonlinear

dzy-sdytsing=3 noninaare



We startwith the homogeneous case: #9

day+p(t)dy +q(t)y=0,y(t0) =00.y'(tone

g(t)
=0

First we wantto know if a solution exists.

Existence -uniqueness theorem

Let p(t) and qlt) be continuous
functions in the interval <<<B.

There there exists one and onlyone function y
(t) satisfying

y"+p(t)y+q(t)y
=

0

on the entire interval<<tp and the prescribed 1.2.y (t0)
=

Yo,

y
' (to) =y'. Note that any solution y=y(t) which satisfies

the NVp

with g (to)
=0 and y'(ts) =0 atsome time =to

mustbe identically

#

Now we will view thedifferential equation through operators L.

We use the relation

LTy] (t) =y"(t) +p (t) y
'

(t) +q (t) y (t)

where L is an operator which operates on functions i.e. itassociates

each function to a new function LIy].

Example. Ifp(t) =0, q(t) = t then

L[y](t) =y"(t) +ty(t).



Ify(t) =costthen (y)(t)= -cost
+tost 150

Ify(t) =t3 then ([y](t) = 4
+6t

"function ofa function"

Properties

1. [cy] =cy] for any constant c

2.2[y, +yz] =2[y,] +2[yz]

#ofs
1, L(cy] (t)

=((y)"(t)
+p(t)(cy)' (t)

+

q(t)(y)(t)
=

cy"(t) +cp (E)y' (t) +cqst)y (t)
=([y"(t) +p(t) y' (t) +q(z)y(t)]
=CLTy](t).

2. ([y, +yz3(t) =(y, +yz)"(t) +p(t)(y, +yz)' (t)+q(t)(y, +yz) (t)
=y,"+yz"+p(t)y,

+p(t) yi+q(t) y, +q(t)yz

=[y,"+p(t(y, +g(t)y] +[yz"+p(t(y)+q(t(yz]
=L[y,](t) +L[yz](t)

Definition. An operator which assigns
functions to functions and satisfies

properties land 2 is called a linear operator.

All others are nonlinear.



Eg. [[y3(t) =y"
-2t[y]4 51

This operator assigns to y
=

Ithe function

L(y)(t) =(- 2t (#)
4
=0

butto y =
C
I
it assigns

L[X](t) =E3 -24 =2)e
Thus for (70.1 and y(t)

=

I we see that ([cyJ(A) + (L[y] (t)
so thisoperator isnonlinear.

Why are properties, and 2 useful?

the solutions yet) to y"+pCty'+qlty =0 are exactly those

functionsfor which

L[y)(t)
=

y"
+p(t)y+g(t)y =0

i.e. the solutions yet) are exactlythose functions y to which
the

operator (assigns the zero function.

· So ify(t) isa solution by property) then so is cylt) since

L[cy] (t) =c[y] (t) =0.

· By property ify, (t) and yet) are both solutions of the diff.equ.
then y, (t) +yz (t) isalso

a solution since

L[y, +yz](t) =L[y,j(t) +L[yz](t)
=0 +0
=0



The two properties together imply that all linear combinations
52

cy,(t)
+Gyz (t)

of solutions of the diff.equ. are again solutions.

=> We can generate infinitely many
other solutions.

E.g. Consider dey +y =.

Two solutions are , (t) =cost] => y(t) =Gcost+ asint
Y2(t) =sin t

is also a solution for every choice
of C, and c

By the existence
- uniqueness theoren, y(t)

exists for all t

Lety (8) =90, y '10
=y. and consider

solution since it's
& (t) =y. c0st

+y.'sint<- a linear combination
ofsolutions

and

↑ (0) =0.

↓ ((0) =y6.

Thus y(t) and PU) satisfy the same
2nd-order linear diff.equ

and the same 1.C.S.

Trema (from textbook):Lety, (t) and yet) be two solutions of

y" +p(tsy' +g(t)y =0 on the interval <st<p with

y,(t)yz,(t) - y,.(t)yz(t) #0

in this interval. Then y(t) =c, y, (t) +Gy (t) is the general solution

of the diff.equ.
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L

-finition the quantity y, ltiyc (t) -y.' (t) yct) is colled the
Wroskian of J. Ye and is denoted by WIt) =W(y,,Y2J (t).

W(y,,y,J(t) =det(y;yz) =y,yi- yen
Theorem 3 (from textbook):Letp(t) and glt) be continuous in the
interval <<t<B and let y, (t) and ye (t) be two solutions of

y" +p(t)y+q(t) =0
Then WEy,.y2] H) is either identically zero, or isnever zero, on the
interval (Ct<B.

Note Lety, it) and yet) be two solutions of the linear and order-

diff.eqn.y"
+p()y'

+g(t) y=0. Then, their Wroskian

WH) =W(y,, y2J(t) =y, (t) y2(t) y,(EYeLt)
satisfies the 1st-order diff.equ.

W((t) +p(t)W(t) =0

#ote We com solve this 1st order diff.equ. Using separation ofvariables

(W =f-p(t)dt

=>W(t) =Ae
- (P(t)d+



Why does the Wroskian satisfy WIC) + p (t)W(t)
=0? 54

W(() = (y,yz-y,4z)
=(yyz+y,yz" - yyz -xyy! (by product rule
=

y,yz"-y."yz

Sincey, and y are both solutions ofy'+pit)y' +g(t)y =0 they must
satisfy

y,"+p(t)y, +g(t) y, =0 =y,, = -p(t)yi-q(t)y,
yz"+p(t)yi +q(t)yz =0 =

2= -p(tyz-q(t)yz

Plugging these into Wilt) =y,ye"- y,"ye we obtain

W((t) =y,( -p(t)yz- g(t)ya) - (-p(t)y,' -q(t) y,)Ya
= -p(t)y,yz- q(x)y,yz +p(t(y;yz +qxyy,yz
= -p(t))- y,yz)

W(t)

=>W((t) +p(t)W(t) =0
T

Proof oftheorem 3:Choose any to in the interval actcp

Then from WIlt)+p(t) W(t) =0 We have
- Spesids

W(y,,yz](t) =W(y,,yz](to)e
from separation ofvariables



Buteftlp(sds 0 for <<t<.Thus, WSy,. 4zIE) is either 55
identically zero, or is never zero.

Note The Wroskian oftwo functions y..gz vanishes identicallyif
one of the functions is a constantmultiple ofthe other. Ifye=cy,

WSy., Y23(t) =dety,yz) =de+(yayee
=

(y,yi -cy,y,
=0

Theorem 4Lety, (t) and yet) be two solutions ofy'+ply'+g(t)y=0
on the interval x<tp and suppose W(y,,ye] (t) =0 for some to in

this interval. Then one ofthese solutions is a constant multiple of
the other.

Proofof theorem 2. Lety(t) be any solution of

y"+p(tsy' +g(t) y
=0, y(to)

=

yo, y'(to) =3..
We mustfind constants C,Gs.t.y(t)

=c, y, (t) +(y,(t), for to in

act<p

(xyy(t0))c,y,(t) +GYz(t0)
=

0. I satisfies the I.C.
(xyz(t0))C,y,(t)

+2y(t0) =90

2, y, (to) Yn'Lto)+GYz(tyz'(o) =30%2'(to)
-

(yz(toy,(to) +Gy(to(Yc(to) =y2(to30
C, [y, (to(yz(to) - y, (to( y,(to)] =YoYz'(to) -Ye(to)].



C=90%2(to)
- yz (toy.

' 16
y,(t)yz,(t0) - yz(t0(y,(to)

(xy,(t0)) (, y, (to) +G Ye (to)
=

70

(xy,(t0)) (, y,(ts) +(y3/t0) =yo

cysAY;(t0) +(yz(to) y,(t0) =Yoy,'(t0)
~

Gy(t)y,'(t0) +(y,(t0)y!(t0) =y.yz(t0)
C2 [y2(toy,(ts) -y, (tolyz(tol] =30y,(to) - yz (to30

2 =y.y,.(t0) -Yz(t)y.

Yz(to(y,(to) - y, (tolY2(to)

2, and G existify, (tolyc(to) - yz (toy,(to) F0.

Now, let p(t) =(, y, (t)+Ey, (t) for this choice of4.2. Since
it's a linear

combination of solutions pIt) isa solution too. By construction, (0)
=G.

↑ (toi=y6.Thus yst) and pIt) satisfy the same and-order linear

homogeneous equ and the sameinitial conditions.
So by the uniqueness

theorem,y (t)= (7), that is

y(t) =G y, (t) +GYz(t), x<t<B. B
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Proof oftheorem 4:Suppose thatWEy,,42] (to) =0. Then by theorems
-

Why, Y2J(t) is identically zero. Assumey. (t)Y(t)0 for act.

Then dividing both sides ofthe equation

y,vt)yi(+-y,'(t)yz(t)
=

0

by y, (EYc(t) gives

yict) - isa
solving itgives:In (y2(t) =(n (y, (t))+

Y(t) =(y, (t) for some constant c

Definition:Two functions y, lt) and yet) are said to be linearly dependent
on an interval Iifone of these functions is a constant multiple ofthe

other on I.

Corollary Two solutions y. (t) and yet) ofy'+plty' +glty =0 are->

linearly independent on the
interval actap Iff W(y.. 42]() to on this

interval. So two solutions y. (t) and y(t) from a fundamental set of
solutions of the diff.equ. on xst<p iffthey are linearly independent on
this interval.



Section2.2:Linear equations with constant coefficients 58

Homogeneous, linear second-order equation with constant coefficients

L[y] =ary +by+ye
with a, b, c constants and afo

From the previous section, we know that we need only find
two

independentsolutions y., Y, and all other solutions are obtained by taking
linear combinationsofY, and ye

AnsatzReducated guess):

y(t) =ert, for a constant

Lert] =arzert+bret+cert
=evt/arz +by+c)

y=evtis a solution off at+br +c =0 since ert10.

characteristic equation
of(*)

solving the characteristic equation we see thatthe two roots are

u =
- b++4a,v =

-b - Vb--4a2
2a

2a

·If b-49C70 then rvs are real and distinct

=> y, =evt,yz =ert
(linearly independent on any interval I)



59To show thiswe can also compute the Wroskian through -

WTy, Y2J(t) =enteve

nert reret
=(v2 -r)e( +h)t 70

when rifrc.

Example:Find the general solution ofy
"
+5y'+4y =0

The characteristic equation is v2+5+4=0

(r+4)(r +1)
=0

u =-4,r
=
- 1

-
y, (t) =e-4t,y(t) = 3 (form the fundamental set ofsolutions)

Thus the general solution is

y(t) =(e
-4++
2e
t

for some constants), and

Example Solve the NVP:

2y" +y
-
10y

=0,y(() =5,y.(1)=2

Characteristic equation:2ri+r-10 =0

(zV+5)(y- 2) =0

v =-r=2

2t
y(t) =4e

-E ++
2e

y((t) = - Ec,z
-z++2seft

Using T.Cs: y() =c,e
-z

+2e
=
5 Multiplyby:E(-z+1- 22 =25

y(() = - -(,e
-z
+2xe=2



Adding the two:2e = - 60

22 =92
Using pet +Ce =5 and 2

=292 gives us C, as

2,jz +zay=5

9 =(5 - 19/9)25/2

4 =e5z
Thus the solution isy() =beet +qe

=>y(t) =1-
1)

+29q2(t
-1)

Remark:Observe from this example thatect-to) is also a solution of

ay
"+by' +cy =0 ifar+br +c =0. So to find the solution

to the NP

ay" +by' +(y =0,y(t0) =y.,y(t0)
=y

we would write

y(t) =(,yu,(t
- to)

+(evz(t -to

and solve for C, and a from the initial conditions.

· If b2-49C<0 then the characteristic equation are+br+c =0
has

complexroofs

u =
- b+i/4ac-bz,vz = - b- i4ac -b2

2a 2a



Assume thaty(t) =u(t)+irit) is a complex-valued solution of
&

ay"
+by' +cy =0

This means thatit satisfies the diff.equ. and so

a(u"(t) +iv" (t)] +b(u'(t) +iV(t)]
+c(u(t) + iV(t)] =0

au"(t) +bu'(t) +cu(t))+ i(av"(t) +bv'(t)+cr(t)) =0=>
Both the real and the imaginary parts mustbe zero.

=>an" (t) +bu' (t)+cu(t) =0

AAND av"(t) +bv' (B) +cv(t) =0

->
Lety(t) =U(t)

+iv(t) be a complex-valued solution ofay "+by'
+cy =0Iemma!

with a, b, creal. Then y, lt) =u(t) and Y2(t)=v(t) are two real-valued

solutions.I.e. both the real and imaginary parts of a complex-valued solution

of ay"+by'+cy
=0 are its solutions.

=A:Whatis est for a complex?

=A:Letr=dtip, evt =e/tip)
t
=
eXtjipt =eXt(0sBt+sin Bt)

y ↑
real real

The solution ofay"+by'+cy =0 is a complex-valued
function if

b2-4ac <0. Recall:

u =
- b+i/4ac-bz,vz = - b- i4ac -b2

2a 2a

so by lemma l, y,(t) =
ent

=eatcospt
y2(t) =eV

+
=e
-zat
sinpt

for Bac-bare real-valued solutions ofthe diff.eg



&2
Check thatthese two solutions are linearlyindependentby showing that their
Wroskian is never zero. Thus, the general solution for b2-4aCO is

y(t) =2(c,(sBt+Gsin(t), B =14ac - bz
2a

Remark. We mustverify thatart-rentis true for complex
before we can say thatentanaretand complex valued solutionsof the
diff.equ.ay" +by' +cy =0.

↓ (a+iB) t
=Lest(cosisttisipt)e

IF
=
ext(acosBt -psin 1st) +i/xsin Bt+100sBt)]

=eXt [X(cos Bt +isin Bt) +iB (COSBE+isin Bt)]

=ect(c+isinit)(x
+i)

eipt
=e(c

+ip) +(x +iB)
=vest/

Example Find two linearly independentreal
valued solutions of

4dry +4dyy

Characteristicequ:4r+42+ 5 =0

v =- 4=(16 - 4(4)(5)
=
- 5= -4 =i8 =

-

z
=i

2(4)

=>r, = -z +i,z =
-

z
- i



Thus erit =e(z
+i) t

=e
eteit =e- 2 +/cost+ isint) -3

By #mal y.CD)=Regerty = etcost
Y2(t) =Inegerity =etsint

are two linearly independent real valued solutions ofdey+4Ay+5.0.

Example Solve the No dry +zy +4y =0;g(0)
=1, y)

Characteristic equ. 12+20 +4
=0

v =
- 21.4-4(4) = - 11E12 =

-11iB =
- 11i

evt=e
- 1 +i5)+

=e
+ (ns(Bt) +isin(Bt)

=>

y,(t) =e
- tcs(5t)

262(t) =e
- + siu (55)

and the general solution
is y(t) =c,y, (t)

+GYz(t)

=e
- + [c,c0S(Bt) +Gsinsit)]

Now use the initialconditions to finds,
and a

y(0) =1 => 1 =10(c,20s/0)
+asi)e

=> 1 =C

y((t) = - e- t)c,0s(5t) +Esin(55t)) +e-t)-B5c,sin(05t)
+B(COS15+)

y((0) =1 => 1 1 -1
+1G

from above

=> 2 =BC

=) 6 =3



Thus the solution is y(t) =e-t[c0s(5t) + sin (55+) -4

· If 52-4aC =0 then the characteristic equation ar+br+c
=0 has equal roots

u
=k= - 5/2a

We getonly one solution y, (t) =etofay"+by' +cy =0

METHOD OFREDUCTION OFORDER

:How do we find a and solution which is independent of y,?

