


Lecture |

Sbonoce; Numbers

A wan puts & pair ot rabbils in & TIm. Hav many pairs

Puazle .
produced from that  pair ina year if we suppose bhat

of vabbits xn be
gach month eath pair reproduces 0. New Pair whidh from The 2"d

month on bewmes pmdu.ch’ve.?

©. Find the number Of pairs of rabbits M Months after the ST
pair was Introduted.
A We denole this quantily by F,.

D & of
l:o =| pairs

Nonth 0: é)o é},

Month 1 @@ F el
o 2. (O BP &'y -
mons: GPEPEPEP & & &3
s @@@@@@@@%?

fattern Any nunber inthe sequence is alwaysa sum of the

1wo numbers preceding it. |- e.
Faya = Fayy T Fn| for n=0,1.2.3, .,




But we con als® Use a returrence Mwﬁonshfp W /o deted-ing \z

& patton.

let Ry CK) ke the number of k-month-old rabbit pairs at
time n.

These will become (k+)-month-old rabbits at time nH.

Fnﬂ (k+1) = Fy(B)

The tota] numeer of Pairs ot time N+ fs equal to the number

at nH Plus the newkorn pair ap nt2

(A F,, = Fow + NEW births at ime nt2

— number of pairs thot
ore at (east ome month old

at ntl
= Faq (Mt Pt Fp D+ Ry LT

= F,l0) + (D + a2 = Fal3)t--

= Fn one less month old

4he womh before .,
Thus [f) bewmes

FnJ—J, = Fn+| + Fy M othem ati uwu\d s @ ,7_"d-t7rd¢r
dfﬂmnbe, <quation

To sowe this we Vse as an Arsat 1




(- l) 1‘{; -\ =0 by wompleting the squore

So the two solufions are A, = 5 A, =I5 = —5—
2 2 \

Thus A, A, Gre both solvHons . Bu the pvnuple of finear
Superpo siHom - the general solutim s

F = @A/ +b2y .

rJ

arvitrany onstonts bt ey wan Le
determined from initial endibons.

e.q. i K=l Fi=

7/+b3{ | o [arb=1] 2 b=1%

_\qa.,

Fi=t® a3, +b%“
aa,"'('_o-’)a)_:l

a'[zl";’:] t 31:‘
CRCURIE S

&[r’] |—_L,‘,f§= .\..’.g



4
Q=41 _Lf-\rg) and b= - N
coE <= (3+E)

5l =

. G"(Ji-‘gJ

Thus  plugging these inta  F, = @2 tba," we 0btain

[;}) ‘ Fn‘ %_(%_@)nﬂ_ E(:F)nw

Drenise  Verify that oven with the irmation| numoer {5 inthe

expressim, &; (1) always yields whoale numver LHhL, 3,58, ---
when M goes from 0,42 3,4, ...

THE GoLoen ReTIQ

The number 2,= I3 §s known as +he QO@M vatio, We denotbitby o

—

2
I reflects the ideal proportions of natwe .

It has some spedalproperties:
q; =~ 1.61DU339887. ..

—

P *= 2.61803390,07... = PH
|
7 - 0-68033a%p) ... < -

But héaeae not mystedous if we rememboer that P slves
?2"' ?'H (resall  wefound A flam solving At=2a41)



In terms of The golden vatio we wun wvite the general sortion s
n L n
Fo= aqb +b (’ P 3
Snee ?E?\ , & n—-> 00 Wwe have F, - a.§".

Thus 4he ratio of Suuessive terms in the Fbonacd sequente
appronches the Gplden ratio:

Fow o ®@™

. - = $=1.6180339887... as nc,
n af

Phyltotaxis

Phytlotexis is the study of leaf arrangements in plants.

Fbonacti numbers are prvaient in the  phyllotaxis of varous
bees, eg In ceed heads, pinewones, and sunflowers,

As the stem of a plant grows upward leaves sprout toits side,
with New leaves above the old ones

= 0 How are the Mew and old Leaves
Q d arrunged ?

Is there a pattern ?

N



The Brawvais brothers (jn ($33) discovered that a new leaf
advances by the same angle from the previows Leaf ound

that angle is « 133.5°.

M +op view

'g divergence angie
/

Y

One ovld think that the divergence angle should loe some thing

SimPle like 190° Tha+ would mean that the new (ecf Wovuld be
&irecﬂ\d opoposite  from -the older leaf . perhaps 1o provide
balance fov the plant,

However, if the plant has many leaves, then {f this were
the s for leafF 0 and leaf | dhen leaf 2 would be diredly
above leaf 0, bloking  sun exposure and water ahsorption from

rainfall.

ALSO RAD:
va divergene angle whidh (s an integar frodion of the urce,

ie. 360° , mex is not optimal for the plont
m

2 Periodicormnqﬂme'\l«‘
2 eventually some New leawes difecHy above some old leoves

7S



Replo.ce +he fnfeger m Iog oh iMoional numker
irathonal the beker.

1S the best.

— the more

Divergence angle = 3607 _ ,92.5° hich (s the same os

P

360- 222.9: 133.5° ' ]
measuring from the other side.

}

Grolden Angle

Defnition Phjllota,we raho 1S the frocHon of auUrde ﬁ)mvgh

Which a new leaf tums fipm the presous ,older leaf,

So n this se the phy Uotactic ratio is ?+=0.6\6..-

Sinte L 50.5,%e. more than half of fhe cirdde we mn measure the

ansle f.o?m the other dircHm |~ 15:. 0.39%2
gewll that Q%= ¢+l
'a’:. 4’"\
= (- L. ¢'\ S
* 9o ° <p) 2 =
¢ 9

an
wnd We have aiready seen that os now, Faxa® Thus

[& tums out-the  Golden vafio $=r.68...



X

n
Fn I: 92—; = '_,
=N+l y 2
Frsa 0.® P

where F, is one of the Fibonacu numbess. The phy lletactic vatio is
riio of guery dthes Fbonacd number. |f one meaSures the angle in

dhe othec ditecHbn; ) insteod 0% D hen one will detect a different
set °f Rbonact numbers:

L.k
E Fat

rhnllota.chc ratio =

The. above arguments apply to plants with mavyy Leaves [ nctually,
oh infinite number of leaves) & with the assvmphimn that he only
dctermirinﬂ fuctor for the arrangement of leaves in a plant is sun
QKPOSUJP_



leccure 2 \q

Consider & or mare interucting species, —  (ovpled Set of movlinear opes

NoNUNEAR §YSTem ANNR ITS LINEAR STRRILUTY

_d_é. < {(xoﬁ)

ot %), 4l1) are the two intveracting speces
dy _ gL 9) {.q are nonlinear furktions of x and Y

dt

To retveve info about Jhe behawiot of the system e do the following .
. Fnd the equilibrium soluions x* and y* by s0IVINg h e
Simultaneous eqns.

‘F(X*. *) 0
and 9™, y*) =0

2. Deramine i the e.quil\’bn’um is Stable or wnstable .

=) Small perturbatms From eq\M-

() Lineaviz® the nomiinear eauotivns abowt o y*) <« 1he
am so)”

xlt) = xF +uld)
3(1) c 3*1—th)

This (mplies that d_% = 3t(><’*+u.(t))
'

= X‘.+d_u-_ =>d_/?£;%

9
btddef"



Smilorly, 2 - dy . ?
g dt ~ dt AN

(o) Expand £ and about ihe eqm in o ’l&s lov sertes
0 bq def”

foe) = f/“‘) t —£(>< y*)(x x’9+ %%/ [ty Iy
=V

-+ h.ot

O

A W +0,,V

h - .
Where ‘g'i“'nll‘%g-z‘.u“_

NoTe The prowess of dvupping fhe higher ovder bemms (ic the nomlineasr
ones) is talled LNEARIZATON .

ura, Vv, with ’%q-( (x’*,g*) =0y .39 - Qap

Sim’llarh" qlx, y)’é' Q,, 2y

3. Coupled linear System:

T8
= =q,n+aV
dt " v ] __,di( 13) = (&u Cl,,_ [“)
%‘é =0y K +02, V t Ay Q22 /LV
o dw - AL
t

4 . Fov linear equations With constant wefficents We haweod

Ansari:  uCD=w.e LA

VIt) =V, e AT



Subst . into %\f AR thget:
t

2\40 - [ Qy alt)(u°ﬁ>
AN, e,/t' 0z, @ VoQ?{
AU, apWo t Q12 V°>
\ az| Wo ‘\'q?,zvb
Or. equivalently,
{a"—a Qi >(\l. _|9
aa-‘ aL'L—A Vo 0
To have nontvivial solut ms we Must have

det(m"-z Qia >=o

Q,, Q5,-A

22 - (Q T ""Q:,?_\'a 1'aanL ~Qi20, =90
P v

So we wwn rewrife this as a‘-p’/\ﬂ‘ =0

where p=Tr(A) and q: det(R)

v

trace & determinant 0§ mechi= A, NSPewvelj

Solving ¥he quodmatic equ we get that the eigenvatues are
l ~ . P "'-4
2':' _f_ + VP ‘(‘3' . 2 =5 - L"l'

2 2 2



P, 9 deemine the STABIUM of fhe system. S

O
o |f %40 = A,,2.€R, 75170’234

Em is a saddle point = unstable.
{ soluiHm (S (o +C
[ Genera 3',10‘.),5 s

. I} 0<9<Pl & A.AaelR with the ame sifn.
STABLE NDOE
UNSTRBLE NODE

‘-;- Q‘l"l;b
e,a

v p<O = 3,220
&1 P)O =) 3.32370

'b
t_ eo:l:et t

- |F (pjyz 5 a.a el osdlaims.

Whether the amplitude of the oscillation  _ ea‘[wsﬁt +isin bt)
will increase or decrense in t depents M fom €vler's
The sqn o P dantity |

for p<o » STARLE SPIRAL-

fov p>0 = UNSTABLE SPIRAL

for p=0 © CeNTER

a,t

a) )

1“0

= (I)e?\,‘t whm a-o

> (2)
“The Senem‘ sovtien is W= Yo U, €
are Constant vectovs. UL is known as the el'gonvod'w cormspardi)\rj

to the aigenvalue 7.

14 2= a+ib we saw above +hat we obtacn

At - eat ((ps (bt) +isin (bt))



So if eihet A, 01 A, hove a positie yeol part then+he gencral 3
SolvFim wil] grow in Hime {50159 nigin U=0, veo is u'nstablc)

However, the ovigin (s stable rnly if both 3,,7 hawe a negative

real part.
%_’% SYrX -a,?(-y
dy _

I z bxy- lc\\j

x(1) :m_ popvmﬁo-r) deI\Sl'i'd (eﬁ smal| CH
\"L‘t\ = Eﬂﬂdmf PDPUW(BW) densiiy (eﬂ S, >

o smail fish O eat algde and gw ot o per capita rode (.%/L/>
4

of r

* Small fish are eaten by The sherks (2 . and S0 their popviation
densily dewreases at a per mpita rote N which is popovhimal bo Y
a1dx = vy —-a.\‘j
x dt

* “The predodors [sharl:.s) will die off withowt food.
1f x-<o0, 3—%‘1 decreoses at rate k
t

+ Inthe preence of prey (small fith) . the popuiahon of predetms grows
ol a per apita mie of bx . This is propovtiomal to the amount of food
avai|able.



¢ dyng off W food 14

tf_e-‘cwlf on pr
per bap\’tq "3 I
rafe wnstant of pn?poﬁl'onab't?

Lectwre 2
LINEAR ANALNSIS
Consid&r'the equilibva (%*, Y ¥).

Set AX_ ©® _
at ¢ J =0

- *-
k- o x \‘j*-’—O = x*(Y‘ag*)jo)‘)x =0, Y
* *: «
gt -ty =0

Subst. x* =0 in the 2" egn we obtain  Y* =0. Thus, me of-

the eqm ptsis (x3, y*)=(0,0)

The 2™ gne omes from  Swhst. %*- into lj*(bx"“k)=o
ok e o

gt At The G5 y5e ($5)

STARIWWTY oF THE EQVUILIBRIA

+ fPerturb slightly b‘y the amount (u,Vv). |-e.

X(t) = x"‘ + ult)
9&) - v* + V()

and then falow the method previovsly desiribed w/ Taylor series expancions
and —he. tompurtation of eigenvalues /aigenvectors.



A’\t&'ﬂa‘h\lﬁ(,, ‘FOY ('x j*)"’ (X, v‘j,*) (0,0) , we Sea thi- \y \

Substifoting [ <(+) )&’met) info the System of oDés weget
Y= g +ve)

9

f‘ﬁ - dn ond RHS = TXx-axy= vYu -auv
LS = 3% ° a% ' Y

LHS, = ‘-‘ﬁ dv and  RHS. T bxy-ky* buv - kv
Therefore. the goveming eqn5 for the evolution of the perturbations is

dv
It = buv- kv

I{ he perturbativns are small , we drop the quodratic terms toget

dw
- ™
dv
Jp = K

d w - y ©O )(\L)
’Th\.s is a linear 935“3’" of obés: ;t'(\l o -k '

Compvhr& the mgenva\ves we get
det (Y77 _’\3_0 2 A=vr,A=-HK
wunstable saddle

t
ule) = u(O)Cq
vit) = vio)e



Inberpretation \lé

e A ematinreose from (0,0) will lead to an expomentiol growth
in the prey (predetors very few, algoe ab undant)

e A small inurense in preddtors  will not lecd to an inuease N
~he predakoy popolation, ﬁvhml{y they will die of starvation hecowse
the prey cre very few.

~ The eqm (0,0) is sHll UNSTARLE Jerause one of the
populations does mot Stay hw when perhurbed.