E:Let's define a new dependent
variable through

y(t) =y,(t).v(t)

Then by theproductruledy=hyv (t) +y, (t)e

dry =dzyvt +dydy+dyid+y,(t)e
= d2y, V +ady,dr+yourre

Thus for the case of a linear andorder diff.equ. (not necessarily
w/

constant coefficients) we have

L(y](t) =d2y +p(t)dy +alty
=dzyvzdyld+y,dp)[dyiv+yte
+q(t)y,v

=y.dv +y/ecy+pCty,]nnAPL)d+gITe]
↓sincyy, is

=y,dz +(zdy +p(t)yte a solution

L[y,](t)
=0



This implies thaty(t) =y, (t)V(E) is a solution ifsatisfies 165

y,z +[zdy+p(ty]= 0

L
-

Ifu =drthis becomesy, d+edy'+plIyyen

which is a firstorder diff. equation
for which we can use the integrating factor

Rewrite: u +fz,y,
+p(t) =0

((,3i +p(t)]dz
=

ef)(B)aitisat
I.F. (u(t) =2

=2
2//(ency, (t))dt SpItidt

=e 2(n(y,(t)Sp(t)dt
=e(n(y,(t))e Sp(t)dt

=y, -e
SP(t)dt

NOW M(t)dy+M(t)/2y"+p(t)n =0

&[M(t)u] =0

MCt)U =c for some constant c

- SpIt) dt
C
- 2u

=

t)
=

y,z wloy can take
-SpIt)dE ⑦1

Butu =dand so n=d-ce
y, ↓

-SpLt)dt

Ifwe integratic again root we
obtain V(t) =Juctidt with u = <-

32
↑



and thus the 2nd solution which islinearly independent toy.Itis &6
Y(t) =y. (t)V(t)

=> y (t)
=y, (t)Juctid-Y2*ky, (not a constant multiple

becausei=cfeltat
is never zero)

Remark:This is known as the method of reduction of order because

the substitution we used;y(t) =y, (t)v() reduces the problem from

a 2nd order diff.eqn. to a 1st order diff.equ.

APPLICATION TO CAVALROOTS:We found y, (t)
=2 as one solution of

aday +bdyy=0

We firstwanttowrite this in the form ey+ p(tsdy +glt)y.,so where thecoefficientof dayis one
↓comparing the two:p(ts==> dzy+bdy+

and so we getu(t) = =opipat=e-sd(eztyz= I

Therefore Y2(t) =y, (t)/ult)d =ezfidt=tetis a second

solution of the diff.equ.
- bt

y=
ec and ye=te 0 are linearly independent on the interval -satc

. The general solution is y (t) =(, y, (t)
+

Gzyz (t)
-bt

=>y(t) =(c +Gt]e=a
in the case of equal roots.
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Example Solve the IVP qd2y +6dye +y =0, y(0)

=1,yoin

Characteristicequation:9r2+6V +1
=0

(30 +1)2 =0

v =- 5 (twice)

Hence the general solution isy(t)
=c,e-5t +atast

Now use y(0) =1:1=G

y((0) =0.y'(t) = - 542
-5 ++
Ge

- 3
1
-
5Ete-5t

0 = - j(k+( =5 =x

Thus, the solution to the IVD is y(t) =e
-st

+test

Example (method ofreduction oforder)

solve the IUP (1-52) dey+2tdyyN, yb) =3,y))4
on the interval +it),given one ofthe solutions

is y, (t) =t.

Using the method ofreduction oforder we have thata second solution yet) is

found by u(t) = pANt
Firstwe rewrite the equation such thatthe weff.

Ofy" is 1. i.e.

2tdyt-E- 0
pct)



u(t) =eind+=mp-y)- c- =

1e &8

and yz(t) =y,(t)fu(t)dt =t/ dt =zf(E - 1)dt=t(- E- 1)
= - 1 - 12

Thus y(t) =(,y, (t)
+

Gyc (t) =Gt - G (1++-

Using the1.2. y(0)
=3,y((0) =- 4, we getthe values of a and 22.

y((t) =4-G(2t)

y(0) =3 =) -(
=3 =) 6

=

- 3

y((0) =- 4 =c =
-4

Thus y(t) = - 4+ +5 (1+t2) is the solution to the diff.equ.



Section 2.3:The nonhomogeneous equation -9

Consider now L(y] =dy +p(t)dy +q(t) y =g(t) (*)

/
Continuous on [Ct<B

Theorem 5 (from textbook):Lety, it) and yet) be two linearly independent
solutions of the homogeneous equation

L(y] =d-y +p(t)dy +qty to
and letpit) be a particular solution of the nonhomogeneous equ (*)

Then, every solution ylt) of (*) mustbe
ofthe form

y(t) =+(yz(t) +r(t)-
for some choices C,2. from solving Particular

solution ofthe homogeneous nonhomogeneousproblem equation

Lemma The difference ofany two solutions ofthe renhomogeneous equation

() is a solution ofthe homogeneous equ.

&rofLet4. 1) and felt) be two solutions of (4).By linearity ofL

L[4, - 42](t) =([X,](t) - 2[4z](t)
=g(t) -g(t)

& R.H.S. of L since it's a
= 0

nonhomogeneous problem

So 4, It)-Ne(z) is a solution of the homogeneous problem

I ([yJ(t) =0 => y(t) is a solution ofthe homogeneous problem &

L(N-42](t) =0 for y(t) =4,(t)
-42(t)).

Δ
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Proofof theorem 5:LetyIt) be any solution of (*). By the Lemma, &

↑ (t) =y(t) - p(t) is a solution of the homogeneous problem y"+pCt)y'+g(t)y
=0

Butevery solution pit) ofthe homogeneous equation is of the form

- (t) =c,y,(t) +(yz(t)

for constants (.,2, so

y(t) =(t)
+r(t)

=(y,(t) +GYz(t) +4(t).n

Theorem 5 is useful becows-> ittells us we can find two solutions ofthe

homogeneous problem & one solution ofthe nonhomogeneous problem insteadof

all solutions of(*).

Example Three solutions ofaspecific and ordernonhomogeneous linear equ

are 4.(t) =t, 4c(t)
=tfet,4s(t) =1+ + tet. Find the general solution.

By the lemma:y(t)
=4c - 4, =A+e+ -x =et

Y2(t) =45 - 42 =1 +1+eX- At+(t) =1

these aretwo solutions of the homogeneous problem. They are
also linearly

independent.By theorem 5, every solution
is of the form

y(t) =(,y,
+(yz +(t)

=(,et +G +t.

Section 2:The method ofvariation ofparameters

:How do we findaparticular solution it)
ofthe nonhomogeneous equ

L(y] =d2y +p(t)y +q(t)y =the
once we know the solutions of the homogeneous equ?



#:LetJ, it) and yet) be two linearly independent solutions of the #1

homogeneous equ L(y]=y "+p(ty'
+g (t) y

=0, we'll try tofind a p.S.

(particular solution) frct) ofthe nonhomogeneous equ,
ofthe form

↑(t) =u.(t) y, (t)
+Uz(t)Ys(t)

1.2. We'll try to find functions u, It) and nalt) so thatthe linear combination

u, (t) y, (t)
+U2(t) yc(t) is asolution. We compute

A(p(t)] =(u,(t)y,(t) +Ur(t)Yz(t)]
=u,,y, +u,y, +uzyz +u2yz
=(uiy, +yzyz] +(u,yi +12yz]

We wantto simplifythis problem to finding solutions u, It) and hell of two
very simple firstorder equations

We see that [plt)] will have no andorder derivatives of, and be if

u,,y, +uiyz =0

So we want to impose this condition on the fans uit) and ult).

L[4] (t) =4" +p(t) N' +q(t)*

=[u,y, +42yi] +p(t)[u,y; +neyz] +g(t)[u,y, +uzyz]
=n,,y,' +h,y," +uz(yi +uzyz"+p(t) u,y, +P(t) uzyz +q(t) u,y, +g(t)4zYz
=4(3,+uzyz+u.fu(t)y,+g(t)y,] +uz)pHy+9 )e]
=4(yi +u2yz j

b
a ⑨

=>r(t) =u.(t) y, (t) +Uz(t)y2(t) is
since y, and ye are
solutions of the homogeneous

a solution of the nonhomogeneous equation [[y] =0.
equ. ifult) and Ult) satisfy



#2
u,'y,+uzyz = 0 multiply by Y

Wiy,' tue'yz'=g(t) multiply by Y2, and subtract

u,y,yz +uxyzyz =0
u,y,yz +4iyyz =g(t) yz (f

ui)yz- y,,yz) =- g)t)a
W(y,,yz](t)

=>u.(t) = - g(t) y2(t)

h(y,,y.] (t)

Similarly,

u,'y,+uzyz = 0 multiply by y,

Wiy,' tue'yz'=g(t) multiply by y, and subtract

⑪y,y,, +uiyzy, =0
x,y,,y, +uzyzy, =g(t(y,()

us(yiy,y,) =- g(ty,
- W(y,yz](t)

=> u2(t) = g(t)y, (t)

W(y,yz](t)

To obtain u.()& Ult) integrate both w.V.t.t.



Note:The general solution of the homogeneous eqn is -3

y(t) =c,y,(t)
+Gyz(t)

In whatwe did above we used y (t) =0, (t) y, (t)
+U(t) y=(t) so we are

essentially allowing the constantsaand a to vary with time. That's why
this method is known as the method ofvariation of parameters.

Example:(a) Find a particular solution pl) ofthe equation

y"+y =tant

on the interval -Etc#

(b) Find the solution to the same diff.eqn. butw/initial conditions

y(0) =1,y(4) =1.

Characteristic equ:vz+ 1
=0 => v =Ii

y, (t) =Regerty
=cost

Y(t) =Imserity =sint

W(y,,y2J(t) =(y;y2) =4,y2-y,yc =

costcost-finAsint =0

... , & Yare linearly independent.

From the method of variation of parameters we have

u,((t) =gye3() u((t) =gy-W(y,,yz](t)
Here,

g(t) =tant and Why, y2](t) =1 s0

u,(t) =f-aptsintdt = -fintsind=-Sirutat



14
=

- fcs2d t=-f(tst - cost)dt
= ((ost - sect) dt =sint - In/sectttant). -Est

and us(t) =) tpostd t=siyt.cstd+ = -as +
Thus x() =u, (t)y, (t)+Ue(t)Mz(t)

=(sint-in/sect+tant) cost-costsint
/=sinost - In/secttant) cost-costsint

= - mn/sect+tant) cost

This is the Particular solution ofyi+y=tant on the intervalst

(b) For the (up:y0) = 1 and y ((0) =1

The general solution isy(t) =c, y,+(yz +r(t)
=> y(t) =c, cost + csint - In/settant cost.

for constants handc. sec(t)

y'(t) =- csint +cast-(sec(t) tan(t) +secult)) cost/ CSec(t) +tan(t)

+(n/sect+tant/sint

=
- c, sint

+Gcost-sect cost +In/sect+tant/sint
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y(0) =1 =1 =a - 1,y)) => a =

1

y(() =1 =1 =

az - 1 +m)y0 =6 =2

o

Thus the solution tothe up is

y(t) =cost +2sint - In/sect+tant) cost

Section 2.8:Series solutions

Homogeneous linear and order equ:Ly]=plt)dy +QLt)dy +RC. 0
#0 in xt

<B

We alreadyshowed thatevery solution is of the form y(t)
=

c,y, (t)+Yc Its

for y, (t)
and yet) linearly independent.

Previously, PI),a(), RIt) were all constants. Now we consider the case

where they are polynomials. We can determine a polynomial solution y(t)

by setting the sums of the efficients of like powers of t in Lys(t)

equal to zero.

Example.Find two linearly independent solutions of
L[yy(t) =y

"-2ty- 2y =0.

We sety(t) =20ant" =a.+a,t+azt
-
+a,t
+
...

=>y((t) =a, +202t +393t
+..

=Enanth-
n=0

=>y "(t)
=292+693t +.. = zon(n-1)ant"-



plugging them intoLy(t) =y" -

2ty'-zy gives us 76

25y3(t) =n(a-1)anth-stananth--coathe
=En(n-1)an+1

-2
-22nant" - zoant"

n=0
n=0

=0

Next, we rewrite the firstsummation
nch-1)anthsuch thatthe
n
=

0

exponentofitis a instead
ofn- so thatitmatches the other two

summations.

n(n+an+h - 2 -> 8(n+2)(R+Ran+zt
n=0

↓
A

= (n+2)(n +1)antz+
4

n
=

0

(since the contribution to this sure from n = =2,

n =- 1 is zero since the factor (n+2) (n+1)
vanishes in both ofthese instances)

Therefore, LyJCt) = O(n+2) (n+1)ant2t" - 2Enant - coate =n=0

setting the efficients oflike powers
in t equal tozero gives

tY:(n+1)(n+1)an +2
- 2nan -2an

=0

an+2 = 2(n/) an <- recurrence formula for

(n+2)(+1)
= a the coefficients an

So once go and a, are prescribed, all the coefficients are determined

uniquely.The values ofas and a, are arbitraryunless we are given

specific initialconditions.



To find two solutions of the diffiequ. We choose two sets of asa,*

(1)a0 =1,a, =0

(2) a=0, a,
=1

-> (1)00 =1, a, =0

2an
Recall an+2 = +2

n =0:a =2a0 =1

n=1: az =2a,
=0

->

3

n =2:ay =22
=1(1)=

n =3:a5 =a=0
5

n =4.as =a = )
=5

=

23
:

·All odd coefficients aresince they all depend on aoriginally
which here is setas zero.

· The even coefficients are found through

an =1 = t

2.3...2 n!
o

Therefore,y, (t) =a.+a/**aF+a/73 +...
=1+12 +2

+4+376 +...

=e+
2

<-> is one solution of
the diff.equ.

(since eX =1+x+y+xp +... with x
=t2)
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-> (2)a0 =0,a=1

This time all even coefficients are zero only theodd ones are nonzers.
2an

Recall an+2 = ->
n+2

n =1: az =a=
n =3:95 =20 =E(5)
n =5:a7 =295 =E(5)(z)

↑

ThUS 02n+1 =
24 (you can show this by induction)
3.5.7...(2n+1)

Therefore, Yc(t) =a5]a,t +a(42+as+3 +...
=t ++3

+z+...
①

= =2u+2n
+1

<- is a second son of
n=0 3.5...(2n+1) the diff.equ.

Notes:

(A) Infinite series y (t)
=an It-to)":powerseries abouttoto

(B) Radius ofconvergence of the power
series :
930 s.t.

It-tok:infinite series converges

It-to/f:infinite series diverges

(c) You can differentiate and integrate each term separately,
maintaining the same interval of convergence.
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(D) Use the ratio testto determine the interval ofconvergence.

i.e. Compute in anyen
It-tolpower series converges

It-tok:power series diverges

(E) The productofan(t-to)" and bult-to)" is a power series
① n=0

of the form ECult-tol where (n=aobrabn++...
tanbo.

The quotientastait
+at...

is also apower series given thatboo
bo +b,t +b2+2+...

Theorems (from textbook)

Letthe variable assume complexvalues. Letto be the point closestto to

atwhich for one ofits derivatives fails to exist. Compute the distance of

between to and z. Then the Taylor series of about to converges for

It-tolanddiverges for It-fo1>9.

Theorem 7(from textbook)

Consider the diff.equ. LCyS(t):P(t) dey +Q(t)dy +R(t)0

Let the functions IIt) andIhave convergentTaylor series expansions
Q(t)

aboutt =to for It-to 19. Then every solution yet) of the diff.equ. is

analyticattoand the radius ofconvergence
abouttois atleast

you can determine the weff. as, as.... in
the Taylor series expansion

y(t) =a0+a(t-to +az(t - t)
+...

by plugging the series above into the diff.equ.
and setting the sum of

the coefficients of like powers of t equal to zero.



Example:(a) find two linearly independentsolutions of 80

L(y](t) =kry +-d ++e 0

(b) Solve the diff.equ in (a) with initial conditions y(0) =2,y
'W)=3.

(a) It's easier to multiply the diff.equ. by (1) to getit
in the form

P(t)dzy +Q(t)dY +RIAy

=> (1+12)dzy +3tdyyr = 0

NOW sey(t)
=zwant?We get

(1+52)EYann(n-)th +stoannt++oarr =0

=>ann(n-1 +4-2+ann(n- 1) + +30annt+ coatana
n
=0

-

rewrite this such that *pcombinethese 3 terms

the power of is

I instead ofn-2

⑤

=> -Ean+2()
+2)(n+1 +E annBn+

n
-
-n+3n+1 =nz+2n+1 =(n+1)2

=> [an+2(n+2)(n+1) +an(n+1)-] +
2
=0

=> an+2(n
+2)(h+1) = - an(n+1)=

=> an+2 =farin ancnt) Recurrence relationshipone
The coefficients



As before, tofired two linearly independentsolutions ofthe diff. ean consider
%

the simplestcases (i) ao=1,a =0

(ii) a0 =0,a
=1

-> (i)G =1,a =0

ALL odd coefficients are zero

The even ones are an+2
= -

qnn).n=0a = =

2=2 ap = -ap) =
- (z)(z)

n=4a = -(5) =- (z)(E)5)
:

92n =(- 1)
" 1.3.5...(2n -1)

=(-1)"1.3...(2n -1)

④...(2n) 2un!

=2(2.2)(2.3)...(2.n)
=2"(1.2.3...n)
=

2nn!

Thus, the firstsolution is y, (t) =a0+a.Fast +as*3Y...
=

1 - 1+
+

34 +...

= E8(-1)21.3...(2n - 1) n
2"n!

is one solution.
in the absolute value

-

Ratio test:
hIm ant himin

prontmatterantiin
24H! =(n+1)n)

1-y(u(2n
- 1-y



=(2n+1)π 82
n-02(n+1)

=t2l nil)- n+1 I
=2

Thus by the ratio test the infinite
series converges by Itkl, diverges it

-> (ii) a =0,a = 1

ALL even coefficientsare zero an+2
= -

annt)
Odd coefficients:a3=-2a =-z

95 =
-

493 =243.5
2.4 - 6

=97 =
- 695 -3.5.7

=> azn+1
=( -1)2.4...(2n)

=hann3.5...(2nH)

Therefore Y2(t) =1 - 5 +3 +24+5+... Bonanny ant
is the secondsolution.

Itcan be shown using the ratio test that
this solution also converges for

Itc) and diverges for It >1.

(b) For the up we right to satisfy y(0) =2,y
(W)=3.

We found y, (t) == (-1)
- 1.3...(2n - 1) 2n =1 - 1

t+3 ++...
n=0 2"n!

Yc(t) = 28(-2! +2n
+1
=
t - z +3 +2yt+...3.5....(2n+1)
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[ y,(0)
=1,y,(0) =0I

Yz(0) =0,y,(0) =1

So ifwe wantto satisfyy(0)
=(,y,(0) +(y2(0) =2

y (() =c,y,'(0) +(y(w) =3

we musthave =27 which impliesthaty (t)
=(y, (t)

+3ye

Section 2.8.1:singular points, Erler equations

Consider again ([y3 =P(t)dey +Q(t)dy+R(t) y =0
If P(t) =0 at

t
=to then we will thisa singular differential equation.

In the neighborhood ofthe singular pointto the solutions ofthe diff.

equ can become very large or oscillatevery rapidly and solutions may
notbe continuous atto. So the method of power series will, in general,
fail to work.

Definition EULER'S EQUATION

The diff.equ. LSyJ(t) =Edzy+dtdy + By =0, where a anda

are constants is known as fuler's equation.

We assume for simplicitythat two.

Note:Ery" and ty' are both multiples ofth ify
=th

i tv.(-1) +1
-2-tr(t-)

=r(u-1)+2
=vtW



This suggests thatwe can try y
=to as the solution of Euler's4

equation.

L(tr] =v(y- 1)tr +artr
+ptw

=(r() - 1) +9V
+1]t

-

=F(r)tr

where F(r) =v(r - 1)+ar
+B

=rz +(1 - 1)u +B

This implies thaty =t is a solution of Erler's equation iff
F(r) =0, i.e. 12 +(1-1) r +1 =0

Using the quadratic formula the two roots are:

v. =
- (x- 1) +1(c-1)2-4B,vz =

- (x-1) - V(x - 1)-4B
2 2

As before, here too, the term under the square rootcall be
the,0,0r -ve

#ASA1:(x-1)2-4,70 -> two real, distinct roots

of the form:
y=trylinearlyindependsee

=> General solution:y(t) =c,t"+at
=

CASE2:(6-1)"-4B=0 - only one real solution:y=tr

n
=

y
= - (+)

Asecondsolution can be found by the method of reduction of order.



However, there is another way to do it which we show here. 85

Notice thatF(r) =v2+ (x =1) +5 =0

=Cu- r)in the case ofequal roots

=>([t r] =(r - r)<+r

We mustfind another solution that's linearly independentand satisfies
L(yz] =0.

L[t r] =2(r-V,)t
+(r -V)rent

decivative w.r.t.r of exponential for
=tV(u-r)(z +() -v)ent]

when v =r, => GL(tr]
=0

Thus LtrInt] =0 which implies thatyzct) =tIntisa
2nd solution.

Since and that are linearly independent, the general solution for

the case ofequal roots is

y(t) =(c+c(nt)tV,t0

CAS-3:(4-1)--4 <0 -> complexroots:2=6 +ifu
v =7 - it

with s = - -),(u =0(-1)
Hence p(t) =t

=
+6

+im =10 +ik
=(e)t)iM =eiluent

=Cos(pelnt) +isin(((nt)

= +
+ (cos(M(n+) +isin((int)]

<- complex-valued
solution

=> y, (t)
=ResP(t)3 =tocos(((nt) 3 real-valued independent solutionsy=(t) =Im5p(t)3 =tosin(M(nt)



Thus, the general solution in the case of complexroots is
186

y(t) =tP(c,cos(Mlnt) +asin(MInt)]

with 5 =
-(E) and (n =39-1as above.

examples.
Find the general solution ofLCy] =thdry+4tdy +2y=0e
-> substituting y = to gives (Str] =r(r-1) +4r +2]+ =0

=> r2 - r +4r+2 =v-+3r +2=(r+2)(rH)=0

=>r=-2. -1

Hence y(t) =(,th +a tr
=c,t

-2
+(zt

- 1

=

1+k.

Siase2
Find the general solution of LCy] =Eidey-5tdy +9y =es

-> substituting y=t gives ([tr] =(r(r+)-50 +9] =0

=> v2 - 1 - 5v+9 =v2-62+9 =(r -3)
=
=0

v =3 twice.

y, (t) =t> and Y2(t) =tPlnt

Hence y(t) =t3(c, +ce(nt), t>0.

simcases
Find the general solution of Ly)=t2day - stay +2547. ses



->Substituting y=5 gives ([tr] =r(-) -50+25]+ =0 87
=> r2- 5 -55+25=02 - 60+25

=0

=> r,5-4(25) =664 =3+4:

Thus P(t) =(
3+4i

=3(e(t)4)
=t3[as(4(nt) +isin(4(nt)]

y, (t) =ReSP(t)] =+CS (4(nt)

yz(t) =Im54(t)] =t'sin (4(nt)

Hence y(t) =(, y, (t) +(y2(t) => y(t) =tP/c,cos(4Int) +asin (4/nt)]
for t>0.

Q:Whathappens if too?
=

E:y =tt may notbe defined
ifto Both of these difficulties are

y=trnt is notdefined
ifto
I avoided ift = -x,x>0

change ofvariables

Lety =4(x),Xx0. From the chain rule:dy:ay.. -day
with x= -t

diy -/-du)
=
- 2nd-

Thus, we can write
=

d2
L(y) =t2d2yz +stdy++By 0

=(-x)udzu +4(- x)(-u) +Be
=xzd2u +xdu+Bu =0. in.



Butafter this change of variables this equation is exactly the same
888

as before butwith to replaced by and y replaced by u

Thus, the solutions are

if(x-1)2-45>0
2,xY +GxV2,

u(x)= 9 (c +(z(nx)xY, if (c-172 - 4/3 =0

x3 (c,cos(((nx) +G sin(llnx)], if (<-1)
-

41<0

Notice thatx= - t=(t) for to which implies that

c(t(Y +C|t/2
y(t) = S (c +G(n)t1)(t)2

It/3/c,cos(m(n(t)) +Esin (m/n(+1)

Section 2.8.2:Regular singular points, the method of Frobenius

Can we find a class ofsingular diff.equs, more general than the

Euler equation I "+xty' By tobutstill solvable analytically?

Rewrite it as y
" +

qy'tBy
=

0

L[y] =y"
+p(t)y

+q(t)y =0

where pit) and qlt) can be expanded in
series ofthe form

p(t) =10 +p,
+Pt +P3 +

+
...

(t3 q(t) =0 +1 +q2 +93t +qpt.... 7



Definition:(Cy]=y" +plty' +altly =0 is said to have a 89

regular singular point
att ifpct) and glt) have series

expansions ofthe form (t). Equivalently, to is a regular singular

pointof[[y]=y"+plty' +gltly =0 if the functions tpct)
and

Eights are analytic at t =0.

ExampleClassifythe singular points of Bessel's equation oforder a

-2day+tay +(t2-ry

where r is a constant.

-> Here (t) =vanishes at to. Hence to is the only singular

point. If we divide by to we get

dy+dy +(1 - E=
pCE) q(t)

+p(t) =1 and F2qlt) =t2-rs are both analytic attwo.
Thus, Bessel's equation of order a has a regular singular point at
t=0.

Example classify the singular points of the Legendre equation

(1 - 14y"- 2ty
+C(x +1)y =0

where a isa constant.

11-t?vanishes att=11. So the equ is singular there.

If we divide by 1-twe obtain

y. - z- y) ++y
0

pict) q"ct)



since tisa singular pt &0
So:(t - 1)p(t) =(t

- 1)-2(2) =(-1(, )=
H - 1)g(t) =(t - 1)

-

(at) =(t-1) +1
=a(4H)=t

(1 - t)(1+t) 1 +t

which are both analytic at =1.

since t = -1 is a singular point

similarly, (t+1) p(t) =(t +1).2) =(t(x),*)=
(tp)"q(t) =(tH)

-
a

t1)=(tH)xyz) =x(H)#1 -t
which are also bothanalytic att=

Hence t = -1 and Iare regular singular points.

-
FROBENIUS METHOD

We consider again [[y]=y"+p(t)y'+glt)y = 0 where to is a regular

singular point.

If we multiply throughoutby to we get

+"y" +t(tp(t)) y' +Eqct)y =0(*

Recall:fuler's equation ty" +xty'
+By =0

So (x) is viewed as being obtained from fuler'sequation by adding higher
powers of t to the coefficients and p.

Let's try solutions of the form

y(t) =antto treathe



↑
Example Find two linearly independentsolutions of the equation

L(y](t) =2ty"
+y +y =0,0<ty

Lety(t)
=2a thr ·9.70

y'(t) =20 G(n+r) to-
y "(t) =28an(n+r)(n+r-1) n

+1 -2

Plugging them intothe diff.equ. we get

L(yz =2tsan(n+r)(n+1-1)++ +Ba(n+r) htr+ +partor

= c8an(n+1)(n+r-1)n+V
- 1

+ EanCh+r)+n+r+oanth+
n
=

0

Pull outtr

=tr/2z0an(n+1)(n+1-1)h
+anctr) +1 -+Ean tn+1]

n=0
-

Let's make all of them start atn
=2 = an -t

-1

n =2

=tr (aa.r(r -1) t+ +2a,(1 +rir +2 an(n+r)(n +r-1)-

+ a0vt
++a,ctr) + an(n+r)+"-

n
=2

+8 an- ]
= (zaor(r -1) +a00]+r + +(2a,(1+r)r+a, c1+r)] +W

+ 20(2an(n +r)(n+-1) +an(n+r) +an-2] tht
=0
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-

selting the coefficients of each power of equal to zero gives
(i) 2005(r -1) +90t =0 -> 2900-2005+905

=2000-GV =

a0r(2r -1) =0

(ii) 29. (1tr) r
+a, (1 tr) =0 -> a,(1 tr) (2r +1] =0 v=0,v=1

(iii)2an(n +r) (n ++)
+an(n+t) +an-2

=0 h
but since =0, r=
from(i), the (ii) implies

thata=
0

an(n+1)(2(n+1-1) +1]
= - an-2

an =

an-nT)-1) forme

Solution 1:

v =0 an
=

anz,,z
and since a=0 from (ii) we have thatall the odd aefficients arezer

The even ceff, are:

n =2:a =0
2(3)

n =4. ap
=

y=
-. z =-

2.3.4.7

-n=6. a=
-

y) = -
-

= - a04.6.7.1)6.112.3.4.7

overall, aon =(-1)"do

-(2n)(2(2,T-1)
=hain...



Ifwe set ao=1 then 93

y,(t) =a0
+act"+aptP+...

=

1 - 13+
2
+++4 +...

2.3.4.7
⑥

=1 +2nt ...
is one solution of the diff.eqn

Solution 2

rRewall thatwe obtained the recurrence relation

an =

an-nT)-1) forme

Subst.r = we getan =

anfecn++)
= - an - 2

#(2n+1)(*()- y
= an-ny-

=> an
=

anz2
All the odd coefficients are as before zero since from (ii) we gota , = 0.

The even coefficients are now given by



&4

n=2 as=
n =4 ap=a) =-as*.59
n=6 as = s) =

- 5135 =

=-
2.4.5.6.9.13

Setting ar=1 we get thatthe 2nd solution is given by

y(t) =ao+act +apt4+...

=1 - 25+p5qt4+...
=1 +(-)+2

n=1n!2" (4n+15...
oct<c.
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CHAPTER 3:Systems ofdifferential equations

Section 3.1 Algebraic properties ofsolutions oflinear systems

We consider simultaneous Ist-order diff. equations in several variables:

=f, (t,X,, . . ., Xn)

* =f2Ct, X,,...,x) system of a first-order

don
=frt, X, , . . . . Xn)

I differential equations
It

The solution is a functions x, (t), ..., XnIt)
S.t. dXjIt) =fjCt, X,Ct)...., XnA)),
It

j = 1.2. . .. . . We can also impose initial conditions ofthe form

x, (to) =x

Xz(to) =x

into) =xn°.
This would then make it an initial-value problem.

Note:Every nith-order differential equation for the single variable y can be

converted into a system of a first-order equations for the variables

x, (t) =y, x2(t) =y, ..., Xult) =de
Example Convertthe diff. eqh.

anIt)+an-lt), +...+axy =0
into a system of a first-order equations.



Let x,It) =y, x2(t) =d, ..., XnIt>=d 196

yesi
!

ant=xn
and this implies that

antide +an-i(t) xn +an-alt) Xn-t...+aox,
=>

R =
-(antiXn+an-zCt)xn-... +aox)

an(t)

example:Convertthe IPs+1 +

3y=et;y10) = 1, y'01
=0, y

" (0) =0

into an IP for y,tr
- setx, =y, d =A =x2,9 =a =x3.8 =9s

2 +x +3x, =et

Thus the system of 1st order diff-equs
is

-

* =x2

d =
x3

-

= - x - 3x, et
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We also have to convert the initial conditions -

y(0)
=1 =x,(0) =1

y(10)
=0 =x2 (0)

=0

y"(0) =0 =3 Xz10=0

If each of the functions fits.....In is a linear function of the dependent variables

X
, . . . . . . then the system of equations issaid to be linear.