Naar Hhe 2™ equilibrium (F, )= ({_ ,%) we howe
Y=y, * +VE) = £ 4+ Vi)

D_\Q-

LHS= ’E ‘%‘ ) RHS® Tk —oxy= Y(_bl‘;.—r u) —0(-,%--(-\&)(-5- +V>

= %*&»@%%—2&&— a%\; - ouv

> —oky-anv
b

Thus f we vetain anly the linear terms, we hawe

o

‘_JE_'N-OJ-E’- V.
it ~ b

m—




S iml’\ﬁﬂj , we howve

dy gy

- = OV S,= b -

45,7 ¢ " et R Ktlk 3 v r
= b(-;-fu)(a-\"’) “‘(;'*“’)
-.%4—&{:-!-1:\0‘!'5%\1 ‘/-f:—lw'

= b(g_>u ¥ bwv

O
Thus, rc’ca'minj enly the finear {erms ogain. ke howe

| %> b(%)“J

We oLqu’l\ have a lineay a{:tem o} equatioms

04 (g ™)

(bmpﬂinj the agmva\u&/e:gmvw\ws we howe
CA)(-3) + &«(—f;) 5(.;: =0
2“4+ kv =0

1o xiJkr o CconmR

wi) = C, ®s ({ke t)+gsin(fi7t)



Vi), wit) are related thvough -
and since ) ough 4 - ALY
e have

%‘é = j'}:— [c.cos(J'E? t) + & sin iy t')]

_ o an(lier +) + Gl stk b)

:—Qk_
b\l

2 vBe- LT [aanc ) v Gt )

)

= %‘E“ [c, sin(Thi ) -G Gs(VkY t)]

The solution (k1)) i oscillatoly wijh period 2T
T

Osallations — Simple havmonic osdi llatoy

Consi der he osu Natovy vnotiom of a pavtidie wnstrained to move in one dimension.

Assume that o position of stable equilibvium existe forthe

—»  restoving frce acts to take il back to
’ it oviginal position if i i displaced

—

stoble
egm
Here we will wnsider 0nty wses i Which the m.:mins foree F is o function mly
of the displacement : F =F(x).

funchion wn be expanded in o Toylar seres:



Foo- F, "X(ﬁ)’rx‘ 4*F\ ¢ 2 (d°F
T dx /o 21 |dx2jfy 3! (-;,:, o

valve of FOd ot theorigin (x=0)

and (i.“_‘:) = value of the a*h Jerivative ot Jhe origin,
X /o

Sine the ovigin k defined to be the equikbvium point. e vestoring fovis F,

Mmust vanish, = |F-.-o

We fours on ases where -he partide’s displacements @re small @nd so we neglecr

te"“° i‘WOWl'lB x*= oY hia\)ef POVJQ‘S of K.
prOX mat dl:
(Qf I e mlaﬁ@, wbere. we l\gw S!IbSt k= -{ .

Thus F)= ~kx
HoOKke’s LAW
The vesfovinj fove is q|wa35 diredted toward the eqm pasifion (1-e. the \m’gin)
and 30 the deylvative A 0
ve (.353 <0 ad P

4F/dx <9
—

elostic deformations : As long as jho displocemenis are small & the eloshic

limits aye mot exweded, o linear testing force be vsed

Sivetched springe, elastic spvings, bending beams, ...

In naturs , almost always ~> damped oscilatioms resulting from friction

This damping can be  countencied i some mechanism svpplics eneryy {rom an
edernal Soure al a mie aqual o that absorbed by 1he dampihg medium.
i clrive.n/{‘om oscillafions.



\
New'lon's Qnd lauo O’f moﬁon: F:m: m;e } > —hx =m3<'
= - T
Hooke's law: F=-kx toue dot on op
of x denofes
2 - 9N derivotve
It we define [w, =Kl then we have —kx = Mx wit_time,
* %x © dt?
Xt W, X =0

™ ovder ord{narg diffeeniial equahion (0pe) with constont e ff.

This is a '
Its solvtion con be found usr\)g) 1he charouteristic eq walion  y*t+wp* =0
TS 2 W

which Means it (on be expressed as ather
I:Lt\ = Asin (Wt ’S)l sinusotda)l behavior of

= A0S ({ Wat -4 the displacement of the
or At {wot =% simple haymonic osu Ilokof

where the phases 8,4 diffe~ by %’.

Relaffonship beiween total enegy °f tho osdllator and the amplitvde of the

motion.

e r s
Kineticenergy ' - e gmA _.;'.""‘( 4w, s [W,t -8))

= LmA%,” cos*(w,t-8)

bot wi=X and so -r=§sﬂ“cos”(w,t-8)

The potentiol eneggy tan be obtained by taludoing the work reguited to
disploce the pavtide a distante x.

Amovnt of work dw meeded tomove the partide o distonce dx against

“he ms-h?irg fovee F is



Integrating from o fo x and setting the work done the parride equal
1o Jhe potentia energ Yy, gives

V= dkx”
Thas U = L ( Asin [wot - S\)" = _{-I:H‘ sin*{wot - §
2

Therefore , i we wmbine 3he kinelic& potential megicsio ot the total encryy

én we Ob\‘ﬂ’n 2
F=T+0 = RA cos' T t-8)+ {LA* sin>(wot -§J
2

= .'zl'kﬁt( wsa(wWwot-Q)>

\
= LKkA"

Thus € = LkA" implies thai he total energy is propovhion to 1he

Square ot fhe ampiide - Eis independent of Hime > encrgy 16 lonserves.
The period Tg Of the Moiion is defined as the time interved between suece shve
repetitions o the pavtide's position and divection of motion.

Rewall x1t)= Asin(wot-§) and sime sine has o period of am

T 20 = WM Hhys W represents
m the angwlar frr_quenﬂ

=2 |1 - an‘/.kﬁ Of the motion




°: = k — R S - \{2
We awf, \ITn > b oale T
1\
-Pyequnﬂd

Dissipative or fricHonal ~Bves ) eventually damp the motion 10 Jhe
point Where Jhe oscillakions will cease.

= We inwwpovate intothe differential equation a fem o yepresent the dampirg
{ore.

|t uld ke o fundion of the Ve«\Oci-i‘v or a hl'gher hme derivative of the
displatement, e-9. F --by | £ = -bx
The parameter b must be positive fbr the fovee $o be resisting

® _bx With b<0 would act to incease the speed (nstead of
decreasing & as qny wesirb’nj {ovce must.

The D€ I now F= mx = mX+ bx+ kx =0
= -kx-bx 3 >

Which we (an rewrite as xt o g,

k x=
m m

X +IP% + (0 x =0

where we have defined R= J—b"-) as the alampu‘ns parameter and W, = J%

is as befove the charadenstic angu.la-r fmqu.emy in the absente of domm‘ng,

For this 2" ovder oDe the chovaccteristic equalion (s
~% c\—lﬁ r+ Wy =0



and % i we Slve for using the quadvatic foymuia, We obtain

S 8 (T T
2

= -pg*-ws
Ve -ptlpt-we
T = -p- JE-0l

The general solution s

xlt) = helit 4 et
= e'pt{A e'lﬁ "w;'"b-‘-Be.,l W -E]

The 3 gene'ﬂ‘ wses 94 interest are

underdamping: w3 > >
Critico) dampma: Wt =p°
overdamping : W <p*

We d = :‘- = 2

e deqine w, Wo =B where w; ,3ﬁt[ J—_ﬁ"'Wo" + 8 -\’_]%’—w;" 'l:']
Sinee fhe generl solviion i x(t) =€ ke + Be
the expment in the expomentiol funchOn (s imo.

solution bewmes o |
xi)=e P A" + Be ]

ginaty and the

We un rewrite this as
-pt
x = ("% s (w, £ -§)



W, = anaujar fmqv.e.n(ﬁ of the damped oscillatov

X a
underdamping, g*<ws*

T, = time ketween adjocent 2em x-dxis CRSSings

w' - 3_'_‘. T) U.h:'l
(3T) < “period" T

Nofe © the “angular fvequeny' of the damped oscillatoy fs Less
than the fequeny of tho asullator in the absence of dawping Li-e. w,<w,).

Rewall +hat
W = Iwo’ "BL if - 34Y W, < W

The moximum amplitude of fhe motion of the damped oscillofor decreases
with +ime bewawse of the faclor g Pt [th 570) . The envelope of ihe
displatement VesSW. time is given by

Xow = 2 ( o Bl

.’ ({ov phase lnj

=0 )




AN

-b"‘"
Ce 4T
= € where g = W o T L
w w,

CQ -B(T":;Tl‘) e [

[

Called the DECREMENT
0f the motion,

Critiwlly damped motion

If p?>we* i
£ B?>wo* the s\njs\:em s pmvented from undcfgofvg asu‘llaiovy moti on
Vp™wo* t ‘W -I:]

X (t) :e‘@t[ke T’GAT + Be E\f‘

The wase 0f Critital damping ocuur when |p*=wWe

-pt
xw=er [Pr +Bt]  sine the roots am equal yow
T need an extro. .

Overdamped mation
If the damping parameter g is la
Bewwse B*7Wo", t) = e FE[A eWet 1 ae Y]
where = (B* —wer
wy, = (p*—Ws . Here w, is NOL an argular
the motion is mot periodic. requeny baause

rger than w, = overdamping

Ouerdamping vesults in @ decrease of the Omplitude to scro



X
crifical dampi g
\/ underdamping, +
P"< 7 g
Examzle

COnsider a pendwium of length ( and @ mass M attached 10 the end,
moving throggh oil wi1h O decreasing. The mass undergoes small
osullations , but The oil vetards the mass’ motiom witha nesistive forte

fmpo-rtiona\ to the speed. with [Foo = am % 16

The mass is initially pwied back at t=0 with 8=« and =0

Ouestion Find the angwlar dsplacement & ond Ve,lau'iy & Qs o
funution of kime.

Solytion Force = Ma ol

= m(l8) :'DGX
= vestoving -lorce ; NT 2 m J-j—w
+ resistive force Q/’
) '"3

mlO - —mg sing - sz_yT é mssm
VESfow'nj resish e,



For small oscilltations &iN@2x8, 5o the equotion bewomes

AL G4 V(sijﬁe t2p0gr 6 =0
o

9 Y+ 39+2(Z 6 =0
0 ¢

h

0

= é'+n{éfé+«e‘l—9

Rewl| #hat for the damped oscillafot fhe equation was given by
X +Ppx+ Wy~ x =0
and S0 if we wmpare fthe two, we see that

B':J—'%_l and wozé'-'%
= Fa._ %

which imphes that  |Wo” =P~ | => he pendudum ie critically damped

We saw before that for o crifivally damped sysiem the Solution is
6lt) : Atat)e Pt

Using the inifial tonditions  B(0)= o and 9(0)=0 we tan ok for A
and 8 as ollows

8(0) =|A =of
6= Bt 4 (p+BY) (-pe”Y)

g



Using ro)0 we have o0 = Bt A(-P) g
2 0= B~—a<p
= |B= «p|

This 8= (x+aptde v uith g- f_%_.\

3 B - o((|+{—'t) E

- £ g

= -x%tc_{ﬁ

Lecture 4

flows on the arde: [§= £(6)]

O is o point on the drde
é s the veJou’i", vedtor at that point.

By flowing in me direchim, a partide wn eventually return to its stavking
point. Thus periodic solubions becwme possible.

Example . Sketch the vedor freld on Jhe cirle ¢ mespanding to | § =$in §.

Equilibrivm points when 80 9 ging=0 > g:0,T

*
0 :=n g*=0 [ rounterdockwise as usuol)

To find tne srobiliiy of the equilibvivm solvtions we Mote that



Sing Y

This implies that for 026<T, 670 9 § increas(ns S moving unterdockiorse
If Tr=Q¢an then 80 = § decreasing movina clockwise

e*: " 9* = 0
S table unstable

We need 10 assume thet in @ =§(@), §(0) i6 a mal-valued 2 -periodic funtion,

Le. H@+am=f0) | foralmeal 8. — for existence 8 Umqueness op-
Solutions .
|

Ths periodici iy of fiflensures that the velocity 0 is uniquely-defined ot
each point B 0N the urde.

e
L4

Uniform osciliatoy

A point on the urde is called an angle o7 a phase
The simplest 9sdllator is one in which the phase & changes unformiy o=w

for w wnstant.

By integrating the equation we get that the soichion rs(0(t) = wi +6s.

This is a uniform motion arpund the Grde with an o.n&u.lmr fm?n,emd W,
Pertodic with period T= 3-;% .

Good way t0 obtain T:
. 0,+am T
6 = B0 o0 do _ (Tap =T
dv > ‘[Ga f(0) L

For f0) =w & T =[(,92+2n)-q(].d). s zwj



Example . %

Find the equilibvivm poinis of 8 =sin(20)= f4) and determine their stability
6 = sin(a8)= £(8)

60 > sin0)=0 > 80, L, T, i_“
sin9)
S
~e

o
i
kS
e
U
2

Bifungromns

Consider ¢=w-asin®, 8(0):=4,.

Qv

for equiliium points:
@=w-asin@ =0 sin&rg
Lecture 5
Lechve o
3 tases : <] = sinf:sW I Pf: arcsin(.\!>, T-arsin (W) P two
a G O €gm soI"s
=1 o sin8=1,0= 3 = one equillbvivm sowwtion
2

ols Qe 9(8

>l = 70 solutions to sing= L5 B S0 MO eqw points

So if @ i fixed and w changed, note that we'll have Mo eqm povnts for wroc
and w< -a.



3
Do we really have two parameters? N

We cando a chanye of vaviables to reduce 1his into o. Single-parameter
pvoble m.

6 = w-asing

Diide by o throvghout i Lgo W _sne = alg-g =W —sing

and let's define jui= g: and ¢ =ta. We'l get

dr=dta
i = -l-d_
dt adt
Thus élg s h-sing| - Now wean vse 1his one-woniro) parameter eqn
C

) avaly3e the sgsl'em.

- sing* =0 o sin@¥=x .
0¥ « avcsin () solutions exist only foy [K)&|.