Mostgeneral system of a first-order linear equations hasthe form

* =a(t)x,+ .. . +din(t) Xn
+g,(t)
* if each of 91,92, ...

. ↓ In is identically
zero then the

* =an(t)x, + - - -
+AnnIt) Xn+gnIt) system is

homogeneous.
otherwise, it's called

Actually in this chapter the coefficients
will be ant non homogeneous

We'll be using vector and matrixnotation to write down the system ofdiff.equs.

In particular, we'll use the concise form
a912. ...in

* =
=1xwhere x =)*).A-)".n

with initial conditions X(to) =1 =

(x
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sample 1 =x, -xc+Xs, X, 10)=1

dxz
=

3x2 -xz,Xz(0)
=0

It

* =x,
+7x3,X310) = - 1

a =(!gii)*, *(0) = (i) where =()
Iconstant c

sections 0cx =

ci)
=

(e)
the process ofmultiplying a rectorby
a number c is called scolar multiplication

0 x+y =

(zy) +(ii)
=

(xity)
this process ofadding two vectors together
is called vector addition

Theorem:Let A(t) and ICt) be two solutions of 1 ==AX. Then
sil cXCt is a solution for any constant (

(ii) (t) +(t) is again a solution

ma:LetAbe an non matrix. For any rectors -and y and constant c

(i) A((x) =cAx

(ii) A(x +y) =Ax
+Al

Proofoftheorem:(i) If it is
a solution of1:* =Ax then

&x) =c =cA =A(()
↓t

Hence CIis also a solution



(ii) If ACA) and y(t) are solutions of ==Axthen 199

&(x +y) =1 +4 =Ax +Ay =A(x+y)

Hence (t+y(t) is also a solution is

Note: Any linear combinationofsolutions ofAxis again asort. +gxe
Itis again a solution for any choice of the constants c,.c.......

Ample Consider *=x2. =
- 4x,

=>

E(x2) =(-2(()
This is derived from 42+4y =0 lusing x, =y, 1 =x2)
12+4 =0 =r=12i =y,(t) =10s(2t) two solutions of the scolar equation.

yz (t)
=sin (2t) I

e.g. x, =y, =cos(2t), x=yz
=sink2t)

x2 =dI =-2sink2t), x2 =2 =20s(2t)

x(t) =(x) =a(n) +a)e) =

feciseintC
is a solution for any choice ofconstants, and 2
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Section 3.8:The eigenvalue - eigenvector method offinding solutions

* =Ax, =(x).a =1."I
From before:both istorder and and order linear homogeneous scodar equs

have exponential functions as solutions.

Let's try (t) =est where I is a constant vector.

=jedt =6x(t)

and we also have A (edti) =edtA

Hence (t) =ext is a solution if and only if yesty=eStA

Divide by est x =A()

bet. Anonzero vector ofsatisfying this condition is comed an eigenvector of
Awith eigenvalue d.

We can rewrite (A) as AF-S=

=>(A -3I)=8 (t)

H) has a nonzero solution Ionly if det(A-31)
=

0

i.e. det I
a-d as ... din

A21 &z2-J... an
=O

an ... anz...ahn-s



Notefor I anevector ofAwith evalues:
-

A(c) =cAr =cyt =S()

for any constants. So any constantmultiple (c40)
ofan erector of A

is again an erector ofA with the same evalue.

The general solution of
=Asis

(t) =ceSit'+gebztrt... nedntn.

The When the matrix A has a distinctreal eigenvalues d,, be, .... In wo/-

eigenvectors v P2, ....", we are guaranteed that is ....

are linearlyindependent.

Example Find all solutions ofthe equation

i =(i)*
-> The characteristic polynomial ofthe matrixA=13i)
det(A-3I) =(' i -3) =0

=>(1 -3)[(2 -3)) - 1 -3+1] +1(3)- 1 -3) +2] +4(3 - 2/2 -3)] =0

=>- (1 -d)(1 +3)(2 -3) +(1 - 3)
+[- 3 - 33 +2] +4(3 - 4 +26] =0

->- (1 -3)1 +d)(2 - 3) +X- 6 - 33f1 +1- 4 +0x) =0
-

43 - 4 =4(6- 1)



=>- (1 -d)[(1 +3)(z- 3) +4] =0 102
-

- 12+x+6
=

- (32- 6-6)
= - (d -3)(3+2)

=>(1 -x)(x -3)(x+2) =0

-) x = -2, 1,3

Now let's find the eigenvectors:

①5, =-2(A -S2) =(1
-(-2)

32,Fxx)()
=

(ii)()
=(6)

3V, -V2 +4V3
=0

-s 3V, -V2+4(3V, +4V2) =0
3V, +4V2 -V3 =0 =

Vz =3V, +4V2 ->15V, +15V2
=0

2V, +vz +Vz =0
vi +Vz =0

=>v2 =- VI

Thus V =3V, +4(-V) = - V,

Y =V3

Thus v =c(i) is an eigenvector of Awith eigenvalue -2. This implies that

partofthe solution is(t)= exit, =e-2t(i).



3
Now let's do the same for the other eigenvalues.

&x =1AA -SD =(1) =
=

(i)()
=18)

- v2 +4Vz =0 =v2 =4V3

3V, +Vz -Vg =0 =3V,
+4Vg - V3 =0

=>SV, = - 3V3
=>V, = - V3

thus =(((i) is an eigenrector of Awith eigenvalue d =1. This implies that
partofthe solution is(t)=e32t =et(i))

③ X, =3 A -ss =(55) =(!)(i) =18)
=-2V, -v2 +4Vz =0

3, -v2 -Vz
=0 ->Vz =3V,- V2

2V, +V -4Vz
=

0

-
- 2V, - V2

+4(3V, - v2) =10V, - 5V2 =0

V= =2VI

V3 =3, - 2V,
=) V3 =V,

Thus E =c(i) is an eigenvector of1with eigenvalue
3=3. This

implies thatpartofthe solution is(t) =ess =est(2)



-04Therefore, the general solution is

x( =xe
-

2t(i) +xe+(i)
+3et(i)

= -ce-2t-get +cestI Ce-2t +4et +2et ICe
-2t

+2et +cest

Whatdo we do in the case of an IVp?

same as previously...

example Solve the IP =/s* with '01=(i)-

det(1 - 31) =0 =(1-3)2 - 36
=0

32- 26 +1
- 36 =0

32 -26 - 35 =0

(3 +5)(7
- z)=0

3 =- 5,7

31 =- 5 =(83)(2)
=(8) =6v,+12Vz

=0 =v,
=- 2v2

=>i =c);4

x ===(50)(i) =(0) =
-6,+12k =0 =v, =22

i =c(,4
7t

*(t)=c,f,z)e
- 54
+x)i) et

=jzet I
Now using x0)

=(P) ==24 +2
=0 =a

=22

C +2
=1

=>4
=I

=>(r=



x
05

This implies that the solution to this up is

x(t) = -j
st+ eft

I be5te7tI
Section 3.9: Complex roots

Lmalf J:x+ip is a complex evalue of Awith erector
=G+iE, then

(t) =edtr is a complex-valued solution of the equ. * =Ax.

Givestwo real-valued solutions.

If If(t) =5(t) +iElt) is a complex-valued solution
ofE =frthen

(t) =(t) +iE(t)
A =A(5+iE)

=A+iA

Since =Alwe have + iE =A +iAE

Equating the real and imaginary parts we have:
-

Re:y =Ay
Im:=AE

Sobot ():Reg YIt) and Elt)
=Im3/t] are real-valued

solutions

of =A?
*
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Note. The complex-valued function (t) =ektiB)t (v +iv2) com be written as

identity:et=cos (Bt) + isin(t)
(t) =ect/cos(t)+isin(pt)) ( v'+ iv2)
= ect/'coS(it) - E-sin(pt)) + i (vsin(pt) +v2cos(it))]
=G(t)+iE(t)

Thus it) =edt) r'cos(it)-vsiR(Bt)] are two real-valued solutions ofit:Art,
E(t) =ect[ 'sin(t) +cos(t)]

and they are also linearlyindependent.

example. Solve the NP:x =(ji) *,x(0) =(!)

det(-iz) =0 =( -s)/(-3)r +1) =0

=>(1 -g)(32 -21 +1+1) =0

=>(1 -j)(32 - 26 +2)
=0

3 =1 3 =2114
-4(2) =11i

3 -1 =(888)()+8)= =c(3). Thus x =(j) et

3 =1+i =(6"yi)(2)=68) =re-ivs= o
V =iV3

i=c(,)
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Thus x =2(%)e"tit =2(i) et (cost+ isint)

-aetf-in) +(E
Thus ICH =etfsinE). **G=etfonE),are real-valued solutions.
The three solutions 'It), *2(), *3(t) are linearly independentsince their initial
values

x(0) =(8), x4101:(0), xx(0) =(!)
are linearlyindependentrectors.

The general solution is (t =c,et(8)+2e+/-4) +se4nE)
setting t =0 we see that

(i) =a(8) +2(8) +3(0)
=

(2)
=>c =1 =2 =C3

Thus the particular solution is

*(t) =et(g) +etfs) +et/E)=et)-sint+cost
cost +sint

Note Ifis an eigenvector ofAwith eigenvalued. Then the complex

conjugateofE) is an eigenvector ofA with eigenvale 5.



Section 3.10: Equal roots 18
If det (A-31)=0 does nothave a distinct roots then Amay nothave i

linearly independenteigenvectors.

Suppose thatan nxn matrix Ahas only kch linearlyindependenteigenvectors.
Then the diff.equ. =Axhas only a linearly indep solutions of the form extr

&:How do we find an additional n-k linearly independent solutions?

A:Since for a scolar diff.eqn we used x It) =eatc as the solution toi=ax, for

a constant c, we use (t)= eAtEas the solution to the vectordiff.equ *=Ax
for every constantvector P

Whatis eft for A, a matrix?

eAt =I +At +At+... +At.
We can also differentiate this infinite series term by term:

&left) =A+Art +... +At-...
=A(I +At +.. . +14+ +...)

!

=Aeft

Therefore, ext is a solution of =As for every constantrector o since

&left) =AeAt =A (ett).

Properties. Cett)=e-Atand etct+s)=eAteAs



Q. How do we find a linearly independent vectors for which the infinite t
series ett can be summed exactly?

A. eAtY=eCA-3IItebItsfor any constant3. Note (A-dI)
3I=3ICA-3I).

ext =(I +35t++ ...fr =(c +3+ +3+...jr =est
Thus, eAtr=eSteA-SIt

Note also thatif(A-35)m* =0 for some integer in then (A-x1)m+
1 Iis also

zero for every positive integer 1.

(A-xI)m
+1=(A -35)[(A-SI)m]=

This implies that

e(A-S51t=(I +(A-b5)t +t...+Stm-e
=

+t(A -SI) +t(A-I)"+ ...tm+-2!

Butwe also showed thatetti=exte(A-xI)tIwhich implies that

eAt=eSt(r+tA-I) +tY)2+...+tm-
Algorithm for finding a linearly independent solutions of E

=Ax:

Find all eigenvalues and eigenvectors ofA.

IfAhas a linearly independenteigenvectors, then =Ashas linearly independent
solutions of the form estr

Note. If I is an eigenvector ofA with eigenvalue 3 then the infinite series
elt-3I)t terminates after

1term.



2 Suppose Ahas only kan linearly independenteigenvectors
O

We have only islinearlyindependentsolutions of the form extr

For additional solutions we pick an eigenvalue of
A and find s.t.

(A-bI)2=8but(A-3I)=8.

For each:eAt=ext elA-sIt=eSt)+tA-I+.)
is an additional solution of

=Ax. We repeatthis eigenvalness ofA.

3 If there are still not enough solutions, then we find all vectors o s.t.

(A-3I)*=8 but(A-3I)*E8.

For each:ertt=ebteA-xI)t_est(+ t(A-bIl +t
is an additional solution of =Ax. +...

4 We repeatthis process until we obtain a linearly independent solutions.

example. Find three linearly independentsolutions of the diff.equ.

i =(jii)*
-> characteristic polynomial:det (18%)=

=>(1-6)(z-x) =0

Hence 3= 1 with multiplicity?1=2

x =1 (A-31* =(888)(2)=(8)
v, anything

=>(t) =et(8)



Is
Since Ahas only one linearly independent eigenvector with eigenvalue 1, we look for
solutions of

A-s=1;;188) =

(88)(i) =(8)
=>v3 =

0 and we can choose anything for v, and Ve

The vector = () satisfies (A-SI)=o but(A-xI)FO (So we can

choose any =(v) for which v2F0) -> Since the other solution was it=(8)
Asolution is (t) =ext() =ete(1-1)+()

I

extg/A-6I)t

=et(i++ (1 -I)](8)
=e
t

((i) ++ (888)(i))
=et((8) ++(8)]

=et(i) is the second linearlyindependentsolution

3 =2(A - 31) =0
10

Recall thatA=18; 8) and so (A-bI) =(0 +0S000

A - 31)=(8=8)(2) =(8) =v =0 =v, =0

and VI:anything
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Thus **) =e2t/8) is the other linearlyindependent solution. -

example. Solve the Ip =18)* with x0) =(2)
The characteristic polynomial is det(A-35) =0

C=> det 12's*
=>(2 -3)[(2-3)2] - 1(0) +3(0)

=0

=>3 =2 w/multiplicity 3.

The eigenvectors satisfy (-32)=
0

188)()=(8) -v3 =0

V2 +3Vz
=0

=

3V2=0

v=anything
Thus I =e2t/) is one ofthe solutions

We now should look for the other two linearly independent solutions. Let's try
to solve for in (A-XI)=0.

(88)(88)() =1)
0 0=>

(88)()=18)
=>) v3=0 and V, V2=arrything



The rector = (i) satisfies (A-2I)"*
=0but(A-2I)*F8 13

Therefore, a and linearly independent solution is

*4t) =eft(9) =e2te(
-25)

t/8)
=e2t(z +(A -2I)](0)
=et((8) ++18: -y)(8)]
=et(o)

We now look for the third linearly independentsolution by computing
Ithatsatisfies

CA-35)=0 and (A-35)FO.

188)(3)(888)(i)ove
=>(888)(i) =18)
So any

o satisfies the equation above. For example (8) satisfies
1A-3I)3 =5 and does notsatisfy (A-11)2t=0.



Y3(t) =eft/8) =e2te(A
- 211+/8) -4

=et(I+t(A -2I) +(1 -25(2)(i)
=et(i++(88) +8))(i)
=e2t((8) ++(z) +(8)]
=

e2t(
-

+
is a3rd linearlyindependentsolution.

The general solution is thus

=(t) =e2t(c(8)+a(i) +3)*t]
The constants c.2, are found using x0)=(2)

(i) =(=)
Thus the solution to this IP is

*(t) =et((8) +2(,) +(54)]
=e2t(1

+2+ +3t - +Yz)2 - t

I

=e2t(1
+

5tY2)-
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Letp(3) =p.tp,3+...+C-RS" be the characteristic polynomial ofA.
Then PSA) =p1 + p,A+... +(-1)*A* =8.

Section 3. 11:Fundamental matrixsolutions;eAt

If Ct, ....4t) are a linearly independent solutions of
X=Axthen

every solution (t) can be written as

x(t) =c,(t) +2r(t) +... +(nEr(t). (A)
Let x() be a matrixwhose columns are the solutions x"(t),...,*"H).
then (A) can be written as (t) =X'It)where =

1
Definition:Amatrix XYt) is called a fundamental matrixsolution of =Ax

ifits columns form a setof a linearly independentsolutions of =Ax

Example. Find the fundamental matrixsolution of

=(==4)*
This is the example we did in section 3.8. There we found thatthe

egenvalues were x =-2, 1.3 and the associated eigenvectors were

vi =(i),k =(i), r =(k),and they were linearly independent. Thus



x(t) =fettet
est 116

4 et 2e3t
et est

is a fundamental matrixsolution of this
= Ax?