Unit cirde

lets now compue the stabilily of this probiem:

The 3-wovd. s sin@z i

C0s? 91 sin3@ =) = 052§ =|-n%Y Recall T % =rcos® } Unit circle
oose::&F-T} Y=rsing = v

{K’-OOSO

Thus. we h ave 2 equilibvia for o< i, ? Y =sing



%

fov 1he stability analysis we #now that between ©*= arcsin(p) and

0 = 1 -orcsin(M), B=}-SNG <0 and that belween 6*:q and
B* zascsinfp), O >0 . which (mphies thod O™ = orcsin[b) is stable.

However belween @*= T - arcin(m) gnd §=T we have 60
Which (mplles thal §* = T-arwsin (k) 15 unstable.

Guestion  What's the totol time to make one cirde? 4.9. generalized perniod .

Op12m
f‘% = f9) feo _de' . JTdr =T
o £(8') o . .
d9
Take 8,:0 = T= ( 2'_db - dg = :
; T L w-asing j.-,, W-asing S.-rr h-sine
ok b shift to o different p erjodic interval
= Same answer
—

Fireflies  Thovsands of male fireflis flash on and off in unison.

They domt start out synchionized but the synchony builds wp gradually.

* Cireflies Mfluene eah otherk  When one firefly sees the flash of another
it slows down o1 Spesls U <o osHo flash ynore Closely in phase vn the next yue

MoDeL
9(£) = phase of the ﬂreﬂu's flashing rhythm noburol

§ =0 corvesprnds fo the instant When a flash is emitted 4"8%“"21

withow sfimuli, the firety goes throggh Hs e of frequeny W |é:w

Now suppese there's o periodic shimulus Whose phose © safisties |€= 0
whee O=0 corresponds +0 the flash of the shimulus.




Fire-ﬂg'\s response 1o stimulvg \93
It stimulus ahead i the e —> fivefly speeds v Jo synchronize
1 & #lwsbin\c, too early — firefly slows down

éaw -Asin(&-@) , where A>0

H 0is behind = -T<0-6<0 5 the pefiy spests up (870)
I{ @is oheodof @5 0 <O-O<T P 1he firefly slows down (é<w)

Model for 2 fireflies blinking
Fach wants 10 sync with the other and each has different matural frequency

each is [ ?' = ) -osin(§,-8)
driven by 8, = w, -asin(g,-g,)

the olhee 2 = —$in(9,-0,) since sine is an odd function
Same wupling Strength

We define ”:9"01 > q’;: 6', -9, = [w,-asir\(o,—e,,)]-[w_,-asim(o,-a.)]
HSF'T(G."G)_)

= W,~w, - lasinw.'ﬂg)

:w' -w.l - Qasih ?

Model fov 2 {ireflies synchronizing flashes

Consider 0= F0), 6(0)=0,.This can moded a periodic event, |ike o church bel)
Tinging by assum(na the ringirg oturs when = 2nT , neZ

A beh thot tings each hour would be madeled as o uniform oscilladod

é =W\, w?':'“ how-‘

T= 28 o bowr
w



Now we suppose that firefly 4 blinks when g, = 2nT and alcD Qm{ly 2 &
blines when @, =201 . | measured individually, each has its own inirinsic

(:'9‘1“-3”‘:’ W, & W,.

As above, we nsider 0 wupled moadel

L3

g, = w,-asin(®,5,) ] kot themes speeds
9, = w, -asin (8, -6,

modi fied by phase Lag

M sin(8,-8,) 70 If 6,-8,€(om sin (8-,

= Gl leads . )[/\ 5
> é, cw,, 62 7W, U 0\-9,

T&, slows down
@ sind,-8) <0 if 6,-0,¢(-m0)

> 0, leads
= 0.,7'0. ’ éz‘“"a.

1\
0, speeds wp to wich up W) &

Define phase difference
? < 9,-93
Epa 8- 6, = w,-w, -aasing

= Aw : demand >0

> 4: =fw-2asin¢ | , Aw=w|’wz>:£/ [ choose Iy w)
set bigger was 1)

Note : Coupling stength o determine firefly's abilily to modify iks frequeny



b= Bw-2asind 3

Gonsider different wrses: 6
© Ao >20 = o equilibrivm points A
20,
P 4 v >
Blinking stoys unsynced and oxt 0f phase g ‘ - $
@ Dw<2a > two equilibvivm points , me stable. j;.:o o Bw-2asingo
q.D sind = %’)\
T = no solvhoms
bw § ° mg 120
v e e ¢

For any initial conditims 8,(0) , 8,10), after suffident .Hme,the_
System will approoch the equilibrivm solutions ond we'll heve

G,®-6,01)-= ?‘* »0 CGwnst)

So they are in sync but sitg hty out of phase

Firefly | 8 8 ¥ )
¥ o] (7] ¥

[ ]
ot for ¢,*

F"mflgz



Lochure 6 \36

Collapsine bridges We wish 1o model the oscillations of Suspension bridges

under foring. ((ook vp the wilage of the Tacoma Nomus Bridge as 1440

This 15 an example 0/ resonance Which happens when the froquency of forng

mafches the Matural frequeny OF ascillatim of the bvidge.

When peopie march in unlsm over o pridge o Verbiod forte f(x, 1) s exerted
on the bvidge that is penodric in time, w/ apenod P determined by The

+ime inrerval befween steps.

We model the bridge as on elastic sting of length L Suspended mly at
wz0 ond xzL
We wnsider the Verhical displacement y(x,§ of the shing (bridge)

from its  equilibsium positim, Where x & the distanee from the left
suspension point and tis time. (e consider & small Seckion Of the shing

A
ran 1:?*“51{”1

,!

between x and x+Ax.

o totmoes oo .T."}(.’.‘.@.... x *AX

"" f——!.)

P T

* mmem @0 oo & coe me ™

-’x

We apply Newdon's 2"¢ Jouw of modion |F =ma| 40 Hhe verritad motion of
this small Sechiom of the shing .



|#s mass (s fﬂ‘bx (f~ = Hms pv PAA") Whera p is the \Q
density of Jbe matenal of he san and A isits avss-sectimal area. The
acceleralim in the vertitad direction is -3‘%

t

The force shovld be he vertical compument of the tension , pius other forces
such a$ sravﬂy and air {ncHomn.

The net verhil compment of tensimm is

T sin 6, -Tsine, % TIe, ’91]

= T (94 (x+bx,1) - M(x,
] a"(x-r x,1) ,ox(x-t)]

Jensim force per unit areo

7u|-l1nj everaihinj 'l-oge'lhe" e have

rAﬂX ::_:_'.;“ = TA[%M’.‘()({A)(,“) "%l’h‘t}} + PAB)‘.F

2 r
( "T’(’AB") ad . sivetch ol) additimal
oR foree per unit
._,) @fy mass.
N’z PAx[ﬂ-(X'l'ﬁ xH - m(,x'\.)]'l'(?

and as D x->0

g-z—"( = Ct.@?l‘-’ :T
21> ox* +f Where |c*= 3

The tension almg the bridge T Is assumed o be tnHom and Is theretore
equal to the forte per unit areo- exerted mthe subpensim point x=0 ov x=L.

Since the weight of the bridge s borme by these Wo suspensivn peinis. the
vertiod Fovee exerted on eath is halt the weight of the bnidge . and Hhis 15

oquel tv the projection of T in the verticod dlirectioy



3
b
/5

Tsina = ;{-3 = dpLy
Wwheve = 0’\3\{ ‘fﬂ)m '\Oﬂ‘)o"b, +o the tan.’en{- at +4he sugpe')s«,'m Pol.l'\."l'.

"’:I -L :L
2 TP 7( smo( Z;?n-a

Since 4he stafic hmsh-l o€ the Im‘dge Is balanced by tension e foru’ng f
represents  unbalaned vertical qcwleration dve 4o the pedestrians.

The system we need o Solve 15 Ulx.t) being the vertiial dispiasement of
the bndge wrt its equilibvium positim

2

FYL I Cl% T fixt), 0exel, 120
bounda
conditions : w80, wlL.Ho, >0 \
iniHal J
\ wndih'ons:  Ux,0)=o0 :?_a!.{:(x.o) o , ocxel

What's the fovm of the force funchon?
The simplest exprssion for the perodic forwe exerted by the pedesmans is
fexit)= o.sin(tdbt)sin[ll_’.‘), for 0<x<L , wp.-:g.ér

Note that the foim of the fovce funcion assumes that the pedestions move in syne!

The sowtion will be a function 0f both space and #ime. We assvme That we wn write
it in the sepavable form

ux )= XEOTK)| < this wust also sodisfy the boundogy
& inftial conditions




¥ we swbstituie +hs into 4he governiny partial diffemniial equation Q
"a_‘_u = A%
3.‘3 'C?x_g' 1"“&1)
we obhain

XT "= X" T+ asn(Wot)sin () [H

Next, we alsg assume thed dhe form of X () is known :  [X(X) = sin [‘{_ﬁ, 0exel

Tds sewnd devivative w1t. space is X' (@)= - &[)’ sin [%‘) = - {I) X (2

&bs\ih)ﬂns this Into (‘l’) we get X

AT = C’( "(,{‘)‘X)T 1 asin (w1 X

T +(CJL‘-)‘T = a sin(Wyt) (¥

The ‘natural frequengy™ w, 0f the bridge W, = &= So we see thot the matwal
Ftequ.en% depends on L. whtch & the wwejensm of the -(‘ovu’ng stnucwie .

Note that T "+ W T = asinlut) is on ODE rather than PDE.

Reswll that when we wvered the simple harmonic osdilldo? We derived the
3overni|3 ope: X +W3 x=0. Thus, (*) is the OD€& for the foreed
oscillader. So we saw 1hat the wnalurol frequeny of the osullator js rejated
o the spatia) struchure of the osulaion.

LeCture 6

We now sove (3). As we have done previously we find #e charaderstic egn;
foy 1he homogeneous prvblem:

v+ Wy =0
J= tiw|

2 T= A wsw,b) t3sin(wit)



ond for ihe pastiustar cowtion we will ty thet TIO = ¢ 8in(w,b)
So we beginby Substituting TP= csinlwp ) into the OpPE:

~ Cwy SinN(Wpt) + wiceinlwyt)= atinmwgt)

-CW; tWwc = oo
(« 8
w.‘-

C =

Thus, the parbuday soifion ie of the foom TLE) = & sinlwph).

-wo

This implies Ihat the full general ol is

TO= Acos(wit) + Bsintw,®) t T"'Zb sinw, Y
homageneovs €01* Pmﬂmxov so)"

/3

To find the cowsion for () we Substitte the initiol and boundary conditions

w00, WL P <« bounday Conditions

d

) ' e |
wOiD* [ Awstor) + Banlw® T Z— sinfu,s)] om[12)

(
w(o,X)=0 > idenfically 20
ullL,t) =0 = idenkcodly 2R0.
U(x0)>0 =D Asin(l%‘)-—'o ? A<

- - o o X
vhus U ) = [Bein (w,t)-l-mg_ sin(wpt‘)] sml L)

-— . ‘nx
2 - [‘Bm,wslw,‘c) T ""—“’Ew—: ws(w,,ﬂ] ""(t')

WD [gu, 4+ Qe ] sn(B)-0




B= - o"ib,_l___.

w' l\),‘-wa
The soNtion is of dhe foym:
Dz [- aws | sin(W )+ 2~  sintw,t)| sin (1
Ho® [ W, W-wa Wy*-wg- ° T)

= & [ . '%JDSM (w,t) + sinmot)]sin(%*).
(]

w*-wp
Resonance

The solvtion is vaid for w,# Wp . Some Special irsatmenty ic helpful when
wp— W, Wa vewnite |w,,= W, +€| and let e 2o

We rewrite _o sjn(wgt) o5
w’z°w;

o-sin[Wt+e€t)  aginlwittet) _ asin(wtt€et)

wr—f+e)* /J,‘-/(u;‘-zew,—e"- —2€w,-€*

o sinw,t) cosceD) + avcasiw, sincer)  asin (W, t)oos (€1 4 Q008w £ sincet)

- 2w, -€* -2€w, -€* -26w, - €*
o oSN 4t pstw,t) as -0 o008 0w, £)t oS CEL)
=2€w, 20, ” -2, 72€
-> 0.CoS (wlt.)t 0S €70
i -2w
ulxt) = o{ -twosw,v) +sin Cw.t)] sin( %x) |
2u) 2w,>

/ / 5 | | - Grows lincay in time
i

> collepse of bnd§e




The fund a mental fmquemy W, 3 aivOn bg w,S_%V . Rewdl that c*= l..ﬂd %
28n
= w
wd o = (2 T w- "2

Thus ,the natural period f, is given & P =2z

2 - FL ,Bﬁmu
M. 19

So if the bwidge is L~10m long and the bwdge deck is nearly hanzonta) «~iI0°

ihen P e 4 8(10)sin (10 w/180) - ).190 6 sewonds

I

This I8 clase 40 Jhe probable forting peenod P, and resonance is likely. Note that

dhere is M need foran exact Malth of the two frequsnies 4o get an enhanced
response.

V)
v

Diswvery of dynamicol systems vsing veam.“ion

Consider montinear sysrems and 1y to diswver their stuctwe, purely based om
obseryations of the system. What we are vitimately afteris mot justa model that

explains the dota but rother the governing equodions themselves, 10 that we N
nfidently make predictions Jar from the draining data.

Setwp  Slort with the ddeical sysrem

- 0

x™2F(zm ; R= X, FerV.

We are asking the following question :

)If we jusi haue some data (ether the stade ° or Sume observable of the stale
(R ) ot Some time instances), an we fecover The dynamical system above P

Note thal we’ r not interssted in mﬁmcﬁra a SoluHon that we’ ye dmady

seen Mor ane We Just intergsted in {nterpolahion. We want B make predicons
far awcy from the derta. To do this, we need 10 extract +he funcHonad



form of ¥ from dota. \32

The keyidea . (Consider a ponlinear dynamical sysiem

d [% W‘v
dt (7‘3 Mx,-x,))

Pefine a set of Jeafurss ‘I’CX)” (x,_> (:;’;')
X s

Then o linear SyStem of equations wan be WrrHten

00\l
4. (%) (olu A-A >(%
v/ Lo o3/l

{or the evolviion of ?lfc’),

S0, what have wWe gained hers”

We've taten o nonlinear 90¢ sysiem for 3* and [ramformed it b aliner ope
e

Sysrem for ¥ , withovt any loss of informahon or a.cwrmq'.

fenalty: We have inCreased dhe dimension of this system.

This opens the door 10 tools such as linear regression 0 exirad fhe under)ging System
0f equatfons.
lectwe 3

Nonlinear approximations by transforming lo featun spate.
Assome we @fe given N} data pornis

—

X=[x R ... K
-_,. - = - - —)
and Ty % Ym)  wher Y= F(X)

q
Note X} and X, do_no} have 40 ke in sequence.



¢
To confinue we need some basis funcHions Which we w'll referto os
features. We define o {eafure vector \?(i’)é BP

-‘-J”(;’) . Y (i’) <+ ihese {eafuves H;’) an be
VAW for example poly nemiats

RALY

Define o feqtures - to-state, Majrix C nihe fonowing way.

.-,—.

In many situations, E’ cwoud he trivia) as it makes sense v have X as one of

the features. To be formal. definmg F, < [ Pid PR ) - FEW] we
can obtain ¢ viq

._,—.-.

C = X¥. but :]:": has dimensions M=p
wwesse

Similarly, define :I’:f [s}’(g") ¢lf4:)--- V(T'Q]

Now we know thal in 1be stafe Space the syskem goes from one fime step

4o the next in a nonjlinemr fashion. However, we cowld ok for a lineas
updale in feajure space

—lP =0 —n
Y, ~BE
and determine K by o least Squares Minimization over the datz .
2 ¢
K=9Y

Then we have X = CVY¥, and :f’a E"}?’; = a]-g"‘—l;

-2 — g
Onte WA and C have beep obtuined, We Gan U ihen for any x.



Ko < (@RI

- -
Note that C and R are pr-wompured Matrices
SHOW MATAR CoOE

Parometer estimation with Gayss -Newton
Given data y(t)=g. , iz1,2,--.N and mode yit;e,..., Q,') @ith j<l,-..,m
Rnd optimal |parametess| o, - - 6;.

€xam|gle Suppose we have Fafu ﬁiay(t;) te), N

o

. 3"[-1;; a.b,¢0)

—T t >
b 4, 4 t

and we believe the mode is g(t;a.b.a zat+b-Ln(t+)

e
T

parameiers Q=[o.b,c]
8=08,,-40m) m=3

NB oy Usefwl modd will have M<«<N |

O Detine a. "wst function® : C(b.)

-, N
c()- Z [91 -\‘9’&:,5’)]" >0 unless madel #its the data exactly
3



@ find s winimum wvt parameters 6, , )=l.---M

9C =0 : | equations
20 :

J
3¢ =zg. Ly; -§e:9)](-ay
20; o i I (gsgj)m

N
is implfes that s =F0t:,9\1 °% :
Tbl.s 'mP S % [y. \7(%;.9)] o@gj =0 .fo‘l \‘:',"‘IM

Solve these ™ equationg fov 9‘:-"9’"\
Example  Model for dota plotted above:
Yl B <8 1+06,Lnlt +83)

Pervatives wyt parameters -

Now |e1's wnsider a simpler ause tv see how +o proceed

-+ Consider o spesial wse With model that depends [inearly on @

§(£ )= 06+ ... +0,,fmlt) = B Frv)

[_e.s, y(tiab,cC) = a-s ~l—b'.|';" -rclcm'l:t)
iy £ HO

/&



-y N - 2 "
=7 c(8) = Z [y; -F 8] ws ¢ -fundion”

2 %X Tod c
TR 2' [y, -Feo e]-o

Cefure @ 5‘3'
Definition : A— {:(1-‘) ‘ [4‘ ?‘ 3 M]}was
Mwlvmm
wih { = .{!'(*D
-F;‘(t.h
L

> £ Tq - Fi) T £ <
2 1y - £18)-8] £,115) =0

N

oR M

— 5[3:%’ “RiZ oD 8] =0
s s

OR .
Y A‘\] "A-V Ais B¢ =0 «— "Einsteip notation ™
"—:‘-6-‘ cum dver repectad ind1ees in products
. an. -~ -
Detinion '1‘[?') and °°1'6.'
R N
=) T -9 =
3 RE = o | Least squares
9 g= @M (AF)



A3=5° — -
overdetermingd N [GJ}M - N
A
System - '3 [
]
N equatons with J
A , e~/
M<eN unknowns. m (
Nx|
Nxm Mx|
Example
m= 0 +&f +0,4y =Y wnlikely Yhar ¢ liesin span of

Gluvmn space of A

Lea
M ﬁ'g'cd-? onto co)wwmn spoce of A :
ATAS = A"'j’ overall : Mxl boly sides
MxN M) mxy T N
\——P
MxXM NMxN
—_—

Jp genera| the modd will be naniinear in §.

= Linearize model : {irst ordes Taalor expansi’ o
—
Y Hz:e‘“ R Ylt,6°) + 22 2 =
M\.f N
. = og;t 0T ) (87 -0/)
eraf-e

Gost minimizabon funchivns -

N
i~ () c
c [Si '{9 (£:,0) - Z—J—*- (6s 05" QM})] io) 0 CoLvE FOR
S — 3 093 OJ 9':‘., —_—
'5‘(0) . 9‘ b ) : unkhown

Ayto)



Definiion Ty~ = o (6,87

—-> Yba.‘m - 1@ Aostl)]jil.(“ =0

1} S

» [1771 pe™ =37 AY Netmal equations

o Sowe fw B8 > : 88 + B

M Valves improved estimate

« Start again wih guess g0 __, g

—y
) )

* Repeat to
Stop when ) ag ™ | = ] g & -9’“‘") I} < (Toy

> g
l.e. When ¢ > ¥ nof dmgir:j“ mudh® from @ %)

NB |n acode we'd also define a maximm womber of 7t erations k o provend an
infinfle toop i€ DA qever gets below the tolerane value we set.

“Thic s ah application of  Newhn s method for finding rots.



A\

Angular mome ntum I of a pav¥ide jhat hal mIMentvm f)"am? and i< ot positiom

¥ w.rt.a given origin:

Angular momentum of a pavticle

angle between
L=7Txp bhere L= Larpsincx[‘ ¥ and §°

Remarks.
. P’ is independent 0f the wordinale sysiem but U is not.
e Tt perpendicwfar 10 the plane of motion

e.9.if ¥ and p )ie in the x5y plane , T’ lies olong the 2—diradip,

] =5 plane of motion
A

U
™ ~
1'— ;’ \~‘

The n’sh’c-hond rule determines if it is in the positive or negative %-diredons:
Roint your fingers Lris\ﬂ hand) along ¥ and wient your hand So that you bend
your fingers toward p°;  Your thumb hea poinis in 3he direction of L.

b/ P T 29

Ly v0 L, <0




(Geometyical underst anding

P& . ’
g . 3. Dewmpee ¥ into r, fhat i perpend! adar o the
;’MP trgfedoy and T, that (s parollel
,x = - = VSin
2ecall ] H = 1sin(m-9) ¢
C=Fap =Lk = Ly=psn@-rp
where Ly = psing
Dewmpose ¥ into p | that s perpendiadar to T
and p, that (s paralle) v .
P_,_ =psin (w-¢) < P simy (NS
> sin(v-9)= %
e zrpsing = rp
e =T . * P, = psincr -9)
X 2 ~? - =psim1>)
Prlgebmiwdy O | -[x,y, 0, p =(mv,“ \mv‘,,o)
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Fixed axis rotation ~
The direction of the axIs of rotation is always a)otg#oe same line , eg. ¢ car whee)
attach ed Jo an axle undergoes  fixed axis rotetion as long as ihe car drives straght.

« When a rigid body rotaes around an axt, evefy partide inthe body remains at
o fixed distance {rom The axis

¢ A wordinafe  System wilh its ongin on the axis + )¥’| = wonst  for ewery partide
> 7 changes While V| vemains const : veladity is pependicular 1o v
(onsider @ bOd_y rafaﬁ”g arownd the 3-axfs :

”
J
f pemendicular distance 1o the axis of

’ rotation from pariide m;
J B = 7Y
Iyl = prw

T rade of rotation lwyulav speed)

Anguiar momentum of 3h  jih partide:

o emG 7 ey e dm

Our fows: the wmponent pf angulay momenum along he axts of rofakio 1% here)

= Q‘.% 3[3,' m\‘- VJ' = md. ﬂt’z“fi
For the whole body L, = 2 L. = SR e S
J - 5 l;m 02 e ngdf’f“’

W Is wnstant
g id bedly)



-tonpue due to fovce F that ods on a pavﬁde

T’ﬂ"—"— T=17vx

~> torque depends on the ovigin we choose but force dogs not

T ard F are ofwoys mutually perpendiador

» forte ond torque  are inhemntly different quantities

f £
O three different wxses of v.F
£ % lombinations (T s evaluated
f F={ around the center of the disk)
F=0

F=2f 1=Rf
T=2Rf TL=0

Torque due to gmuﬂ‘{

\ m‘tﬂ'ﬁona\ : -’g -w.
for a wniform g fidd: T :Rx % weight

- = -2 )
froof ToSTxmG =miTixg

T2 = (ZmT) T » TRxmp

g v
Lecture 9
Tovrque and angulaY momentum
q
L :.?xf?
- =.dy
- D F =2
> él’=gzx}°+?xq = x5 dp dt
£ t = Vx9 Fx/dp
At ——— dv by Newlon's Zﬂd aw
=20



t
dv_>=
Al‘l’ogdher dt
dp”
% =F

1€ -l-,-.-.o +hen :I'lé, =0 L ¢ wnstant end angvlay momentul i6 conserved .

Low of equal areas (HKeples's sawond lowd

&p\amﬁm: Eoﬁb Y movins unde&f o. ceMral fore Q)rwiiy,b\d' can be
extended 10 any tenral force)

?(f") =‘fCr)¢ «—unit vedoy in Yhe radial diredion

the anea swept by the &arin for & given time is
arstant.

" Shorter radixs
- higher speed
T =%»xF <?xfind =0
wround
sun > the q\”ular momentum is coNserved

1? i€ thefore onstant in both wmugmitude eend direction
= moHm is Confined t0 o plone!



&5

For small 80, +he area swept by the €arth an be apprv ximated oy

-;.- (r(t+at)) - (r08)
-lz-( e+ Y) (vA8)

L A0+ L cAvAD
2 2

Here we assume that

for very small 48, there

dﬂ ( 0A /] s no differene beth

— =lim ah - h 10_9 K o e

df ggso DL pt- [‘i'nt 2T 5%9] an elliptal sctoy and
0- ciraulav sectod

Fundamento] di tHerence
‘I:he directions 0¢ ¢ and é Vara with poa\hon-wbcmas

i ond } have fined directions

? x
DA
, N
,6 \T () A [ )
7 T= Loos® +)sind
A .
Y 0 -tsmB-(-‘]‘msB
) R
X

. - A R A
So we W wile T =rwsh 1 + v3ind) |
q
> T 05814 Sing) Yy vy
—_—
-

N
=yr



/&

Udoag in polar wmdlmlisz

A A '
- 80 dv_ 4 (mgwsln&)
B g5y o it It /
dt = -sinedd § + os0d8;
ot ot
df= %7 + 100 (veroity) - N
? Tt = d® (_gne T+ ws8))
dt Y
A o
= 00

Fnaﬂy, we 0lsy wmpuie the a.ceeler skion whidh s the mde of hange of Velodly

- e A o A
%4y - d (vry+ vE9)
dt dt

u

'vﬂ-rd* 766 +-ree+re:g

Yy + }ee + 80 + 186 +r6(-81)
[ —

from
apove

=G - réz); + (av6 +16)5

A A
= aYr“'aeG

"

where u)e have defined a,= - re as the compment of the acceleration

in the - direction, and Qg: = 26 +70 as the Lmpment of the acceleration
in the 8-dinechon.



7bv.s.'lhc anatdln momenfum
ey

L =

« A LN 1’“ a
- T X0
= m—n‘?ﬂ + Y6

9 k

X N = Y X M('ir-?-rréa)

-—-m't‘él:

which implies that Ly = ma* .

Go‘ma batk to the expwssit for the ot at whtch the anea is swep b we hak

dQ -J-*;"G = 2_;3 tonstant o7 any canirel force

9 Qﬁ- :(Dm’m'”t'
dv

Centrar force motion as a me-loody probiem

R vzt An isolated System of g pavﬁdes m’rua.chvy
v\
? m, under o centrol fovee F(r)¥

The  equations of mofion are - mr, fior @ T6)<0 attradive

m r, =-ftryr @ +(r)>0 : repulsive




let's wite © ond @) interms of v=Y-%,

- o -
R : mT +M, Y

m +m,

Now ¥ divige ® by m, and @ by m. +o get

v d .—’ A
To-h o= £y, Lo
m, m,

Thus

' oand 1he cenyer of mass:

mm,
-+,

T = foot > | 7= food

let's call
this 4he rediedlmass

and denote it 'Cl }‘,

ﬂ
Now consider R :

;; o
Mm% +mY; = fni-fat =g
2wy tm
mitm, =0

R =0

add @) and ® and divide by m#m, .

8



4
S0, we w@n mow intequte this twite 4o Obrain on equation s RLD-
RH)= 7

- -
R(%) = V‘b“'TR,, O"iain at the cenier of moss? g, =0
center of oss i Stotiawary? V=0.