Theorem. LetXIA be a fundamental matrixsolution of the differential eq.
-

x =As. Then
ext =x() x10)

-> The productofany fundamental matrixsolution of =Axt with its

inverse oft to mustyield ext

Lemma Amatrix XIt) is a fundamental matrixsolution of =Axiff

X (t) =Ax(t) and det(X(0)) F0.

⑩f. Letal (t) , . . . . * "(t) denote the columns ofXIt). Observe that

X(t) =[c" (t) , . . . . (t)]
and AXCt) =( AY"(t). . ... AcE(n)(t)].
The vector equations "(t) =A* (t). .... It)

=Ann(t) are

the same as XIt):Axlt). I solutions "(t)
, .

. . .

(h)(t) are linearly
independentiff ((0),...,(h" (0) are linearly indep. Vectors

ofIRY,

which are linearly independentiff det X10) F0. I
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Lama. LetXI and YH) be two fundamental matrix solutions of
-

&(t):AA). Then, there exists a constantmatrix (s.t. YIt):X(t) C.

Hof. The columns ICCA...., (A) of Alt)
and 5" (t), ...,y(nict) of

7(t) are linearly indep. Sets ofsolutions of
=Axt. Thus, every column of

YI) can be written as a linear combination of the columns
ofXI). I

constants ac...., ch s.t.

j( =ct) +(154t)+ ...+(t),j=1..
...n()

Let C be the matrix(CE..... Em where

-ci
Is -

i

-
Then the equations () are equivalentto the matrixequation 4(t):xH)

I

Example. Find eatif A =(z)
We want 3 linearly indep. Solutions of

=A*. We firstcompute the

characteristic polynomial

P(x) =det (A-xI) = det 03-x2CI
.
*s *

=>(1 -z)[(3 -x)(5 -x)] =0

x =1,3,5



x =1:(A -x1) =0
18

(88)() =18)
-

Y
=>( =

(j):
Vi =anything

Hence one solution is" (t)=et/j)
x
=3

:

(A -11)=

18:i()
-(8)y

2V, =V2

=( =(!)
Thus, the other solution is((H) =et(!).
x =5(A -SI)=0

If()()
-

vzt3
=0 =

v5
=

v2

-4V, + V2 +/5 =0
Vz

4V, =2Vz

2V, =V2
=

Y3

Thus (s =

(2)
The third solution is(t) =e54)).



-9
The fundamental matrix solution istherefore

I It
XIA =e I 5tI o best setIO

We now compute x-0). X10) =(82) =x4) =18
Thus eAt=XIt) X-10)

=otI estet)(
-

ettestestethe=(8 C
0 e5t

Section 3.12 The nonhomogeneous equation, VARIATION OFPARAMETERS

Consider x =Ax +(t), Y(o) =0.

Let'(t) . . . . .")bea linearly indep. Solutions of (t)=AI). - the homog.
case. Since the general solution for thisis c,x"()+...+ (***H), we seek a

solution of the form

x(t) =u,(t)x" (t) +42(t)2(t) +... +YnIt) x*4(t) (A)

This can be written in the form (t):X(5/t) where X(t) =(* st), . . . , "(t)]

and it) =(V] 'fweping this into
=A+ FH) we get

X(t(t) +X(45) =AX1tt) +(t)(t)
-

from(t) =g(X)+)(t))
productrule



The matrix XIt) is a fundamental matrixsolution ofthe homogeneous problem
=Ax?Thus XIt)=AX(A) and (t) reduces to

Xt(t) +x(tt) =A(t) +flt)
x(((t)

=>XIt) =F(t)

We already saw thatthe columns of X(t) are linearly independentvectorsof IRL
atevery time t. Hence xH) exists, and

x(t)(t)=Fit)=> T+) =x
-

(t) f(t).

Now we integrate between to and t to get:

(t) -240) =1 x1s) (s)ds

=X -H.)" (recall thatwe wrote (D) as (t) =X (t)(t)
->It) =x(t)5(t)

(t) =xHo +11 x (s)(sidsE

x -(t)x(t)

E(t) =x(t) x
+

(0)20 +X (t)/X"(s)F(sds.
If XCH is thefundamental matrixsolution eat then we com write XIt)=eft, x-1s):its

=>cIt) =eAte
-At0 +eAte-Asfsd

=
eft-to),0 +(eAct-s) Fisds.
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Example. Solve

=

()* (cost).
**(i)

det(A-xI) =det(z,iz) =(1-3)(1 -3)2+4] =x
-3)(32-23 +1

+4]

=(1 -3)(32 -23 +5) =0

b =1 3 = 4(5) = 4i
=1hi

3 =

1 (A-35)=0

128)() =(8) = 2V, - 2V3
=0

V, =V3

3V, = -2Vz =v, =
-zV2

=( =(2)
Thus one of the solutions is "(=et).

Now we consider =1+2i

(22" -2i zi)(v) =(8)
- 2iV,

=0 =) V,
=

0

X-iv2-v =0 =B =
- ivz =v(2) =(i)

Bus (tEeP+2ist(j) =eF(cosat+isinat)(_) =e)(EE) + "(at]
which implies that'*(t):etnEE). *(t) =et/E): are the real-valued solutions
of =A.
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-We check thatthey are linearly indep. by substituting too.

x40) = (6), x3 (0)=(.8). These are linearly independent,which implies
that

O

etsinet IXt=/eEee-etcosat
is the fundamental matrixsolution of =AY.

x
-

1 =()*
=b)
I
verify

Therefore gAt=x 14 x10)

O
-

(e ete)eS
et

= set + setwoscttetsinctetcost etsinct the exponential(et+setsinzt-etcost etsinct etcostS
can factor out

Recall that1)=eAH-to) 50 + /eAct-s)fsds. and the initial condition is

I(0) =(i). Thus to =0
=>c(t) =ext() +)eAlt-s)(8scos2s)dS

=

Geicosat-etsinzt) tetsin 2t+etcos2t



+ ett ets/ecosas
123

-

et/t↳

·newinconsistsare-sins cos2s-sines

escos(25)

I=et)teft)
=et (inst) +ert((gint).
=et/s) +eftiny)
=et(cost-sinzt) I5n2t+cos2t

et

set + setwoscttetsinctetcost etsinct(et+setsinzt-etcost etsinct etcostClsiny)
I ↓et costs4t-8) -sinzt(t+sin4)=etcoste I I

sinzt(cos4t -) +coset(ttsin4t)



x24
CHAPTER 4:Qualitative theory of differential equations

In cases where i =F(t,X) where ICt, Y) is a nonlinear function of
X. . . . . .n we mightnothave the tools to solve for . However,

oftentimes it's enough to know the qualitative propertiesof

Properties ofsolutions of E
=F(t.x) we're interested in.

①Are there equilibrium values 0 =
x, for which It)=" is a

solution of E =F(t,3)? I inI
&=8 if(t) =. Hence to is an equilibrium value of

-

=Flt,) if and only if f(t,x =8

② Letitbe asolution of X =FH.R). Suppose thatIt) isa 2nd solution
-

with ↑j(0) very close to pjlo), j=1....... Will (t) remain very close to p(t)
for all time?STABILITY

③ Whathappens to solutions It) of E
=H,x) as t->c?

(a) Do they approach equilibrium values?

(b) If not, do they approach a periodic solution?

A

Example. Find all equilibrium values of** 1-x.d =x,3+x2

-> x0 =() is an equilibrium value iffy =0 -y =

Thus Io=(i) is the only equilibrium value of this system.



Example. Find all equilibrium solutions of -25

-=(x-1)(y -1).ay
=(x+1)(y+)

-> Fo = lyo) is an equilibrium value iff =Y

xample. Let y(t) denote the position
ofthe particle relative to its equilibrium

position. Determine the stability.The
relevant equation is

+y =rs2t.

and the initial conditions are y(0)=1, y'l0)
=0.

-> We first convertthis andorder diff. equ.
into a system of two ist-order

diff.equ.s by setting X, Fy

xz =y'

Thus y" =x2 => x
x
+x, =cosat

=>x
=
=- x, tcost

x,
=y
=xz

Elio())
If we solve the homogeneous problem

:Aswe have

det(A-bI)
=det(2, 0-3) =32

+1 =0
=3 =ti

3 =i =(
=i

-i)(i) =18)
- iV, +Vz =0

=-(i)iV, =V2

*(=eit(i) =(cost+ isint)(!) =(inE)+ "1E)



Thus (=(E), *2(t) =(SE) ↳6

For the nonhomogenous part, i.e. particular solution we have from variation
of parameters that

x(t) =(- 52] =cost sintI-sint costI -> x=innt (*)
=(t) =x(t) X

-(+0 +X(t))X-1s)F(sIds
I

-(in)(8(i)-t))n'sss(loss) as

↳-intsin(6)isane
1

C coss (1-2sin2s)

=It - zcosssins + sins dS

=>
cost-cost +Icost+sinct-sin't Icoss-2SinCOSS C
-Icostsint +sintcost

-

Isint t-(sin) tI
Icostsint - cost sinst

C
-

LOSYS-COSSI sins-Esins1.
Firstrow of 2nd matrix

=glost-cost
-+

=>cost-cost lost tsinrt-E
sint I sint--sinst C

=E(rssint) host-sint)-(cost-sinrt) =

(5tC
+Icost -I-cost

=- I(cost) + lost
= -5s t +(l-cost) +Icost
=- st+cost
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Second row of and matrix -

-costsint +sintcost -Isint+lostsint -costs inst
=- costsint(costAsinrt) +2sintcost - Isint
-Icostsint-Itsint

hii
(s+)-stoster
-

S*costsint - sint
Itsincet

= -cost+st+
=- brosat I

=>
inct-sint S

=(5cost+cost
3

S-sinet-Isint (*)
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Section 4.2 Stabilityoflinear systems

Consider the stabilityofsolutions of autonomous differential equations. Let

*=P(t) be a solution of =(). Is (t) stable or unstable?

at two will it remain dose to (t) ++,0?

kef. The solution =PH) of =f(x) is stable ifevery solution 4(t)

which starts sufficiently close to PH) att=0 mustremain close to (t) for all

future timet. The solution (t) is unstable if there exists atleastone solution [(t)
of =f(x) which starts near (t) att =0 butwhich does not remain close to

I(t) for all future time.

The sortion (t) is stable iffor every 30 J8=S12) such that

14j(t)-Pj(t)/<d if Ij(0) -Pjlo))<812), j=1. . . . . n

for every solution 4(t).

The stabilityquestion can be completely resolved

Y =A

orem. (a) Every solution =(t) of
=AYis stable ifall the eigenvalues

ofAhave negative real part.
(b) Every solution=P(t) ofE =AYis unstable ifatleastone eigenvalue of
Ahas positive real part.

(c) Suppose thatall the eigenvalues ofAhave real part 10 and A,
=io,,...,

X ise have zero real part. Letbj:io,have multiplicity by. This means that



the characteristic polynomial ofA can be factored into the form 19

p(5) =(X - io,(* ...(6-iv)q(x)
↑

all roots ofq(x) have negative real part

Then every solution =P(t) ofx =AEis stable if Ahask;linearly independent

eigenvectors of each eigenvalue aj =i0j. Otherwise, every solution pit) is unstable.

Let". Let=1) be a vector with a components,with .....che real or complex.

We define the length of as 11511=max3/X, 1, IXel. ....n1]

So it =(i) then 11x11 =4 and if= (22)then 11x11 =15

Properties.1. IlXII, 0 for any rectory' and 11X'll=0 only if =0.

2. 113I'll =max9/xx, 1, . . . 1xxn13 =(x) max, IX, 1. . . . . 1xn13
=141-11XII.

3. 11+5/1 =max[Ix,+y, 1. . . . . IXntyn13

<max, IX, 1+1y,1. . . . . 1Xnl+lYnl] by triangle inequality

<max9/x,1, . . . . 1Xn13 + max9 14.1. . . . . 1yn13

=11Ill +1511

If all eigenvalues ofAhave Re(b)<0 then every solution [It) of
=AY

approaches zero as tco. Therefore, not only
is the equilibrium solution x(t)=O

stable but every solution (t) approaches
itas t ->0. This is known as asymptotic

stability.
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example. Is the solution *CH of=E2) *stable,asymptotically
stable, or unstable?

det/2" - -x) =(
- 1 - x)(7-1 -3+4] =- (1+x)/3+23 +1+4)

= - (1 +x)(32+2x+5)

=0

=>6 =
-1,X ==45) = - 112i

All 3 eigenvalues have negative real part and so every solution of =Axtis

asymptotically stable.

Example Determine the stabilityofevery solution of i
=(si) *.

det)=,Ix) =(1-x)
-25 =32-23 +1 -25 =32-23 -24

=(x -6)(x+4) =0

=>I=- 416

Since one eigenvalue of (55) is positive, every solution x=(t) of :Ax
is unstable.

ample. Show that every solution of =(28)* isstable butnotasymptotically

stable.

det(=3) =2 +6 =0
=6 =5i

By part (c) of the ineorem, every solution *:(t)
of:A* is stable. But, no

solution isasymptotically stable.

Solving for = 12-3) * we see thatthe eigenvectors are
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=55i =((ii)(i)=(8) =-iv, -3vz
=0 ↳

v =giv,

Thus v =(r) .
(t) =eFit=(cos(rst)+isincst)(i)

- I3cos(6) +3isin() Sricos(56t) - 1 sin(st)

-

(int) +"(t)
The general solution is thus

==c) +2))
So every solution [st) is periodic, with period 2and no solution () (except
*(t) =0") approaches zero as t=0.

Example. Show that every solution of
i =

(-8)
is unstablein

A

det(A-35) =det(=3 =

-s) =( -s)(7-6-3)1-3 -3)] +3/-12)
=

(2-3)/(6+6)(6+3)]
-36

=(2 -3)(x2+9x +18) -36
=

262+184+36- 33 -972 -48x -56
= -63 - 762
= - b(x+7)
=0



Thus 6=-z,0(w/ multiplicity 2).
132

Every eigenvector of Awith eigenvalue o must satisfy

[s()()=18)
2V, -3V

=0
=v, =V2

- 6V2 -2Vz
=0 =3V2 =
-

+V3

invsi =cf()
Since there is only one linearly independent eigenvector, this means that every
solution =plt) of=AX is unstable.

Section 4.5 stability ofequilibrium solutions

Now consider * =A+g(x) with very small compared to
XP.

We assume that

.....ix's are continuous

entireit....unicnranmor
x, =. ..

=Xn =0.

e.g. if(x) =(**) then
bothi =mixall in are

continuous functions ofX,X2 which vanish for x, =x2 =0.
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If 50) =8 then It =8is an equilibrium solution of Y =

Ax +g(x)
We want to say whether it's stable or unstable.

If I is very small then g(x) is very smallcompared
to Ax. So we will

determine the stabilityof the eqm solution [It)=8from the stabilityof
*
=A* (w10g(*))

Theorem Supposeit is a continuous function of X...... on which vanishes for
*=8. Then

(a) the eqm solution [t)=oof
" =Ax+gix) is asymptotically stable if

the equ solution () =Oof the linearized equation =Ax is asymptotically
stable.

=>Cl=8 of =Ax+g(x) is asymptotically stable ifall eigenvalues
of A have negative real part.

(b) The eqm solution (t) =8of =Ax+g(x) is unstable ifatleastone

eigenvalue ofAhas positive real part.

(2) The stabilityof CH=8 cannot be determined from the stabilityofthe
eqm solution (t) =0 of=Axifall eigenvalues ofAhave real part 10
butatleastone eigenvalue ofAhas zero real part.

ample. Consider ( =xz-x,(x,+xit
dX2

= - x,-Xz(X, +x=2)
3(x)

It

The linearized equation is Iii,) =(d)(2)



and the eigenvalues ofthe matrixare det(A-31) =det)-P -) =a+1-4
x =Ii

To analyze the behavior of(1) we multiply
the firstequ by X, and the

second equation by x2 and add them

x,6 +x2 =x,xz - xixi +x2) - xxz -x/x+x2)
- - (x, +x22)(x,+x2)

*2x ++x)
=

- (xi +x2Y)

cq(x,+x2) =

- (x, +xz4)2

xxy(x +x2) =-2

-1
- - - 2t +C

(x,+x2

d =0 =---- C

(x,(0) +x240))

Thus t-:fatft/
(x,t)+x=(t)) (x,(0) +x2(0))

x+x)
=x20))I

x,2(0) +X2"(0)

=>xi+it =

Mat



This impliesthat as t =0, xi(t) + x2") -0 for any solution (h(t), xult).
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Thus x, (t) =0, x2 1t =0 is asymptotically stable.

Example. Now consider instead
↓

* =xz+x,(x,+xit
3 |t)dX2

= - x,-Xz(X, +x=2)
It

The linearized system is the same =(-9!) *.

However if we now follow the same process we have that

2f(x,+x2) =(X,2+x=2)-

which gives x,(+x2")
=4-
1-2t(x,210)+x22(0)]

Note thatevery solution x, (t), Xz(t) ofCH with x,2(0) +x=(0) 70

approaches infinity in finitetime.

Thus x,(t)=0, X2 It)
=0 is unstable.

Example. Consider ( = -2x,+x2+3x5
+9x2

* =

- 6x2 -5x,+7x35

dx3
d

=
- xs+x, +X

Determine whether the equilibrium solution x,A)=0,Xc(t) =0. Xs (t)=0 isstable or

unstable.
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We rewrite this system as

=Ax+g(x) where

* =(i).A =( - ) andxx)
x,+Xz

The (x) satisfies the hypothesis ofthe Theorem. I.e..

=Ex- is a continuous function ofX,.....n which

max9IX, 1. . . . . 1Xnly
vanishes for ' =8.

-2-3

det (A-xI)=det I-5) =(-2 -3(76 -5)(-1 -3)
=0

=>I =- 6, -2, -1

Since all the eigenvalues ofAare negative, the equilibrium solution
E(t) =o' is asymptotically stable.
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Section 4.4The phase-plane

Considerthe system of differential equations

*
=f(x,y)
dt

&y =g(x,y)
and observe thatevery solution x =x(t), y =y(t) defines a curve in the 3D
space (t,x,y)

e

mple. Solve =y and describe the curve the solutions trace out.

=) i =()* det(A -b5) =1
2
+1 =0 =7 =li

A
x =i

=

(-," -i)(2) =(8) =-in -vz
=0

Vz = - iV,

i =()
* =eit)1) =(costtisnt)(f)

cost + isint)
-

C- lcost+sin t
-(E) +(-E)

x(t) =cost, y(H =sint isa solution. As to runs from 0 to 24,

the points (x,y) =(cost, sint) trace out a circle ofradius, and center
10.0). (ie. x*ty2= 1. As to runs from 0 to 0, the set ofpoints

lost, sin trace outthiscircle infinitely often.



Ample It can be shown thata
solution of x38

dx

at=6 =10
is x =3+

2
+2,y =5+

2
+7

X2 y>7

Solving for t we have 3t=x-2
=t =PE, x, 2

y =5/4+7 =

y =5(x-2) +7 so for 2x20.

↑
orbitof the solution.

An advantage ofusing the orbit of a solution rather than the solution
itself is thatit's often possible to obtain the orbit of a solution w/o prior
knowledge of the solution

Let (yEy*?] be a saution of:f(x,y).
Ifxlt) to attit,

( =g(x,x))
then we cam solve for t=t() in a neighborhood ofx,=xIt). Fortheart,

the orbit of x(t),yIt) is the curve y =y(t(x))

Note that yy =dt =xy). Thus, the orbits of the solutions
f(x,y)

x =xct),y =yct) are the solution curves ofy
=>We donot need to find a solution x (t),y(t) in order to compute its orbit.

We onlyneed tosolve the single 1st-order scalar diff.equ. :y

Example Find the orbits ofyyi

-=



/ydyfxdx
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=>y3 =x+

y3 =x3
+A

y
=(x+A)"3 where Ais a constant.

Orbits of =y2, y=x are the setofall curves y(x)
=(x3 +A)".

example. Orbits ofA =y(1+x+y2), y =
- 2x(1 +x2+y2)

=>

=

-yx

(ydy =f=xdx

I =- x
+C

+x2 =c -ellipses.

Section 4.7: Phase portraits of linear systems

i
=Ax,x =(xi).A =(c)

Acomplete picture ofall orbits ofthis
linear diff.eqh. is calleda

phase portrait, and itdepends almostcompletely on the eigenvalues ofA.
Italso changes a lot when the eigenvalues ofA change sign or become

imaginary.
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ases:
① x2, 10 Let andI be eigenvectors of Awith eigenvalues

x2
7, and 2.

1, =x(t) =cebit,

equ sol * =0 is a

W XI
STABLEit WODE

12 =Y(t) =ced2t

The arrows on a and be indicate in whatdirection (t) moves along its orbit.

5(t) =c,edit" + sebets so
every solution (t) approaches (8) as +0.

It's helpfultorewritethe general solutionas (t) =ep't(c,i+cec
-

xit()
Observe that62-3,50.Thus, as long as CFO less

negativeXthe term cebz-silt?is negligible compared toa fort sufficiently
large. Therefore, as t-0, the trajectory notonly approaches the origin
but also tends toward the line through it.

Tangent totheweigenvestor

② Oc1, <2 both evalues are positive It) =O is an UNSTABLE NODE

X2

&
1*

12



#
③ , =x2<0 Does Ahave 1 or 2 linearlyindependenteigenvectors?
-> If Ahas 2 linearly indep.evectors isand isw/evalue 320 then every
solution can bewritten as (t) =ext/c,Vi +2).

Every vector is an eigenvector with this eigenvale X.
↳Let's write an arbitrary vector : as a linear combination oftwo erectors:
X =ci +cz. Then

Ax! =A(c,vi +22) =43v,+2ar =x(π +2 =x!

so XS is also an eigenvector with eigenvalue .

X2

W
L STAR

7
L

NODE
> < X
7 1 d

-> If Ahas linearlyindep-evector with athen

x(t) =xeStr +cet( +()
dominant term as t->o

Every solution (A) approaches (8) as t=0. Hence the tangent to the
Orbit of XIt) -> Ias

Xe t ->0.

LS
X, DGGENERATE

E NODG

3
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④x,=x270 Same as 8 above butw/ direction ofarrows reversed.

⑤6,702X2 *(t) =c,et +ceb2t
x2

- e
L SADDLE-

E

Sn
POINT

?"
⑥ x, =x

+i,BFO
xz=a - iB

det 9-7 b

I ( =0 =(a - 3)(a -x) - bc=0

C d - X x2-(a+d)x +ad-bc =0

We getcomplex xif
x =(a+d) =1(a +d)2 - 4(ad -bc)

2

(a+d)2 - Pad-bc)<0

Since BFO the eigenvalues are distinctand the general solution is

still (t) =4eSity+cex2t?.

The C. of are complex since the 's are. *(t) is a linear combination

of ellipt. By tuler's identify eit=cos(t)+isin(t)

Thus *(t) is a combination of terms involving edtcos(it) and

eatsinct).

· Exponentially deloying oscillations ifa=Relse

STABLE8* SPIRAL
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· Exponentially growing oscillations ifa=Re()<0

x2

UNSTABLE

⑧ XI

SPIRAL

· Ifthe eigenvalues are purely imaginary, i.e. 2 =0 then the solutions

are periodic with period T =2T/B.

x2

⑱ Xi

CENTER

#The direction of the arrows mustbe determined from the differential equation.

=A. The simplestway ofdoing this is to check the sign of2 when x2 =0

① Ifx2>0 for x2 =0 and x,30 then all the solutions (t) move in the

counterdockwise direction.

& Ifxico for x2=0 and x, 30 then
all solutions ['(t) move in the dockwise

direction.
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Emple Draw the phase portraitofthe linear equation

* =Ax =( -I)*

det(-2, -z) =0 =( -2 -6)-7
- x) +4=0

32 +9x +14+4
=0

62 +97 +18
=

0

(x +3)(x +6) =0

X =- 3. -6

x,=-3:(1
-

4(2) =(0)
r -vz

=0 =v
=

v2. Thus ,F(!)
3=-6:(ii)() =(0)

4V, -V2 =0

v =4V, Thus E =(i)

C stable node

3 x,



Ample Draw the phase portraitof =(13)*
x45

det)'s) =0
=>(1 - 7)2 - 9 =0

32 - 27+1-9
=0

32 - 27 - 8
=0

(3 +2)(x-4)=0

x, = -2,xz
=4

3, =-2 =

(23)(i)=(0) =3v,-3V2
=

0

v
=

vz
=x=(i)

x =4 =(
-

-3)(v) =18) -E ==(i)

-
sample Draw the phase portraitofI =(-1)*

det(-1,-1-s) =(-1 -6)
2
+1 =0

--x =i =x =-11i=stable spiral

to decide the direction of the arrows we look atx2
=- xi-x2 and see

that when x=0 (so along the horizontalaxis) x2 10 when X,20, so

the arrows go clockwise.



x2 x46

⑧ xi
S

stability properties oflinear systems =A*w/ det(A-3I) =0 and detCAL FO

Eigenvalues Type ofcritical point Stability
3,x2>8 mode unstable

2,4240 mode asympt stable

32 <0<3, saddle point unstable

3, =6270 proper or improper node unstable

3, =620 proper or improper
node

asympt. Stable

3,,62 =a+iB spiral point

->0

unstable
x0

3,
=iB,dz=- iB center asympt. Stable

stable

Gale Consider i= I92) 5. Letp =a, tazz= tracet

q
=

G,,922 - 4,2921
=det(A)

Show thatthecritical point(0,0) is a
(a) mode ifPCO and B>0

(b) saddlepoint ifqc0

(c) Spiral point ifpo and DCO

(d) center if p
=0 and q>0

Compute: det(1-31)
=(a, -3)(azz - x) - 9,2021



=

a,Azz -(an+922) x +32 -aizdz, #7

=32- (A2)6 +G11Gzz-Aizdz
-

P q
=32 - px +q

=0

3,=P48=pI
Nte s,x =

( +)(E - ) =

G -

**-*** =a
31 +32 =

I +E+2 -
=P

(a) So i -970 this implies that3, and is have the same sign since

g = 6,6270 and ifD>0 itmeans thatI, and be are real. So ithas

tobe a node.

(b) if qso itmeans thatx, 62 have opposite signs so it'sasaddle point

C) if 40 and $20 this implies thatD.,b2 are complex eigenvalues so it
mustbe a spiral

(d) if p=0 (real part =0) and 970 -> 3,62 are the same sign. -Center

-> Now show thatthe equilibrium point (0,0) is

(a) asymptotically stable ifquo and pco

(b) stable if930 and P
=0

(c) unstable ifqc0 or p>0
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asymp. Stable, 9 N unstable, spiral point -

spiral point =6,32

⑨ 1= -4 b=p2-4g
=

0
>

asymp. Stable

unstable
nodeorimpapa,properpropertiser node

>
P

=

3, +32

3 =prxqx/ unstable,
saddlept

9
=I parabola in p-gaxes. -> proper/improper nodes

~repeated, real evalues.

9 <4 => p2-4q<0=> complexeigenvalues.

above the Along the g-axis, p
=0

(6, +62=0)
parabola which implies that3.I are purely

imaginary =>Center

q - 1 =p
2
- 4920&q0

below the 1, 62<0) =saddle point
parabola
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Section 2.9:The method of Laplace transforms

We want tosolve the IVp: ay +bay+cy= f(t);y10) =y..y'l0) =y
Usually usefulwhen a fit) is a discontinuous function of time

· f(t) is zero except for a very shorttime interval in
which itis very large.

finition let fit) be defined for acts. The Laplace transform of fit).
which is denoted by FCs), or 15f(t)) is given by

F(s) =([f(t)3 =10 -

stf(t)dt

where IBe-sfstat:imo)*e-stfitat improper integral

Example Compute the Laplace transform of f(t)= 1

15 f(t)3 =hp)estat
-

(- 5e-st]
-(-

-

+5)
=>2213= 9.8



example Compute the Laplace transform ofeat 150

seaty=BS. e-steatdt= (ast].
-(atsela-s*- ats]

=>dseat]= Sta:a(a-s)o
c,sa (a-sk, 0

Sample Compute the Laplace transform of cos(wt) and sin(wt)

2910s(wt)] =mSe-stcos(wt)dt
69sin(wt3 =H).e-st sincwtdt

=>1910s(wt) + isin(wt)
=/Seiwty = 1,Be-steirtdt=/eliw-stat

-him isthe
-

- E iw-sstiw=to
undefined

S=0

2910s(rt)] +:<Ssincrtiy=stwh+iw =>1910snotty =
->
S2+w2

(9sin(wt)3 =w2:STO
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Note Here we used the factthatthe Laplace transform is a linear operator

25c,f,(t) +2fz(t)) =60e-st/c,f,(t) +2f,(t)]dt
=a)*e-stf,(t)dt +2)Pe-stf(t)dt
=c,2[f,(t)) +2([fz(t)3

Amma! Let F(s)=([f(t)). Then (9f'(t] =s1[f(t)3 -f(0) =sF(s)-fl0)

Prof. Use the formula and integrate by parts

29f'(t)3 =

a0).e-stf'At)dt
u =e

-st
d =f(t)

&u = -sest
dt v=f(t)

=(e-stf(t)].+ lims).e-stfltdt
A-D

= - f(0) +ste-stfltdt
F(S)

= - f(0) +sF(s)

Emmaz LetFCs) =2Sf(t)].Then 19f"(t)3 =sF(5)-sf10)-f'10)

⑳of Using temmal twice:

(If "(t)] =S2Sf(t)) - f((0)
=s/sy- f10) - f'(0)

F(s)
= sF(s) - sf(0) - f'(0)
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Now we can reduce the problem ofsolving the IVp

ay"+ by' + (=f(t), y (0)
=

yo, y'l0)
=yo'

to that of solving an algebraic equation. Let Y(s)=([yIt] and FCs) =(3fHt))
Taking Laplace transforms of both sides ofthe diff.equ, gives

29ay" (t) +by '(t) +cy(t)3 =F(s)

By linearityof the Laplace transformwe have:

addy"(t)3 +b([y(t)3
+(25yct13 =FCs)

Using Lemmas, and 2:

a [sYcs) -syl0) -y)] +b(sY(s) -1)] +cY(s) =FCS)
-

Yo Yo Yo

=>YCs)/as +bs + c) - Yo(as+ b) - ay!' =F(s)

=>Y(s) -castabste (A)

(*) tells us the Laplace transform of the solution yet) of the IVP

To find yet) we must consultthe inverse (aplace transform tables

y(t)
=1

+

5Y(s)3.
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Example Solve y" - 3y'+2y= est, y10) = 1, y'10)
=0

Let y(s) =19yctly. Taking the Laplace transform on both sides gives

S-ycs) -sy) -y(0) - 3(sYcs) - y())
+24(5)=

S-3
-

Y(s)/s2 - 35 +2] =55+ 3 - 3 (seat]='a

Y(S):55s2-32) +752- 35+2

-2-1)s-)
To find y(t) we expand the RHS in partial fractions

-27(5-6) = ss
=>A(s - 2)(s- 3)+B(s- 1)(s-3) +((s-1)(s - 2) =1

Lets =1 =A( -1)-2) =1 =A =12

s =2
=B(1)(- 1) =1 =B = - 1

S =3 =((z)(1) =1 =C=12
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Thus,

ss) is state

similarly, 2) ** * *

=>) 5- 3
=A(S -2) +B(s -1)

22+5 =1 =) - 2 =- A
=A =2

S =2 =) - 1 =B =B =
- 1

Thus,is- sta

Overall, then wehave

41s)
=

ses-2cs-1)*ss-)
= - - st

= Est- ++1S-2
-Taplaces-3Laplace Laplace transform

transform transform of test
ofet of -2e2t

Thus y(s):295 et-2e*+est] =>y(t) =Fet-zet+ test.