& This is anequaditn of wmotion for o single pavHde
(k's noy genernlizabie o systems with -more than b pavtidkes).

Y and & are known . Sine R = MR im;
m,tn,
RW'B"’% 2 W ((m‘f"h)ﬁ’-mff: )"'\n-
]
d _ =
and we also have 7= W% Thus 7 = 7-7 which wn give vs

7 = L (@ram) T -m,(;:~?))

]
= m b~ = M+ n -»
(152) 7 = 2 3

2 (m 1-m>-%
| 2\T = m."'m;
m, ! ™, 6 +tMT
D | T R+ MM j
mAmy
and similavly |7 = F - mm 2
& mtmy check thés 0s an exertise

(onservation of mass @mﬂ-ez\ in po\ar wmdincdes) _
< redused mass a.aam

The \Winefic enemy oF 1S V"'%":

Rewll that- we've shown thal the Vedouty in polor mordinates is V< ¥1+7606
(See pg 56)




Thes K= ."_'[:‘;”éa)t sk (34246 +1°67) &0
2 * o ,sine 16 perpendivar
= % (¥ +792)

There is also porential energy associaled with e ceniral force For). Fov tomputing this
lef's make a few rematks firs k.

¥ the centrd force is o onservative fm*’ then e magm‘mde fer) op o-
cantral fovce lan dwoys be expressed  as jhe derivative of o fime -independent
priential eneqgy funcion V(9

. -dU - - [T fer)dT
’Ef)- i—r = TUh: f“ fc¥)dr (V-roasv-m)

[ W = Jf} ?C")'d? = J:,a -f(r)?-.dr"- k! i) v
p 7 7 -L' forar = §° -dU ar

work dene - yry-viln) ]

Thus, the +otal energy is given by
fF=-=hrtU ( = winetic energy+ potentiol eneryy)

T gt £ UG
g true potential

2
Ly ¢+ L

centifugoel ——
potemal 'U.ﬂ,(r)

= 2076 ;
E=K+Ueg = £MT 7 Uespcr) | otk reference 10 § js qune!

Thos, overall, we have

Energy cquatim for aparhHde
Moving in me dimension

*In physics.a torserative foxs is . fovee With the property dhad The total Wok dime
in movinj a particle bejween two points is indep. of the path taken.



Modeling of traffic flow

Two differant ways : (A) A micvstopic apprvach based on the dynamics of single s

(8) & mean field approach that employs an analysis 0n the level of -ﬁwm
and depsifies of vehides.

fom individual vehickes to Vehicle densities.

Suppose there are. N wehides in ope tvaffic lane, all of equal length L and moss m
They are labeled =1, ..., N

lea.dina vehide
diredion of mation

T By

X (t)

Assumption: Vghicles @nnot overtake each other

A debag differential aquation for the vehicle positions

Suppose hat the suemge values of I % @) -X:(6)] 0w relatively small for
Gll‘jzl. cen N4
— Avoid collisions by braking lohen they ome too <|ose.
™ The bra kilB force of vehide Jt Wil be hisber, the Smaner the distan(e (,5."&)\)0&”
<0 the Jib vehicle and the fosier it approaches the J"lh vehide
1e.the larger the reladive Velou‘a ¢f(-:-(’fﬁ,(,t) -:y(t))

X The response of he driver of vehide jn is , where for
simplidly e assume that the i5 tonstant for all drivem.
Braking -foree x- v
3 (ot"‘ﬁ = k x.l'ﬂ Lt) '-xj [t)

Jt!

K70
onstant



Using Wewton's Sewnd (aw of motivn:

m dx. : WXq®-x) _ . 4 LA -
dttm (L+9) It ) = kIE 9"‘]"\;1-1(‘:) ><J(:b3\

X 8) A )|
which  Can be infegrared t 3idd (after we divide by ™)
syshen W@ %ﬁ\tt«-@ =_E ta %@ - xj ) ) + Qv {or jotv- N A
wnstount-
" dd‘% of im-eamh'm
differsrtiol
24 uations CDDe)

Whee jhe positim ) and veloify of the Wist vehide is qiven.

We wnot sove @ om.lqhwg but we wan Fad @ PUmeral Solvkon .

Densities and fluxes

The velouly of cars dewenses When their densiy inveoses.

Constder o strest sechion of length[2557L] and define the density of vehrdes at x

at-time t o be
P(x,1) = 3t vehides in (x-s, x+5)od fime t
25

Whem we assyme thob the shreet seckion (s symmelvic around the position »elA.

We rgard Jhe density P as a maavsiopic vasiable that repleces the microstopic

desuiption in ferms of the positions of single vehicles by o coajse —f reined
dessiption in 1erms of (‘""‘"’33) numbers of Lars per stveet seckion




We want o anajys the maximvm wpauly of The traffic (ane under eqw’ll’bﬂum%
conditions . e assume Fhat the observed speed v of vehides at G d) depends onyy
on the density P- We write

V(xd) = v(px,D)

There ex(st fcn't = Critf i dem't.’ below Whith the vebides move ot the maximvm
possible spe€d Vg gx
Pmax = Maximum density of which the flow Stops

From the Critival tp the maximum densly , v deunys towards yep
V()40 <+ decrdasing o of densily.

Steady stake and equilibyivm flow

We svppose that-all vehides oreseparated by a distane d>0 and move afthe same
constant speed V. The equilibiium densib Gorresponding 10 1his sitvation ts

p(xt)= (d+¢)? («t)e Rx[o,m)

Recoll from tefore hat SXnLE¥D = k Lol - xj ()] + a0
m

and since ah venides move at the same speed V= d&’_‘é , it followpe that
= k . -x- .

—\—-.-_"_—-—gdia
P (/(du))
vjsv, aj=a =D V=K fa(de) o

. . - k ) > "L- = —
Notation: a:=X »p oS ) V= 9 Ln/{f',)'l'&
2 V= o O

ﬁcn(P)'r

—
parameied 4o be determined -I‘mm the dakbo-

TFrom-he definition of P it fnows thet V(P a)=0 Which gives

0= -2aln(p,,)tx



R

Q= A LalPpax)

Thus, substitnting this o V< =2 La(pyta e obtain
V= _;u,‘,(f) ¢ 2!;‘(;),,,“)

Ve=-2tn[-L
ln[Pmox

An expressionfor 2 is easily obtained by requiring that v is continuaus as o

funchmal of p. Seling | Vmax =vip ) [, we §ef
Pl o Vmaxs =7 dn(fut
Vey Fne
= Vmax
Which gives 2 = ~Vmax Vmax

) i)

A“"&"‘“e" we have -the genera) remtion :

Ymax
( ) ) \Y) lp) = f § Pcn't-
- vm" vmx lﬂ’ h&m 3 > H
lea e,,,.,,> i :gmj l P P >Peiit
ent

Maximum traffic flux at Qquilibvium. (e define the Instantaneous iraffic flux J
in the time inttrva)

0s jhe £ of vehides passing ‘ﬂwu‘]b o street SeCtor [x, x4 Ax)

A

(L 4tDY), . [d vehides at time t)(X
Ax ot

lethng A, 8t 0, we ger

J¢) = pvip)




Wirh () we have
Jlp) = f"’ . P € Pecit

(_gw> {L'“j 0 ? Coir

Which cap be shaon 10 atbain its Maximum ot [p* =£m_ax
e

Traffic Jams and propagation of perturbations

We want fo study what hagpens when the first vehide brakes
—2 effect of a pertwibatfon 9§ the lead vehrcle ON the pursiing vehicles

We go back 1o the Microscopic picture again and Consider oo plotoon of cass undes
maximum flux conditions . We suppase that all vehides move at constant speed

o prpeir, Vipy: Ymex in( faod).

(e~ T |

if pzp*s fmax, then  v(p*): Vmox  {n = Vmax

e In( ) o ) [n(

Pcn'l'

Let's pssume further that we con extend the time tYo0 to fhe whole nea) axis. telR,
ord that the Lead vehide &Osses the onigin #=0 ot M@ t<0, i.e.|X,(0):0

With the sign conveniion X1~ Xy >1>0

d rechom of motion

— &

s ¢! ar | cac jtl

am v* s V(p¥) we hawe &d?:q«(tw): Atn I Xjult) -5 () ro-



&

with A= VYymax = VYmax =y
In [ Panoxc tn(e)
((Pwya

and a-= A(Pax) = Vmax n(Prax) Subst. T_P:W and V= -2alin(g)t &
02 -AWN(f 2t &

% %x i FFD) = vpax bn |xjﬂ(t)-)<j(t')] + Venarx W (Prmou) 2= A1 n(mo)
= Vmax| L (310 X (£)) + 10(Proo) ] with 2=V,

=Vmax In ( Pmax (;5 t)-x \',i-l‘ﬁ))

Bveakin3 of the Lead vehicle and perturbation of the pursuing vehides
For tvo, we consider the DDE system

g%' =PUE) i~ gyt one bshaves differontly becouse it brakes!

%?1& ‘("B) = Vmax IN (Pmax (XJ (Y -)3‘"(1-‘))) 332’ ey N

where we assvme that the systemis in equilibvium €ox t<0

A(t) = vty - (.j-l)(d*\-l) Jor j=1.- ...N
model parameter (net the instantaucous velodty of individual vehides
iv vz dX;
qiven b& v,l ;ﬁj)

We ossume that the (S vehicle with position X, brates at X0 and releases the byeak Cufter

o short Hime ty50, This wan be wrilten as equikbiium speed
P = v 140
i vk []-b(t)) 120 T
- (t-4p) /. 4y, Speed decreasss
where we s p(x) - kte { ¥ acoordi
) -k td ey rate r:;n th)a vdirg

Solving the 0D€ for x, , by integrating ut ime e obtin

t -(s-
)= v -V*Jo kse( u)/{bds , 120



|V\\7€3V0’N“3 \)3 pat'ts we qet

du _ §
Y = —te (s-twHp

t —(Cc-
X(&) :.U*'l - v*ki_s tbe-(S‘tQAbl_ V*kj: '\,be Cs ‘tDI’tbds

vkt - vk ( -t e—‘t/-[be> ¥k tb\-i e' (s'ib‘)/'l’b]‘:

(1]

(]

- -t
V¥t tyvkhttpe ill"e, 4 v*hkipe /“’e ~viitpe

1]

Vit t+evikip[te Yoy, ¢ Vie_g)

Tute tevikty, (¢ +’cb)e'm"-’fb-)

We 4 the \,erhem\ position of the J')h ws, i the Lead vehide had not
brakeq , i 8. wihout he perturbotion.

We also define the perturbation displacement due to the perturbation 0f the \ecd
Vehide's morion

30 = K g
e
pasiion

“The gecfurbation displatement of thefirst vehicle then is

Ae i +evhy [(erige ) -

5;': equl'lisl‘)ﬂum
position
whichis —/ = -v“_Lt b(sHds, 470

By xtHevit- (J’-D(dﬂ) Ve N L

folows that the pyvsuing vehides  with
):1. .o N Sahﬁfj

) - Xy -{* '(J'-l)ulﬂ)) = ) -vit (D, vo



€8
N ofe 4hat Il;'tﬂeo {ov ts0|and o7 all J= -+-»N . Further note that the mon-conision

onstairt 0 -K) 2 L beR
a;[ leasthe length of the tar
implies that :
0 D i -y O gy -

= XJ(t)-X\i_|(t) + d+t
Upon reamangement

D LK@ - KE = 0 -y el

4O ® 7/{‘}/"’
) - Fald <di  ¥eeRr.

Readion Hme and the onset of treffic Jam

These new equations aflow us fo rast the DDE ( ddng -differential equuh‘ans.)
System  dx; . bit
Y Y $it)

d—xé iD= vHn| Prax(X4C1) =% @)  J2.-N
d

as o DDE {ovihe perturbation displacemeni 2,

Reall that we showed o = (;*; 1 o [ =
e datl
maximum flow onditions. This implies that the pUTSWINg  vehides have on
perturbation  disploseman thay salisfies
-?3'11') . xj[{)—(l*t ~(j -I)Ld'cl))

under the

Prox

- )3(9 vkt t (;j"l)_e._ , 70



Differentiating (2) ot 11 4% . dx %

dt dt
dx: _ d2) 4 v

= 42 +
a—td dt

If we eyalude this at t=ttv and Subst. this & (2) injo 1) then we obtaihn

AN E
dyy oy = -V +VAID “mox (2 0+ (D) o

d
v - iJ{'t) - Vj‘{-l- (J-'-l) .f?;ax))
=V "‘ln[fmx (q‘jq(ﬂ"(j(t)—r P%-ﬂ)\ -v¥

fov =2, -N. With the lead vehicle displacement 2,(.t)=-V*L ths)ds

and initial tondiiims qj(o)eo .J‘cz..-.,N,



Some problems in probability (Notes by I’mﬂ Deift NTU) =

Pmbo.b\'ll’s‘ﬁc. feasoving is of fen very different from the kind of reosoming we

mest and empivy in everydoy life. Increasingly we are presented in the news,
in newspapers, in the intemet and on velevisim wWith Stalistical figues ond {ables.
But staistics iS bosed on probability Theory and so it is impoviant 7 us to undessfond

basic probability theovy .

Some notafin:

@ A setisa Colledion of objecls Which We uswally denote by o tapital tetter
eq X ot 7’ We will mastly wonsider fnite sefs , SO X =30, %, 0], M0
where ihe x;'s are elements with the following 2 properties.
(@) P(X)=I
and () P(AUB) = P(AY3p(B) if ANB=g@ <—cmplysel

Note thad it {ollows from (B) that If §x;} is The sigleton set containing anly
the element X, P; = P(3%;}) then
() PAY= < P
Xi€ A

We think of al el AcX os evenis : thud P(A) is the probability that avent A
happens.