Section 2.10: Some useful properties of Laplace transforms x55

Property 1:If25f(t)3 =FCs), then 19-tf(t)3 =(F(s)

Nof FCs) =/e-stf(t)dt. Let's differentiate both sides.

8F(s) =(f)*e-stf(t)dt
=I(e-st)f(t)dt

=Jte-stf(t)dt
= 2[ -tf(t)3

Example:Compute the Laplace transform of tet.

-F(s) = - 29tf(t)) =>29tet3 =-5= -

Example:Compute the Laplace transform ofthe

Using Property1. i.e. (3-tf(t)] =GFCs) 20 times yields

25+183 =(-13281913 =(-1):
example whatfunction has Laplace transform -

e)?
- is2 and :25925]

So if we use 29-tf(t)] =FCs) we have



2
-

5F(s) = - tf(t) 156

=>2 -9-52,23=- text

example Whatfunction has Laplace transform joy?
Use:2[tf(t)3 =

-

jF(s)

r =55(44) and 29sinct3:4
↑

19 sin(wt)3 =w2

Thus, using Property 1:19tsin(at)3 =

-(4)=
=>2-s-yr) = - tsinat

Poverty2:If F(s) =23f(t)) then 29eatflt))
=F(s -a)

Roof:19eatfity =/*e-steatflt)dt =S,e- (s-altf(t)dt
=F(s -a)

B

This states thatthe Laplace transform of eatf(t) evaluated at the

points equals the Laplace transform of fit) evaluated atsea.
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Example Compute the Laplace transform of estsint

Recall thatthe Laplace transform ofsintis. 29sinwty:star
So to compute 2setsint] we need toonly replaces by s-3:

detsint]=ist-+

Example What function g(t has Laplace transform

G(s) =(s-1)2
Note that29C0Sut] =-- and so 29c0s5t] =52+w2 ,5'2+25

Thus GCs) is obtained from 1910s5t]: 25by replacing
everys by 5-7. Thus by Property 2, we have

↓=ettcos(5t).

Ample Whatfunction has Laplace transform-?
(52-45 +9)

5

stistasis-a startsatthe5 (S-2) +(5)2

completing
the square

2
-

9 tz) =2EIsincsteztM
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ample Whatfunction has Laplace transform,pstal" trying to relate

it to:
S

. 52-495=5 29cswt] =wEs
W

[Esinwt]:s
-

5
++5s

=

5+5

=>1*9 4s+a =1
"

9+5] +4953
-

s(5t)+sintet
e

Lastly, we consider

coshlat)-atte-at, sinhlat) =etat
Therefore, by the linearityof the Laplace transform:

19coshlat1] =2Seat +e-at)3 =22[eat3
+e25e

-

at]

= Ilsasta):it):Istsan]sar

LSsinhlat)] =29 I(eat-e- at)3 =

=dseaty- 529e-at]
=

a - sta) =c) =

ar
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Section 2.11 Differential equations with discontinuous right-hand sides

Consider again ay"+by'+cy=f(t) where f(t) now has a jump discontinuity
atone or more points.

The simplest example is Hc(t) =50.This is called the Heaviside for

I

·Its Laplace transform is 29Hc(t)3=oS.*est Holtdt
-

-Ho),e-stdt=o/gest]
-St

-lim exteA-0

=e
-c

-
fors>0

Nextwe letf be any function defined on the interval octcc and let g be the

function obtained from m by shifting the graph off, c units to the right, i.e.
A R

f(t)
g(t)

>t > S

So we have g(t)
=

50,
Oct

f(t -c), ts, c

An alternative way ofwriting down this function is g(t) =Hc(t) f(t -c)

Property:Let FCS)=29f(t3. there 2[Hc(t)f(t-b3 =e-CSF(S)

of Using the definition we have
25Hc(t)f(t-c)3 =J,PestHc(t)f(t-c) dt

=S,*e-stf(t-cdt



Using integration by substitution we have n=t -c =) du=dt 160
when t=c =) u =0

t =0 =3x =c
Thus 19Hc(t)f(t -c)3 =/8e

-5(2+c)
f(x)dx

=e-ssfedhere
=

e
-

x([f(t)3
D

example. Whatfunction has Laplace transforme
Note that2353: robesttdt=p(-est]+)estat

at =
est

v = - jest

=him-fest+)- se-st).
-

-+
=

Thus by Property 3, i.e. 22 Hc(t)fIt-c3=e-x43fIt)y, we have that

It is the Laplace transform ofH,(t)f(t-1).
, 7

t



-6)
Example Whatfunction has Laplace transform e

- 35

?
52-25-3

Note firstthatEas-3 "--3"-4 isre
we know thatcater] =( "92r-22):EsinG /2t)
Recall 29sinhlatl] =2 and 29eatflt)] =F(s -a)

Thus from property 3 we have

(i)g) =Hg(t) f(t-3)
=

4gIt) etsinh(2/t-3)).

Ample Solve the (rp y"-3y'+2y=f(t) =Gtissto
andy (0)

=0, y' (0) =0.

-> Lety(s) =15y(t)] and F(s)=19f(t)). Taking
the Laplace transforms of

both sides of the diff.equ, gives

SYY(s) - syo) -y0) -3sY(s) +3(10) +241s) =F(S)

Y(s)(s-35 +2] =F(s)
F(s)Y(s) =

-2-3s+2

=isis-
How dowe compute FCs)?



162f(t)
a

Method I -

: iii i
f(t) =(Ho(t) - H,(t)]

is -
+ [Hz(t) - Hg(t)]
+ [Hq(t) - H5(t)]

and 49Hc(t7] =Es fors>0
where Hc(t) =S9,

By the linearityproperty ofLaplace transforms we have

F(s) =I - +E -+e4
-is

5
- e

-

Method 2

A second way of computing FCS) isto evaluate

FCs) =1Pe-stfltdt =S' e-stdt+/ee-stdt+),estdt

=(- jest +(-best] +f-e-st]
= - je +5 - je

-3
+fe

-2
-

je
- 55+
je

-4

=

(1 - e
-5
+e

- 25
- e

- 35
fe

- 45
- e

-

55]

Thus YCs) =1-e+e
-2s-e35+543-e-55

s(s -1)(s-2)

Use partial fractions

siS-1s-2)
=

+
+52 =1 =A(s-1)(s-2) +Bs(s-2) +(s(st)



163Lets =0 =1 =A(+)(-2) =A =

2

5 =1
=1 =B(+) =B =

-1

5 =2 =1 =2 =C =1
2

Thus t(s):It-+atz

:- ) =a - et + et

So now thatwe have to compute

2
-

(Y(s)) =2
+1 - e-+e

-25
-35+543--55

E I
s(s -1)(s-2)

By property 3,

y(t) =c+- et +et - H,(t(a+-et
-1
+

+e2t
-

)]
+H2(t)(-et

-2
+
+
e2t -2)) - Hg(t)) - et

-3)
++e2t

-

31]
+p(t)) y - e(t

-4
+yy2(t

-

4)) - H5(t)) - e(t
-3
+6g2t-5]
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Section 5.2:Intro to Partial Differential Equations

Aartial differential equation is a relation involving one or more functions
of several variables, and theirpartial derivatives.

The order of a PDEis the order ofthe highest partial derivative that

appears in the equation.

Example =28th Both are second order pets.

=,

Some classic PDEs of order 2

HEAT EQUATION =a
WAVE GQUATION En

=c0+2
LAPLACE'S EQUATION+

Section 5.3 Heatequation, separation of variables

Consider the boundary-value problem
*=x24(x,0) =f(x),0cx<1;x10,t) =u(e,t) =0

initial condition boundary conditions
We want to find u(xit).



x65
Recall thatwhen we were considering the Ivp y"+p(t)y'+q(t)y =0[

y (0)
=

yo, y'l0)
=

yo'
I

yct) here is a fan ofa single
vanable -> 0Ot

We firstshowed thaty"+p(t)y'+q(t) y
=0 is linear and so any linear

combination ofsolutions of this world again be a solution. So our

solution was c,y,(t)+(yz(t) for two linearly indep. Solutions y, (t)& Yelt).

=>Any linear combination of44,(x,t) +...
+44n(xit) of solutions U,(xit)....

unkit ofEI=a is again asolution,and we also want the boundary
conditions to be satisfied.

S

STRATEGY

Steps Find as many solutions n,(x,t), 42(x,t). ... as we can of the BUP

E =x2iu(0,t) =u(l,t) =0

Step2 Find the solution n(x,t) by taking an appropriate linear combination
ofthe functions Un(xit), n =1, 2, ...

Regarding steps. We reduce the problem to solving one or more opts.

Set u(x,t =X (x) TCA) - this is why the method is called "SEPARATION OF

VARIABLES "

Computing 2 =XT and 2 =X"T we see thatu(x,t) =x (x)THis



a solution of:d* ifXT=GX"T 166

Dividing both sides by XT we obtain

=
=>

T=
ne

function of function of
-alone i alone

Therefore, this implies that**=-3 and It =-x, for some constants.
(this is because the only way that a function of can equal a function of t
is ifboth are constant.)

The boundary conditions 0 =u10,t) =X(0) T(t)

0 =u(l,t) =X(l)T(t)

imply that X (0)
=0 and x (1) =0 Cotherwise, a mustbe identically zero).

So we have X" +3X=0 and X10) =0, X (l) =0

T+x23T =0

Note thatX"+ 3X =0 is a 2nd order ODE
↑

m2+1 =0

m =1ix

and X (x) =Acos(c) +BsinCC), which upon using X10) =0 =X(l)



will determine A,BS 167

X (0) =0 =0 =A
BFo and

X (l) =0 => 0 =Bsin (l) => 51 =nT

x =

(+)
2

Thus XR) =Xnk4=sin(n)
Similarly,we have 7'+ dxT =0 but we already have x=(1)2

I =- a2x =1 =
-

an
en151= -t

-at
T(t)=[At) =e 12

We would multiply both Xult) and Trit) by constants butwe omit these constants
here since we will soon be taking linear combinations of the functions Xn()Talt)

->Un(xit):sinceit is a nontrivial solution ofthe BVp

for every positive integer n.

Suppose thatf(x) is a finite linear combination of sin), thatis

f(x) =,cnsin(n)
Then uxit) = Ecusinge-*t is the desired solution as it

also satisfies the initial condition 4(x.0)=,csin(Y) = f(x), ocxcl.
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Section 5.4:Fourier series

An arbitrary function f(x) could be expanded in an infinite series ofsines
and cosines. Let f(x) be defined on-1ex<1 and compute

a=((f(x)dx, an=)f(x)cos(Ydx, n =1,2,...-1

bn =If!f(x)sin(Ydx, n =1,2
Then we have

fix = +acs-b, sint... =g+(ancos +busing)
Example. Let be f(x) =0, -1X20. Compute the Fourier seriesE 10X1
for of on the interval - 12X11.

In this problem 1-1 and so ar=1, f(xidx = /01dx =

1

an=1, f(x)cos(nix)dx =J.'cos(nix)ax=[sin/nix)n].
=Sit) -0 =

0 for

0

br =1,f(x)sin(nix)dx=J.'sincnix) dx =fcos(nix)
I

I
X

=-

S(nπ) +T =+n =

i[1 - (-1)4]

for n



Note thatwhen n=even, bu =0 -69

n =odd, bn =π

Thus, the Fourier series for for the interval - 12X?) is

fx+E(acos(x-msin()" o when
n is even,

=when his odd
=>

I +sin(x) +sin(3Tx) +5,sin(5,x)t...

Example. Let f be defined as fig'
for -2240

xfor 0= x =2

Compute the Fourier series for for the interval -2x12.

In this problem 1 =2

as= i) f(x)dx =(!*x +I) xdx =i(x)! +(E2]?
= ((0+2) +( - 0) =1 +1 =2

-abcics(x)dx+xcos/eby parts
x
=x

y =

=cos(

-?sin/)ax
v =sin



NO
=

(singni) - 0) -n/s/]
0

=(Cos(n)-1) =

c7j(51)2-1) for nex

=Si
wood

n even

bn =2)If(x)sin() dx =I /sindx+ I) xsin/dx

=s14)2 +)-xs/E)-ampartssin
v =0s/)-

J.,(*) ax
=-1 +x) - (2) cos(ni)

+n10osco)m

c) since cos is even ⑧

iysY].
D

= f1 +(-)2) - (-1)2

- - 4(1+(+(2) for me,

- 0 n odd

S- n even

Hence the Fourier series for on-2=X=2 is

f(x) =1 - 120s() - sincex)- zos() -24sinceix)+..



= I -EcospntTY-Ex.
(2n+1) 2

*Orthogonalityofthe Sine and Cosine functions

The standard PRODUCT (n,v) of two-real-valued functions

u and on the interval x*xB is defined by

(u,v) =(u(x)r(x)dX.
The functions 2 and rare orthogonal on x-x2 if their inner product

is zero, that is:

1u(x)v(xdx =0
Asetoffunctions is mutuallyorthogonal if each distinct pair offunctions
in the setis orthogonal.

The functions sin(**) and cos(), n =1,2, ... form a mutually
orthogonal setof functions on the interval -exx= 1. They satisfy the

following orthogonalityrelations:

14c0s()cos(n)dx =?cos/mix) +cos((x) dx

=Linis, sin,my+msin(mix)]
= in,sin(n+m) i) +1 sin((n -mix)

(n-m)i
--sin((n+m(n) since sine is odd-

-1 sinf(n+m(it) - 1 sin(-(n-misty(n+m)T (n-m)π

=

, sin((n+m) i) +msin((n -m)+)]
=O



172as long as mth and n-m are not zero (otherwise we are dividingby0)
Since m and have positive, ntm70. On the other hand if n -m =0 => n

=

m

and the integral must be evaluated in a different way.

using
I

cos(x +x) =cosY cos/Y)-sini))
I

coSx-x) =cos/)cos) + sinysin(
cos(x) +cos/(ix) =2cos()cos/

=>

cos(**) 1S(*) =2)cs)y + coskn**)]

If him then

ICoS(Y)cos/)dx= 1s/)-dx
=(!( +2+0s/24)]ax
= (x +chsin()]
= +s42n)+-z
=2



173So J!s(Y)cos(mM)dx =SOE
and similarly, we have that

Icos(sin (m)dx=0 for all,

(sin(**) singmax =E:Em

Theorem (the Fourier convergence theorem)

Suppose thatfandf' are piecewise continuous in the interval
- 1=X: l.

Further, suppose that I is defined outside - 1 -x<1 so thatit'spenodic with

period 21. Then I has a Fourier series

f(x) =g +(ancos(**) +busin/)
whose coefficients are given by an=i)f(*)cos(YdX, n =0.1, 2....

bn =t/f(x)sin(nx)dX, n=1.2, ...
The Fourier series converges to f(x) at all points where is continuous, and
to (f(x1) +f(x-)) atall points where I is discontinuous

Note:(f(x1) +f(x-)) is the mean value ofthe right- and left-hand
limitsatthe pointx.
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Section 5.1 Boundary value problems

&

What values of 3 give nontrivial functions y(x) thatsatisfy
y "+3y =0;ayco)+by0=0?] boundary-valuecy(e) +dy'(1) =0 problem

↓

because we need info

about y(x) and y'(x)
at two distinctpoints
x=0 and x=1.

example.Whatvalues of 3 give nontrivial solutions for

y" +sy =0,y(0) =0,y(1) =0?

3 =0 y =0 => y =ax+b forsome constants a and b.

y(0) =0 =b =

0

y(1) =0 =al =0 =a =0

This implies thaty(x) =0 is the only solution ofthe BUP for 6 =0.

Fx - x
xc0 y"+y =0 =

y(x) =c,e
+2

characteristic equ:22+6
=0

2
=IF)

Now using the B.C., we get

y(0) =0 =0 =4 +2

y(1)
=0 =

0 =ce1 +cese



175
These two equations have a nonzero solution pice if

from leise etrse)(ii) =(8) we have

det/se etro)
=e-Fs_et =0

Thus, e-F6= efs =>es =1 butIret
we know thatetc, for ETO.

Thus =2=0 and the boundary-value problem has no nontrivial
solutions y(x) when I is negative.

30 From the characteristic equation +1 =0 =v
=i5 we have

thatthe solution of yitxy=0 is of the form

y(x) =c,cos(Ex)
+csinCEx).

B.CS

y(0) =0 =c, =0

y(1) =0 =csin(51) =0 but 270 -> 551 =NA

5 =n
x =(42 for soment

Thus the BVP has nontrivial solutions

y(x) =c8in/x) for n=1,2, ...
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-

Theorem The BUP has nontrivial solutions y(x) only for a denumerable'
setofvalues 3,J2.... where ,262-... and in - so as n =co.

Thesespecial values of 3 are called eigenvalues and the nontrivial solutions

y(x) are called eigenfunctions

NOte. In theprevious example the eigenvalues are 3:I., 9....-

and the eigenfunctions are all constant multiples of sin, sink....

&Why do we use this terminology?

A

let be the setofall functions y(x) which have two continuous derivatives
and satisfy ayco) +by (0) =0. cyle) +dy'(l) =0. is a vector space of
infinite dimension.

Consider now the linear operator or transformation L, given by

(2y](x) =-(x)
The two solutions y() of the BVP are those functionsin for which
Ly =by. (since Ly=-y"and the equ is y" +sy =0)

Example find the eigenvalues and eigenfunctions ofthe Bup
y"+xy =0,y() +y'(0) =0,y(1) =0

3 =0
y"=0 =y =4x+c2

y'(x) =G

22 +4 =0

y from both B.Csc, = -2.
2, +2 =0

I able to be counted by a one-to-one correspondence with the infinite set of integers
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y(x) =c,x
+2 =c,(x - 1) for 4,70 ->

So the eigenfunction is y(x)
=c, (x-1) and the eigenvale is zero

420 Every solution yex) of y"+ jy=0 is given by

y(x)
=c,cosh(Fs x) +csinh(FSx)

~Why this and noty(x) =ce*s+ ceFxx?

cosh(Fsx) =et5
x
+e
-x,sinh(rx) =et5*-j5x

2
2

So if we use the B.Cs y01+y'(0) =0,y(1) =0 we have

4 cosh(f) + csinh(55) =0

y(x) =c,sinh(5 x) +ccosh(x)

c,cos(0 +2s(0) +cEsnhlo) +cold
Thus Gcosh(g) +csinh(E) =0

2, +2215 =0

This implies thatthe system of equations has a nontrivial solution
4,G iff

det (54) Ssin5) =cosh() -sinhls) =

O

->sinh (15) =F coshI)



Butthis equation has no solution for 320.To see this we letz =F5
N

and then consider h()=zcoshz-sinh z.

Note h10) =0 and h(z)>0 for 270 since

h '(z) =cosh/+ zsinhz-losz =sinh z c 0
for z20. Thus nosso can satisfy sink (15) =rcosh(6)

30 Every solution y(x) of y"+sy =0 is of the form
y(x) =c,cos(15x) +2sin(5x)

for some 4, 2 constants.

From the B.Cs y10)+y'l0) =0 and y(1) =0 we have

C,cOS ((5) +csin()
=0

y(x) =

- 4,Asin(x) +215cos( x)

2, +625 =0

Thus def (cos(s) si)) =5cos(rs) -since)=
=>tan()=

So how do we solve this? We set3=5,and try to find the intersection
points between the graph of y =tan (3) and y =3,for 370



y
=tan3 y

=

3 #9

H

·

abe
one

point in

=(3 at) 2T
at3>π

More generally, the curves yet and y:tang intersect exactly once in the
interval (1+<<() and thisoccurs at a pointJn<nI.

Note also thatthey don'tintersectin 0<I. To show this seth(3)=7an3-3

hi(3) =sec3-1- tang 70 for 0x5>-> h(3)20 for get0,)

Thus the eigenvalues are 3,25,,32=3,.... and the eigenfunctions are
d

from 3=all constantmultiples of the functions -55,c0s/5,x) +sinc5,x),
- (52c0s((52x)+sin(152X). ...

We cannot compute an exactly (analytically),butwe know that
n < 3n <ayt(look at blue highlightabove)



Section 6.3:Hermitian operators (orthogonal bases) 10

Heef" Asetofvectors is orthogonal ifthe inner productof any two distinct
vectors in the setis zero.

Lama1:Leti.x2......be mutrally orthogonal, thatis

(i,j7 =0 itj
↑
inner product notationThen ?,x2. . . . . X are linearly independent.

⑳

.ofSuppose thatGx+cxIt-..+Crn =8

Taking inner products of both sides with isgives
<x,,;> +2<x,xj) +.. . +(<j7 =0

=>G5j,xj < =0 from the condition that(i,x,>0 for it;

=>

c
=

0 for j=1,2, . . . ,N since (Xj,x;>50.
D

Another advantage of working with orthogonal bases is thatit's easy to find the
coordinates of a vector arta given orthogonal basis.

let?, is..... n be a mutually orthogonal setof vectors in a real n-dimensional
vector space v. By lemma I, this set ofvectors is also a basis for V and every
vector EU can be expanded in the form

x=c,+cz + .-. +cnn.



Taking inner products of both sides ofthe eye
with isgives ,,j=gcji

so that
g
=5.j =1,2, ... . .

Example. Let U=IR2and define (x,y< =(x2)(y) =x,y,+ x2y2
The rector : (1) and =11)are orthogonal and thus form a basis for IR2.

So from =

c, uP+22I I any vector x=(?) can be written as

9 =j=
i =(x) =a(i) +2(1)

-(!)*s(1)

=(i)(i) +() (_)
= (!) +2(1)

Theorem (Gram-Schmidt) Every n-dimensional Gudidean space U has an

orthogonal basis

Roof Choose a basis ii?..... in for U. We will inductively constructan

orthogonal basis v.Ec..... in by taking suitable combinations of the recors
ii, Is...... Let r=, and set =E2 +SY,

Taking the inner productof uswith it gives
, =< 2+br,,>



= <2,, +a,<
182

So thatiswill be orthogonal to isifa=-xi
Note thatf 8 since =i+sy:sts,and itis are

linearly independent.

Proceeding inductively, let's assume thatis.....are mutually orthogonal
and set
atMint + 3, it... + 6te

The requirementthatfar is orthogonal to i,.....n gives

Sj =
-

it for j=1, ..., .
For this case of 3, .... In the vectors is..... Vis. wits are mutually
orthogonal. Also out forbecome of the linear independence ofit. . . . . in

Proceeding inductively until kin, we obtain a mutually orthogonal nonzers->
T

vectors V., ..., Un

The above outline is known as the GRAM-SCHMIDT ORTHOGONALIZATION
PROCEDURE

Example Let V be the space of all polynomials of degree n+1 and define

<fig) =(!,f(x)g(x)dx
Xfenso and get. It's easy to verify thatfo(x)=1

f,(x) =x

fr-,(x) =xn+



form a basis for U. Applying the Gram-Schmidt orthogonalization 15

procedure to fox), fi(x).....fr-,(x) gives

Po(X) =1

p,(x) =f,(x) +3P0(x) =x+3 =x+(-)
- x - f, =x

P-(x) = *3.3,
=Y

=

x+) +*
↓

***=5.---.
-I S]!

=>

P(x) =x2 - I

P3(x) =fz(x) +x.Po(x) +3,p,(x) +x2P(X)

orx"Ie



42: is* l!
x84
- O

11!(x* - 3x +)dx

Thus P,(x) =x
- X



Section 2.12 The Dirac delta function 185

Consider the ip adds + bay+cy:f(t), y101:40, 4'10):y
where fit) is not known explicitly and fit) is identically zero except

a very short time interval totit, ·If impulsive function
to ti >t

f(t)

and its integral over this time interval is InF0.

meroposedbysiraon
ita function equal to0

for toreE as for t=to
and whose integral is equal to lover any interval containing to.

We denote this function by Sit-to) and call it the Dirac delta
function.

If we set fit in adey+ by+cy=f(t) as I. SH-fol and
impose the condition

1,Pg(t)Sct-to) =59(to) if acto-botherwise

for any continuous function g(t), we'll always obtain the
correct

solution y (t).

#
Suppose thatfit) is an impulsive function that is positive for tostat,
and zero otherwise, and whose integral over to tet, is 1. For any
continuous function g(t)
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mi(t <tit,g(t)] f(t) -g(t)f(t) -

> (=Y**t,g(t)] f(t)

=>S" (=st, 94)] fitdt- I getfit atSEC,9Ht]fit)dt
-

can pull outof the integral
and we knowthatthe integral of

f(t) over to - tit, is I

=> min gct)=/gHt)fetdt-max g(t)
to itst to etIt,

So as t,- t => (g(tif(t)dt->g(to).

SOLUTION OFac +ba+cy=flt) BY THE METHOD OFLAPLACETRANSFORMS

Apply the definition of the Laplace transform and the property

j"g(t)f(t-to)d+ =[950)otherwise
tob

to obtain

1981t-to13:S* e-stfs-toldt=e-Sto (for to, o

xample Find the solution oftheIVP:y" - 4y' + 4y =35(t-1
+81t -2)

with y(0)=1 and y'(0)
= 1.

-> LetY(s) =15yct)3.Taking Laplace transforms on both sides ofthe opt

gives



sYcs) - sy() -ya
- 4(sY(x -y()

+44(5) =3e-S
+e
-so

y(s)(5" - 45 +4] - 5 - 1 +4 =3e+e
2s

y(s) =3e
-5
+e
-25
+5-3

-
35 +e

-2
+s-3

92 -45 +4 (S -2)

=>Y6=
d

is
=- -

i)S-2

So if we want to inverty(s) we have

y(t) =e2t-te2t -3H,(t)(t-1e21t
-1
+Hylt)(t-2) e2t-2)

=(1-+)e2t - 3H,(t)(t -1)e2(t
-1)
+Ha(t)(t -2)e2t-2).

&ecall that

19-t f(t) 3 =6F(s) and
so we show that23tet3=

Additionally ([Hilt)fH-c)3 =eFCs)



E
example Solve the IP +274 +

y =e- t +35(t -1).y(0) =0
y '10)

=0

Using Laplace transforms:

S2Yc) -0
-

(01
+2(415) -(0) +y(s) =19e

-53+3698H-
0

Y(s)/s+1) =1 +3e-s

(s+1)2

y(s) =s)+

Inverting this we get

y(t) =
=t+3H,(t)(t-D e

- (t -1)

For a"Sis] we will use 23-tf(t)y
=FCS).

Let's integrate its to get -- which means thatFCS)=-2):
2(SH)

The function whose Laplace transform is FCS) is -- tet

Thus 29-t(-dte -t)3 =ds)-25):i
=>

(92te
-ty =

5+33



Example Find the solution of the IVP
-89

2y" +y' +2y =f1t -5)

y10) =0, y'(0) =0

Apply Laplace transform

252y(s) - 25y) - 20)
+s41s1101 +241s) =e-

5

[25+s +2]y(s) =e
-55

Y19) --) +2
complete
the square

- 5S

----2(s+4)" - 8+6
=

Thus say:"Si
=sin(t)e

Thus, by the theorem

y(t)
=6 "941s)3 =545(t)

-

(t-5)/4sin/st-5)).
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The convolution integral

Theorem If FCS):29f(t)] and GCs) =([g(t] both existfor so then

H(s) =F(s)G(s) =29h(t)5:570,

where h(t =( f(t-i)g(i)d= =ff(t)g(t --dI
&

this follows from the change of variables

The function his known as the convolution off and g. t- 2 =3
#-3
di =- d3
if t =0 =>3

=t

#
I =t =3

=0

The convolution integral can be thoughtofas a "generalized product"by writing
h(t) =(f xg)(t)

↑

meaning the integral in
the theorem above.

The convolution fxg has many ofthe properties of ordinary multiplication
Itcan be shown that

fxg =gkf (commutative (aw)

fx(9, +92) =fx9, +f*92 (distributive law)

(f*g)th =f x(gxh) (associative law)

fx0 =0xf =0. - this is notthe number o

butthe function thathas the

value 0 for each value of t
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↳

Butthere are also properties of ordinary multiplication thatthe

convolution integral does nothave. For example itis notin general

true that fel is equal to f

Note:(fx1)(t) =) f(t -t)1dt =ftf(t -i)dt

If for example fit) =cost:

If*1)(t) =J cosIt-dt =[sinct-t]=-sinc-t)
=size t

clearly (fx1)(t)= f(t) in this case.

Proof of theorem Firstwe note thatFCs)=/0e-s3f(3d5
G(s)=fe-sg(t) dt

F(s)G(s) =1.e-s5f(z)d5).-sgltdt

Since the integrand of the first integral does not depend on the integration
variable of the second we can write F(S)GIs) as an iterated integral

F(s)G(s) =(esg(e)))e-s3fyd3)d=
Let 3: t

- t

dz =dt

=Joeystg(t))e-st-f)f(t-tdt] d=

=1.*g(t)))e-stf(t -i)dtdtI
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I a

t=[

Region of

integration I =t

↑
t =t ->0

in F(s)GCS): =--0 T =0 ->c

>
I

E8

=Je-st()f(t - tg(t)dt]dt
=Je-sthItdt
= 19h(t)]

I

apple Find the inverse laplace transform of

H(s) =SsFa

It's convenient to think ofHIs) as the productofbe and a
S2+a2

which have inverse Laplace transforms of t and sincat), respectively

By the theorem. the inverse transform ofHIS) is

hIt) =)(t-c) six(at) dI

=tgtsincatdi - 1* Isincat)d =
n ==dv =sin(at)
It

a = v =- acos(at)



=t(cos(at))+ ( ItcoscaI
t 192

0

- Ifcoscated
=
t( - (at) +2] +lat) - E/sincat)So
I -Sin(at)

Note thatwe can also find hit using partial fractions

#ernative: HCs) =ay*2+sa
Als+a4+Bs2 =a

LetS =0 =>Ag =a =A =1
C

S =a =A(294 +Ba2 =a

:(204) +Ba =

a

2a)+Bax =x
Ba =- 1

B =-t
Thus HCs)-

atse asta

hit) = - at sincat)

which is the same answer as above.
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Example Find the solution to the IVP

y
" + 4y =g(t),y(0)

=

3,y (10) =1

S2Y(s) - sy)
-y(0 +44(s) =G(s)

Y(s)/s2 +4]
=G(s) +35-1

Y(s):
+34 -s

=+34 -4

y(s) =I)*sin(e(t-t)g(t)dt +3cosl2t) - Isink2t)
If a specific forcing function isgiven then the integral can be
evaluated.

E