() means that the full event X is meant 1o happen

W f: x-= R is a fundion ffom X ton’-? Then the average of £, o¥ the
expedtution op {is qiven by E(f)= Z#‘m) P:

rme wiki ¢ (onsider a random vatiable X Wtha finite list %,. Xa, ey Ay
of possible outeomes,each Of which has pobability p,, ..., p. of ocusring.
Then the expectation of X is defined o3

,E{X) = ZP+A2fs t - £8P,



sine ZPiz\ it & naturol do inderpret [E(X) as a weighieq awerage of X
the xi valugs with weighks given by their probabilites p;.
(i) Cain 10.35)}3
Here X has two eements x,=H,%,=T. We say ok the coin 1s fair
i Pe=P(3u])=k ond P A3TY) =4
Svppose ome wins o dollar if hethwws o heads and Nothing if one throws
o toils. Then let f(H)=) , F(T)=0 & E(H=1-F+0 =1
(ii) Thowing a die
Here X has 6 elements, x%,=1, %2, --.. % <6
Again the die (s Fair i g = PC§xY)~ &
K A=F2.%6] IS the event that we obtein an even numde- then

P(A): Pz"' Pq. +P = 'é(s) :il
s the prbabilly that we obtain an even numler afier o thww of a die.

Our st example whitch demonstrotes Yhat pmbabilfsﬂc, mwmn@ can be vecn
counter -imuitive 1 the following.

Surmer has amived. 3chool is out—and o bunch of friends —lhere ore 9 of you - want
4o 9o together 0 a baseball game.

Should gou go to n ofteroon of an evening game?

let as assume fot simgllc_Ll},' thed oM any aiven dug, e persun fs free in the afternoon
or the evening (but ngt both?) with equal probobilily. A text messoge s hen
sent around 1o cll 9 friends, staning on A@ |, Say . with the £ Mlvwina 10 queshons:
On Aug !, are you free in the ofterncon ar the evening?
On Avg 2,

07.‘ A\)ﬂ \Q, Qnre 30\‘. JM i“ ﬁ@ a,ﬂe"\oon oY -’)‘Q w‘ni”s?



@uestion : What is the pobability that ™ oneof these 10 days eveybody wil)
be {ree at the same time?

Guessas?

In ovder 1o analyze the prblem, we Mote fixst Hhat o any Given day.when one
Coneds the respomses from the 9 friends there are 292 512 possible ourwmes,

() AEEAAAFEA (a respmses
(2) AAAEEAERE

(') EaaAAEeERA

0f these owtiomes MYy two are favorable:

all A's AR...A
e ol €5 €F... E

Thos, the probabilily of suusss on the first evening Avg ) ks
2. =21 = L
29 28 256
Now, the key 0 analy2ing the problem is to wnsider the probability of Failure
Tather than success . If A & Jhe event “sucess™ and B i the event “failwe",
then deoly AnB=g ond s PCAVE) = P(A) +P(8) = L +p(B).

25%
But Aup=X, the full st ond 50 P(B): 1 -1 = 255
256 256

Now, whai happens on Avsz \$ ind_e_.gndent of ﬂVJ ) ard © the prvbabilf{y of
foilure on Acp | ond Pug 2 is just

P(BY PCB) = (%%)"

and wntinuing we & that after 10 days the P""b‘*b"”?y of failure on al) \0 days
is given by (%g_g_)“’ = 0.9616



a3

Thos the probability of  Success aftes 10 days is Less than 0.04 is 47|
In ovder to have Mmow thana S07. swaes You'd have to offer 138 onsewtive
options from Aug 1 Hill some time in 'meag when $he season is over,
r [g)ﬂ z0.5 —~ log __(0.5)=m 2138
256 :s?z' 1

I you offered 365 days + | yeat of options, your chance of sucless U about 35 Y,

So if you want 1o go to a game,o7 a movie, with a large group of fn'ends,
\]'wt fix o da.\y ond stick with k!

Gxample 2
let us wonsider the birthdoy provlem

Question. IF T offered you a bet that iwo people n this class have the same
binthday would you txke the bet?

Towin  You wovld tertainly want ot least a S0/ chance of winning. We wan
work out the odds in the following way.

|f them is omy e person in the dass thee is clavly no prplem. 50 SUPPOSE there
are two pedple in the dass. Again e trick 810 onsider the provabiltlty  that they
40 0% have the some birthday . Then the fist person has bis o7 her birihday

on any one of 365doys. Butr then the ofher person muwst hate his/her bin‘hday
on one of the mmainitg 364 days. There are 365x365 ways for the 2 bmhdag.s

T ouny, sothe probabilily they do wot have a. common birthday &

365 x 36U
3654369

Henwe the pvobabili-ly that they have 0. wmmon birlhday (]

| — 36SX3¢k - |- 364 . 4 =o.002=
——— - . S - . - 00 o.
365%365 365 3¢5 27

’



Now Suppose the are 3 people in the dass. Then the probability that they have o

wommon bivthday is (- 365x364x363 _ | _, 99| :0.09 =0.9;
oy (365)3 1-0.991 9 =0.9%

A\ore geneaally if there are N people in the dass then the probability thet 2
hove the same birthday s

9, = '~ 365X 364 % --. x (365-nH)
" (26s5)™
[—e-.a . for n=3 we have |- 365X 364 x363
Ges)? |

We wan wite g, more wmpadly as

365 |
(365-w! 365"

9y "

where X' = X(x-)(x-2) .|
We {ind {or n=IO %lo A~0.17 = 17.

Y20 ~0-H2 =Y.
93, ~0.909 = J07.

So where ishe break poini When you have a S07. chanee of winning?
\f [(N=23] then g,3=0.508 =507

Let's see howihis works oxt in our dass.. .

Cxample 3

This problem was made famous an the television show,

! The game wotks in the following way, the host Monty shows o. player
3 doors on the Stage




R
Hidden behind one of the doows is o valusble pvize, e.q. a car but hidden behind the

other two doors are “3aas“ e.q. byoomsticks.

A e X

€9 -

The pla er chooses but does not open the door. Mom-y who kL powrs Where the wy Is
then opens one of 1he doors wrxea.unj o- bytom {o7 the ployer to see.

for example, i{ 1he player chose door 2, Mania wovld open €ither doov | Ordooy 3.
As there are 2 brooms ther will dlways be ol least ome door with a broom behind it.

So suppuse he opens door 3
i S

Sy

| 2 3

Monty then asks +the player i he wants Jo scwitch from door 2 to dooy 1 1n this
nse.

Question . Fhovld he/she switch? hat do you hink?

Most people think it doesn't help to swiich, The odds are S0/S0. But it twns out
oh o wmore wreful anclysis that them i a ditint edvantage to switch.

To see how this worke, consider the (’ollowing. Fot the 3door s, there am «t the
outset , precisely 3 possible confrgurations of the brooms 2. The @y

] 2 3
G) C B =
Gid B c X

Giii) B P4 C



%
Now suppose the player chaoses doov 1. The same argument worksS for 2 ov 3. S

Then {or Wﬂfia. (9] Monty opens doo? 2 07 doov 3, say dooy 3.

For Conﬁ']o (i) Monty opens door 3 2 for contig. Ciii) he opensdoor 2.

Now the sitwation is clear: the player is being offered t0 change his choice to o
door wilh the fanowiry propeciy : for 2 of the configrmhons L), Li), o1 (iii)
the remaining door contains @ o and only for me there is a byoo.

Thus, he has @ 2 chante of (uirmﬂy the wr if he switches, bot amly o & chonee

(f he does not switch.

Eueryonc wovld agvee that this situatim s counterintuilive to avenyday masmny
bui the pmbabi)iSh’c leqaom’t3 is inefutable,

éxomple 4

All +he problems wnsidered €0 far pova tnvoned findipg the vight approach bu}
the mathematics Ipvoived wos raiher simple.

Inihe next problem, the majh will be more Substantial :

The problem | Suppose that in a certain month bad things happen to you at jeast

3doys inaqrow, Is somene out toget you, ovis it justinthe wcrds?

“To analy3e this problem we make the -fonlowiha simplifying assvmptions:

—> lith pwobabilly L a dayisgood & with probobilify 1 a day is bed

Spedfic_question: luhat Is fhe probabiity that 1n . given mamsh, you hove bt least)
3 bad dags in a ww?



Q
NOTATION A bad monih is amonth in which we have (@t least) 3 bad days
iha rw. So what is P (} bad mnib})?

More WOTATION : (46 denote e bod doy with a 1

o 3ood day witha 0

To get some feeling for the problem, consider @ Sequenee of 5 tonseautive dogs —
a 5-sequentt - |Je S a 5-Sequence, 0T more generally an m-sequente is bad ¢ it

contains (ot east) 3 bad doysin arw: othesise we Soy the M-sequence is 4ood

Now there oare dearly 253 different § -sequenes (&e next page for whak

a.byc,d a(ano're)
bad NN Bad 10 1 bad 0 111) bad 0011\
bad w111 O d 1ono bad o110 d vono iﬁ"“’
in
bad (110} b 1010 b o110 b 000 WHhin‘a:mh
bad w100 C 10100 C 0100 C 000 of these 4
100 9
a Lo\ a 1001 & D101 & 0001\ .
4 nhoio d (0010 d 01010 d 0000 Jm:ﬁ'?
b hoo b 1000 b 0100) b 0000) of tHhese
c 000 4 aroups
v 000 ¢ 10000 ¢ 01000 © oo T
Thus 8/, Sequenus art  bad S-sequences - So P(}bad S-sequemes3) =§83 = ‘J'.

Wont to compute P(fbad n-sequence3) for any n. in partiudar fov M=30 days = | manth,

How do We proceed £



Notice that every n-sequence either ends with

i

0\
00
(0

2%t =4 combinations

let | o= i:l—igood T -sequences ending in 1\3
b“.:_, 4= iem 'n-sequ.emt& endfns in Olj
Cns # §qood m-sequences ending in 00
do= 4 $good n-sequences endirg In 10}

count $Eof 0,0, ¢.d sequentes in previous pege
for n=5we ee Q<& -]

baed | Nole 4434346c24 qood SSequences

C =1 + 8 bad S-sequenes
dn=6 - 32

Now tomes fhe cudal St  Congider amy: the = of good  (n#i) ~ sequences
ending i 1. Such & Sequence must look like

oM
50'\")2'_‘_ cee ) <— bed sequence :
or .-+ 001
or --- 10l
Thos  fany =by © ba=ut f’::quente ending n 01 e.q 11001
- od .
e Anw =#] L -sequente ending in 0] eq. nool

bn

Now consider bny = # § qo0d M4 - Seque nces cnding in o|3’

f3



.q. 10 0001 K&
ence ust (ook ke ? e % 00\ | |
Such a sequ m ] €, - ﬁ{%OOd S-sequenc® end\na in 00‘5
dn: & §god §-sequence ending in 10}
‘10 n:
! Ve.q. WOI0!
or .. 00)

.00 10

Similardy for cCqy: ... 100
--.000

2 Cnt = Cptdn )

and r dan .+ 010
Y

= |d""|"= bh"'an @

We wn witte  ©,®, @.@ in malrix form

am-\ O «+ 09 an
by \=( 2 © 11| by ©
C"‘ﬂ O 0 111\ Ch
don L 1 00 /| dn
or if we lev
n

0O 0 11

{t Vv 00O :n

n




ltewating  %Xn= Xxpq = X (Xtna)

2
= x Anz
= X %n-3
—xh=2
i S @
Uealy 2, = @ 4, 0,> H: fqood 2-sequences
b | =, ending in 11}
|
€. | 19 one of each
2 10
0\
00

WHh IXal= 0y tbn +Cpedy =8 Sgumd M- sequents)

= \tal
Then P (4 good n-sequencesy) R e totol mumbar 6§ combinaHOms.

if m=5,2" =3,
P(gbad n-sequencesy) =1- \11..4 if n=5,2
e Sy 9 by oy o © na © o
by <Gyt dn =Gy M2

8ut by<¢,c) andso b =¢, for all n32

Thus , our equations @ -@ take the form

— Qny) = by,
bnti = bntdn
do = bn+Qy,

or \h  mahix Covm y“ﬂg (O | O)ﬁn nyz Whee 3n=/%>
o
|

P\
e | ) '.>
d; )

1 O



-— e o=
-

Thos ‘ds'\nﬂzz(‘ 2 | k( (4
3ol

Og =4

cscbse‘q ll“'ﬁ'*lxq té =20
ds =6

° s before ! (©)
d hence o 5- = 441946 _ 035
@an P(3 9 sequeme'j) 2 o
P(fbod 5-sequenced) = g . o 45
32

We are nferesfed in Y30 © T"s 0 < O’*)‘l{: and pul}ing his 0n & oM puker
. |
or H You hove the power just doing by had we $rnd

[%g0] = Qg+ 2byy Ho

PC3 g8 monthf) = \Xaol

2}0
P( 3bod monmthi) = (- %30l
(3 3) Pl 0.90%

Thos the Fmbabilil\', of of least 3 bad dars in a 0 in a mONth {5 over 407,
whidh is Petla high. S don't think anyone is out to get Yyou if two many



bad things g0 wrong in a ww. It's a’uﬁ the way it Is.
The aood, but pethaps Ounterintwti v, Mews s that

(3 ot least 3 goocl dlos in 0mo©

IS alsD  0.90% ~907. So in any glven month we N exedt Some geod
Sireiches . BVt Somehow), our pcudsology i€ such that we dm't+ remember them as
v{v:d‘ly as the bud Stretahes.
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The Mathe matics of uofing . power, and shating (Ian Grffiths notes)
Univessily of Ox{ord

WrinG Sysrems

A voting system ie & way o7 & group of people b select gne from among severa) Possibihinies

H"L“‘S 2 altemnatives then W's eosy — alternalive that i6 Pm{eﬂed oy e MYy e
(di ficutty arises ¥ there (s a Hie)

When sevem) people haye fo choose ameg more fhan two aiternatives than things get trickrer

Simple example shoing one of the ol dest voting paradoxes .

Suvppose @ group of. say €0 people will meet for a celebiation in avestowmant. and the
restaurant m::naaer wants them to pick one  menu fr fhe whole group.

M ain course choites = salmon
oT chicken

The ovganizers consWt their 9roup & Find that the majority prefere salmon

The owner mfé,- caly up & says that her fish supplier has bewome Jess veliable & she s now

ofFerfns o dmag between hicken 8 be®.
’ nd .pYPFelS +he hicken choice.

The Srouy now 18 consulted agan a

jo. summary Ihe group
' e prefers sajmom over chicken

* prefers chicken. over hoeef-

A day (ater.ihe restaurant monagers  alls dack ; she has swifched to another supplies

and she wwn again offer salnon

However, 1he Department of Agrutune m,cem\g destroyed lage quanhhes of chitken
betoumse of a mcobial contfamination qnd the chofte |s Now helween sqlmon and beef. |

S,
. P

e 33



The ovgam%ers See) oure ,in view of The ran)«n‘ng whoove | that their group will Iargely prefer
Salmom , but when 'l‘ney ask they find a deav me)'oﬂry for beef . J

Thegmqp prefers beef over salmm.

"Oh wen,” #h&y k.. *people ark fickle, OMe of Them must hawe  dhanged fheir minds,
Yot ,1his was Mot the tose every Single PErson polled had o cleav ranking of the 3 |
possibilifies and stuck fo that yanking in o lonsIstent way. Nonesheless , even

Thovsh every single rdividual is erfirely onsistent. the group is hot.

wWe'll pow look at & numerical example -
Suppese That | '

2 25 people rank 20 people rank 15 people rank
1. Salmon 1. Cchicken I. beef
2 . Chicken 2, keef 2 . 50 /o
3. beef 3. salmon 3. Chicken

5a;mﬁ > .c,h'i*chen chicken >beet keef >sajmon

) -
- 25+20 =45 90+15 = 35

15 +15 =40

The paradoxiwl pehauijor of the group is explained.

and fov things Mmore serious than this , such as

This kind of paradox happens all the time

P resy déﬂﬁd adesntns -

} happen , 1hat i .Wheq there is one

In the wse whene THIS type of paradox doesn’
always preferred by @ maorify (atthoygh not alwaysthe same may ok

ajfe(na‘hve That 15
e others, then we cajl the

if it were In o one-0N-oNe roce agamst any oné of th

wNNING alternafive the "Condomq"»w,hne‘. [thiawould be the case for the “chicken”

Choice In 1he example above if the *bHQ-.‘@MP had changecd their ovdering o
|. beef
2 . chcken

3 Salmon. |




€,3, ° 25 people ranis o 20 people rank 01O pople rank

|.C‘:c.ih'|on, (. chicken I. beef
2 . chicker 1. beed 2 .Chicken
3.beef 3. salhmemn 3 . 5dlmon,

Salmon 8 chitken. optioMs thicken % beef options | &aimon 3 beet opti ons

beeF > 04)5 =35
Saimon> 15 Chitken» 2542049 sl mo -
Chicken beey

*  Majority prefers chitken

We havedwtxen that There doesn't always ex (st a Condortet winner, But when there

xists one, it scems fair that fhar should be fhe Winning choice for The whole group-
Ov does 7

Diffecent. 5gs-tem jo select the "wmner

Bewarse -u\e Condorcer me’rhad doesn't always yield a (wnner, i is not uséd a lot.

- ?wﬂauw 'he candidate who & vanked in first place most often: wins .

= This is the way in which members of congress are elected inTthe US.in
everny srafe

¥

— PLURALITY WITH. RuN—oFF The two candidates witlh the most first places are
m{amea and rben a Seeond round run-off election s held petween them.

:*/"[his cﬂ)e.sgSfem Jseq in the election 0 the president of France.

.Se@ueN‘m’tl, M —OFF/ HRRE SYSTEM- The (andidate W/ the fewest first PIRLES

movyed Then (atter her/his votes have been resttibuted among 1he remainigg
s re -

Landidores) The next botiom @ndidate. and 50 0N - -+ Ihis syclem has been s
for yeas n Australia , li@land , @nd in NG (albe\’gh not 0 Stuations (where oMy
one. W iPNEr las o be Selected | but Where several seats Qre available)




- BoRDA_CopnT H here ave N candidares then every votec gives N pgipys o s /he

Cirst +N-\ to the sewond choice,

The poinis fhat all the voters gave are then added, and the tand;dute With the

mast PANTS wins. This system is often LS in Luls 1o decide om admvssipn (o7 not)
of netw Members.

Different methods can lead {0 different outtomes.

Some paradoxical Situations with « few more examples.

6(_'32&‘1 - PARADOX 'f"/f"."j[\‘ 0 DT; SEQUENTIAL RUN-OFF
A student aske 1 of herfriends What kind of breakfast they prefe,.

Here are the answers .

L3 of people tfor each Yahking | ¢ 5 4 g
Cereal) l n 353 3
danish [ 2 3 | |
bage a* 1 2 3

Fitst we get 'n‘_d' of ‘MB alternative that got fewes + first ploces : b%{ (which had 5)

[ danish had ‘41226, cereal had 6]

That leaves ereal & danish.

~ ¥
With only these two atternatives femdining .the preferences aro.

[6 5 44 |
cerecl | 11 2% +— cereal Wins.
danish |2 2 | | bewuse 1t

has the most
(St places now

(G +5 vs &4+2)

L [ =0

i i
MWWY“K\ AT VAN AL« WS Y o 0 7RI it AT S sy - e



2

But i the last group 0{@\/01;% chang €S ¥ Nind and decides +0 rank cereq)
cbove danish instead of +the other way around, What happens then ?

Surely creal's chanes Of wlnn\‘ng must ke better now 2. Lets see

|6 S 4 1
o cerest) | ¢ 2 3 |
UPRES-C PR ST donish 2 3 I Z
bqu 4 1 23

forbages & 6128

{or cereal)

The e ith the fewest [ places s NoW the danish (& versus 5

Reassigning he danish's voies we ger

c 5 42
bagq} 2 ! [ Z

pevple prefenng eread =6+2°9
bagel = S+4% =9

/1
So The bagel wins and erea) loyes even though more voters amefened verec)

1h an before __-

Gample  PARADOX W/ B0RDA COUNT
A b of 25 people are planning an ouh‘ng.—(hey have harmwed down the choices to

beach . a hike The mountains. or a dayinsaen Francisto- Their prefecente

a tnp o dhe
Schedule (5 the v{onow'\n\cj
] 3 o 2
beach | o |
movntaitl 5, 3‘3
SF [ 3 2

This i inTfad a case Wwhemn There o o Condorcet winper: inthe one-on-one

contests>  SF always wins:



. beach vs SF 113+2 =I5 prefer SF N
10 pvefer beoch

- mountains Vs 3F - 13 preferSF
10 +2 2|2 prefer mountains

SF also wins the puwmlily wte and 15 also the winner under the nun-off
stheme . In a. Bovda count, we fid the following totals of points

beadh = (10%3) +(13%2) +(2x))

= 30126 42

58 NINS!

mountains "(1x3)+(_,o;‘2)-)-03x)) N=3 cndidates

=6 ++I3 | ¥ plate> 3915
= 39 2" place 22 pis
3 place - (pt
SF = (13x3) +(2%2) t (10 X))
=3914+10
= 53

This does not lead 90 the same winner, even though SF Won by several
other methods.

THE POWER WNDEX

In the previous lecturs, a)l ustew had equal standing. This is not t7ue inall
voting situaliens , as shown by the \Q:Howing e xamples .

Examples

1) SHAREHOLDERS : -their wte is propartional to The number of shagms they hold

) ELETORAL GLLEGE : Many Stakes  yequire thab heir delegates vote for the
same presidential candidate ; as o result, States funchen lbe voters with
unequon) weights, and thus unequal imporiane in the end resws.



i

3) COUNTY BUARDS: some twnships have more representatives than vthers .
Assuming That quj all vole the same way , +his glves ditfereny +ownships
unequal power

Cxample : In a shareholders’ meeting . There are S partidpanis .
A hos 437 of the shares

B has 48/ ,,
C has the remaining 57.

A majority of SI7. ¢ needed o pass any measere. Any qroup of 2 i force the
measu 1€ 10 pass over the oppositen of he third . So A:1B,C have equal power —

despite their unequal number of shares.

Thete exist several schemes o Fry fo measure this “power ™ of the pasticipants,

One of the mast widely awepted 1s the Banghaf power index

Motivadion : (yhen do you have "power” ?  (When Your decision watters)
Tha) is1 when Wwhelher pou vote ome Way o7 he other makes a differenie in the ouiome
o7, when your vole & a  "swing~ vote,

So let us define your power index oS the frackim

Number of coalitions where  you are A swing vote
total number of coaliboms

Example : « |n the wase apove (A:43/. . B:48/, C:5/) the passibje
coalifions am

c 3, Ac (& 4 _8BC| A

l. AeC | 2. __A8]

A S | R&C

5. _A | 8¢ c._8 | Ac 3. C |




X

-

In coses (.8 : 'Mbod\y IS o.swltg wte
In cases 2,7 : A, B are both swihg vojes

In cases 36 A.C ambﬁhswmg voies
In cuses 4,5, B:C are both Swing votes

It foltows that A B, and C have 1he
[ same power Index é_ < 0.5

—

- Wheiher gou are a swirg vote or not depends Moi obly on your Mumber of shares, butajso
on what majority is needed to reach a. dedision.

If @ measure can be passed in the examp)e above only when & has $37. of the vojes +y mory,
then the situation changes

NotaHm

[‘l': w,owgows....] = CP.:P..F"...)

7

quorum
heeded 1o
poss a measure

: ' ) - CO.S,D.S,O.S
In 1he example above ; LS1: 4348 5 )

Cxample [51: 40,30,20,10] = (2.2.2.2)
D \/01'&5 PQSS/%",
cird e votes A 8 c
that are swing 40 30 20 10
vojes + ¥ + ‘l' Cmn ,OO P
+ - @ *+ — 30 P
+ + - T e« 30 P
r = P T «— 6o P
+ —- — T — 50 F
- + + — e 5o F
- + — + — 40 F
- = + 4 — 30 F



¥ - = T <« 40 F Y
- -+ — &— 20 F
- T F
- ——. 0 F

> [51:40,3020,03 = (&, &, 2, R)

FAIR DIVISION

6xamples .- Splitting o cake
. dividins wp an estate amomg their heirs

° 5?]‘"'”'\, uwp the assets Wan o oompany breaks up

Two PLAYERS (ivision of a "cake™ between 2 people)

One axts. the other chooses .

Implict assumptons :
- each pleyer is able o divide coke in sucha way 7hak either of the two preces

would be oK with that player
* glven any division of the wke, each plager would find ai least one piece acteptable

THRee OR MORE PLAYERS

Less eosy ...
One possibility :
+ fiest ploayer (of a goupof N players) "ads™a plece that (0oks farr to
that player.
* That piece gels examined by the other players, 2 throgh N, sucessively.
Cach of these players an choose to "tim" the piece if they think it is too
lavge for a fair share
> After wcqbpdy has inspected it and ?0-'3!'53 Hrimmed it , the piete goes
o the last player who chose dodiminish i, 07 1o ployer ¢ if nobody digf



« The prowdure tan be repea-ted with 1he remainder of the cake Loy the X
remalning N=I ojayers.

he problem with this and many olher mejhods: M is NOT envy-free

~~ What's an envy -free soluhom ?

A solutimm In which, after eueny player has his/ her piece. nobody thinks that Someome.
else is ketler off.

This 1 ot quaranteed in the above procedure :

Mamn’ fait dwision amy-fme s much harder.

An envy-free division {ov three ployens (1960, found Ind ependen jy by John Conway
wis cake in thee pleces 1h and John Sufndge)
. P[oge.(l S e in pieces that look @quod 1o That Player, and hands over

to plagér 2
* plager 2 may. if she wishes ,11im the piece that chethinks is Jargest so thak it is
equal fo the next-largest, in her perception . The imming T s set asde for be

mymeot.
- player 3 chooses the piece he Jhinks 1s |amast.
- next player 2 dwoses. |f 2 did {nm inthe second step.and if S did not take
the rimmed  piece, then 2 must Jake the Hrimmed prece

* | gels the remaining piece.



. AN
So fer ﬂe\n, ave all happy and Jbe is ho envy:
- 3 chose first
- 2. chise and 301 of the iwo pieces She wrsidered 10 be a tie for lovgest
+ | 9ot onc of the pieesdhal he wk, and everybody eJse gol (in their eyes)
the same ovless.

Q@ ; Now, what do you do with The trimmng?

Whaiever happens with it, plager | will never ehvy the player who received 1he trimmed

prece inthe fist rounl, bewusse for ploger 1, timmed piace +Himming only make up
as much os he () got n he first wund anyway.

let 's wil the ploger who got the tyimmed piece in the first round Te
and the ofher ore (of 2 and 3) Untr.

Now Untr will ard the -himm»? into three equal pieces (#r0m his/her point of view),
Then the othec players chwse -

firct Trithen 1, then Unty takes the last prews of the Zrimming

Reswit :  *Tr is happy, and enviesno one, becauseTr chose first

*\ does not enwy Tr

| does not envy Untr bewasse be chose aheod of Untr
o Untr does nofenvy anyme.bawase Urte did the thlg

& No €asy way 30 generalize this jo 4 or morg Plowers

emarks  nYou wan 0dso use this to divide up o list o chores!

a-this can be exiended to more complicated problems, Sudh as
dwiding up an estote,



DiUid'ms up an estate, or Pmpeﬂ—‘y settlement in e divore

Divorce: Usually only two parties

It is possible to end up with a situakion where each pathy ends up wsh what
they perceive as more than fheir fair share!

Example - p)ice and Bod are divorting . ®
-rh% have on" Two mqo' assets, Which need to be divided

First, cach of them is ashed to ollotate points jothe two assets, out of o iota) of
100, atwvding {0 what they value most.

. Alice ls o diy person . and plates premium valee o the small NYC apavimeny

Ihat the wuple owns
* Bob is retind and likes +o spend his dime #shing ; he values their nice shorg house

much more 1han +he apariment,

Alice] Bob
shore hovel 30 | 30

NYC apt | 30 |30

[n this case. it makes seng@ fo grve Alice the Opariment, and Bob Hhe shore house.
In practice, the situation (s usually more Complicaied , with more assets:

€xample  Aill ond Matilda divorce

The point allowation table is not known , o¢ course. Based w dhe ﬁesotwl'lons,
one win makR® the fo)lowing guess :

Asser gill | Matilda
Sardinia vila 10 3%
Connectiwt estate 40 20
Yacht $$% 10 30
NYC paa apariment 38 0
Cosh & a’ewug 2 N



STEP | : Give each poﬂy the big items that ﬂ\fg like most {5

ill : (onneciat estate 40
NYC plaza apariment 38

3o points
Matilda:  NYC plaa apmtment  3g
Yadt 30

& points

ST6P 2 - Give the vemaining “smal] * hings to The pavty who has the fewest points , $0 even
out fhe vesult os much as possible. I this ase, Matild gers the aash and

jeweiry, and has now 3o points.

STeP3: The situation is MOt QVEN. (e need 40 transfer a bit from Bill 10 Matilda.
Sine Malilda values GConneciiutt estake over the NYC plaza apaviment ,while
Bi1 values fhese two about qualy:  mates @nxe 0 bransferpart of the
Conmedtiast esrate . How mueh? .

K we qive x7. of the Connediut estate Jo Matilda dhis lewes [j00-x)7
of the cormectiaut estate to Bill

@ : How many points do& aach of the parties have then?
gil : 4ox(l°0"") +3%8 < 38 -0.4X

foo
ilda -
Matilda 2.0!((_')_;7)-} JO = 7010.2x%

To make -thirgs even, we vequirs
38-0.4x< 930 + 0.2X%

8=0.6x
x= 28 .)=.
In pradice, 0.6 's-3

. Bill gets he MC plaza apartment
* Matilda gess the yachy, Savdinia villa, and cosh& jewelry

* Bih gets the Gonnectiout estate o Womths/year
* Matilda 9ot the Gonnectiuct estate 1 mmih /year



based on Jonathan Movshall's \J
VorTex monoN / Awip> pYRAmMICS ( VOTHeY dynamics wotes ) N

Equalions of motion : To derive these,we'll Suppose that every point x in the flow domain
i5 oaupied ot each irstant t b“ o fluid *paviide ™ and then wonsider the mohon of-
this porticke .

Maierial dervative

Suppose P(x.t) is some properdy o the fluid [6.q-density lemperature ebe). |f %y, 0nd T
change by small amoumts &x. Sy, 62 amd &t . then

=9 ?
8P= 30 6cr Loy +Paer Liv (4
i we resimct our attention to the dwrge in P following a fluid pavticle.which moves with

the flow VG[OCU‘“[
Vixd) = @l ) Vs, wlx,e))

hen Ox = yx. )it

83 s V(’.Suf)St
§2 = w(x,b)ét

By substihuting these ™o [f) we obtain
§P = Py )St+ Ly ge 2P (13
axuw ) wv&'c & wét + 21 ot

= §,P

Then we define the wmaterial derivative 0 be

N = [v.
G-t'?yo 81? [‘Y v*%']P

"
2
Dy



Conservation of mass (onsider a voume Vo fixed in the fluid

e(&ﬂ < dﬁles of the fluid

The mass M(t) of the fluid in V, at ime T s given by

Wit 'Jv gtz tYdV

=0 me gV
Rate o¢ change of fluid mass in V, is (e v tv)

Al 4 PR W TP

K wass s conserved then this vate of change of Mit) wust
equal the net Elwx of fluid fhrough Vo . We ian wride this as

Ty, pnds /0-”
,/Ln&’t

But assuming Y& t) B differentiable in Vo (which is 1 keeping with aur assumption of

mass consevation, then we i epply the dnergente theorem  (from Multivarrable
Catutus)

» ’on pronds = - VpudV

Thus . omparing with (#) we have

= |, Rpeo o

L ond this is equat b0 - [ 9G04V

Uo
S fogether we hove [, B8V +] vimudv<o



é
. \ =
Ju (2 0 n]dVeo
Put since Vo I8 avbﬁrana this is dentioally e Ifp

%?; + Upv)zo (3)

But W-(p¥)= pULty (). S (#) w@n aiso be written as
‘%; r ‘J_'V)(H-(N- L =0

OR using the materia] desivative defnifion-
g't P (2%) +p(2AV-v(x,1)=0

(&)

Hefe we'll tonsider inwmpressible flows (- ¥=0). These are ones fov which The denstty
of our fluid pavhdes doos not chonge as we move around . i-e. %tt 20, o7 equivalentiy

fom ( 4) v- L 4=

Streamiines A sereamiine is a |ine  which at eath instant is lowally pavalle) 1o he velouly

ield V% %)
Then Letmy dx 10 denote an infinitesimal Section of o streamiive, 4_:5 = kY, where

K way depend on X and t

So of each pvintolnvg Streamiine we have dx =ky for Kk real.

Atternativel dx =dy = _d_%; . =

A o whem u (u,v, W)
This system of simuHaneous oDEs, togedher wih an "niHal tondibion (wrmpmdlng to ﬁxf@
@ single poini o the sireamlin€) ,determine the equakion of the streamline.

Stream funchon  |f we have an incompressible figw in 2D (ov 3D with sIme Symmetry
€.q9. axisymmetric -rotaiina abour Some OXis n 3D space). then our (ondition Ve=o

» da swlar funcion Plx,y) st

= k1 . ve-2¥
M A




N

Check  (Proof ot given buT (onverse is easy to oheck)

v QU LV o i
\ oX QJ % ;Hﬁbl;-o

One @h alo write the above as ¥ =Qx(Ppi) (Here k = unit veckoy perpenaquw
© the (xy) -plane)

gy =t § ® o
alx ';‘5 g; (%1) \)(‘%5 ay‘ ’ax')
0 o YxY

3 A
Now note that  d¢ = %J”%d\“% at  LReatt oy (34)

Consider  d§ as we move along & sifeamline fixed at some instant in Yme.

Time fixed Sdt=0

Furthermore, elong a streamline dx:zkvs

‘b %)

=) do =
) d¢ g(k%\ + %[.,‘a%g
v-e. ‘{a ¥ constant alov_)) eadh streamline
So  $(x1) is willed the

Bampis: @ (y,v) =(’6“‘°U) TR Zo

Streamhnes Qul‘ = dﬁ 9 vdx-udy=o
o for ¥7°

- de- zxdy =0
(=-%) ydx + xdy-0 ///{V\‘,\:\
%h//// X

d(xy)=0
xy = onsp

2 sireamines ae h‘yperbolaa




Sheamfundion = W Integrate wit y:
W T 5 gy H

?_T. V= ¥y D |ntegrare wrk X:
L R LV AR 1))

Thus  $(x,y) =5xywyé
set 100  Without Jas of genemlily

This fiow is known as b uniferm straining flow
¥ is known as the vake of strain

fov fhis wse she prindpal axls of sivain are the (x, ¥) axes.

D (u=(-0y,99) , nemso

Streamiines : 4“& =43 5 vix-udy=o
Nxdx + Sy d:j:O
xdx1ydy=o
d (x*4y*)=9
X3 fd’ s(onst
©) Streamlines are wncentric Cirdes, centersd at the ovigin

for 170

Streamfunction _'05.!’ sus-fly 2 p=-22y +'Fl’9
?‘)’E e R Al -
? ¥=-LooH) +o
© wihov} lass oF yencrality



\Q

i is natural 1o consider this flow in terms of limdricad polar Goordinates

Ue=weosO +vsing
Ug=-usin@ +veosd

? x

But also we "-“—3 = <fLrsin®
VzSxs: Qrowsd

D Wr = —frsindws® 4 SLrwsdsin® ~0
Ug =JLvysinzg +Mreos?® = Rr(sinp rws29) = Nr

Next, angular velod!j 's defined s uy. In this case, this is SL . This is independant of-

position . Hene the flwid moves [ike q'solid-b-dg-Fw this reason, his Plow is known as
solid -bodj votation.

V_°’j1'f_jiy The vatticity field W of a flow v(x,b) is defined by [w=Yxy
A - )
‘n 20 w =|* J e
- = "V u _?_f&
= % %_% (0.9, % qy)
M(Ku,) V(’(a’) 0

¢ w20 then the flow issaid v be irrotational .

A vodlex line i a line which defined at-some instans in time, which (s looly farallel to the
Vortidfy Reld gt eadh point alory it.

® (uV)=(-28y.0), aeRyo  inwmpnssible How

(shageof streamiines is
B o hovizontal lines)

pd
A

) 4

N nofe: [u| inceasesas (y\ inceases,



loz
A\tevmhvelﬂ. look at dhe Stream tunction \

% =u = -1\7:]
° -
_5; =-V =0

=¥ -yt fines of (onstant y ere streamiines.

This is known as o shear flow

(0‘)(13)" %7'( —%: 29

Like sald bod’ votation , his has wnstant vortidly  everywhers . Hewever, these two flows
look ey different. Bu} we an write

(-284,0) = (-ny, 20) + (-ny, -24)
@z

~ Whod sott of flow is v ?

C(ear!, inwmpvessible ?j

0
This bas vorHdly  ws %% Qs\ug_g “NtR =0

. L
1-€. v is irrotaHonal,

Streamfundion :
fun ."!J’gu:./):y 2 ¥= Dyt o
W pip) « Qx (wmprewith tem
_Y. . -0:3 oK (n brackeds to infer
f/0)= 1)

« Qx* T
Ths = Sy 3‘% < %"“7’5
This o be expeced o5 yopegy <-4
Yb.v = % (=*y*)



Linaar combinafion of sipeam Junchions

+$\\eu “Qpat “’g‘_‘
9 -Nys - Loy
E) \‘)3 - &_(Xz_yt)
= 2

Thus, Sireamlines are given by x‘-y‘swnst

e, hey ak byperholas \\ /) 7

| porticdlar K4 0 9 y1x 4 \
/3\ if L>0

i iS o strai ning flow, bvi with pvinapal 0XeS Of  strajpy

along y=ix, (U= (g, =)
it y<co9 w0
Thvs this Shear flow tan te rsiderd as the sum of a Solid bo@ 1f k209 veo

yotefion and a staining flow. This is W fadt tue [ogg for
incompmssible £low. #3

Show this as {olows :
LocAL ANALYSIS
Consider @ 30 inompressible flow L= (Wix ), VIxY))

Gonsider the velouly field relative o Some pojnt =% in the flow domain | -e.
SR AT vedE) - y(x) <6y , my whem §X:(8x,3Y)

X x+8x
Note U(x+6x, y+éy) =u(xy) + g_t’s( Ex + %{y + 006, 9 (6y®)
Similavly fov v. Taylor series expansiom (mulrivariate expansim)

=, [ 8
’ﬁ (278’”".‘1 ’)ms; whes A=[2* 24U\ apnd &z[
g € )

X
2y Colvmn vecior



1 o4
( %?12513 tiad)

We nwiite [A=EtF|where Fa(g W\ b ©:

s 3) v.w

2 0 J
ond F<f 3% (5 + 5y
Q(Lﬂl 2v

BJ a‘y

Vv l"
>

Now moie ﬂm-t SchSx = (sfr)s,: =ESx +F8x

But F&x-= - -33 This @rrespmds 1o a 3olid body mieHm
Gbout X with angular velacily ¥

@ Whai ghout E ¢

Sinee E is real andsymmeinc, il has _reol eigenvalues 2, and A, , Say
(not necessamily distint) . Al there exists an ovthovoymal basis of R* Consisting
of etgenvedors S, and s, (these are covmn vedo¥s) of £ (whee ESj =2, S

‘FOYJ:LZ).
And we can diagonalize £ to wrile E=SMST  where M*{z' ;3). S=(s,8)
So E&z=SMS'§x.

§x' = STEx = (—s—"s-’-‘
Let S sx

S

- \/5' - 8x is just the
aompo'nent of S In the
difection of s S, .

‘ng{- o qualijative cen of the nature g the flow wrrespomding do E, it is enovgh to
Consider M8, since § simply shifts this back to our oviginal basis F1,5'3.

Nofe that H €= SMST then from linear algebva we know that
trace M= trace E

:au ov
bi(ey
= Vy

=0 sinwe the frow is asvmed to be incompressidle.



But rewall that m=[3\;) SO trace (M) = A +A3 <0
-3
2 ?i‘g"ﬂ,,’b’ se-y

(3 2) %) < (0 -8y
MS} (O -6 {5"! J ,y
Observe that this wrresponds to a uniform stratnirg flow with principal axes of
Sirain in he direclions of S, % S, and .srminmj rate §-

A Important : \_/gj_iﬁy co rrasponds To LOCAL oy @lobal Fotahion of o fluid.
To highligh this, Consider the fonowing example .

Example: (onsider the flow [ ‘¢r, Up) = ( o, f;},) TER

ﬁne tan chech that this is an incompressible flow: V-v = 7'/ __ag""aa- %&)-_-:J

As fov solid bedy rotatien, hig flow is purely in the 03imuthal direction.

7
N7

So globally e fluid rotaics about the engin. However

S ¥reamliines :

W =VxV-= Lr T Ce

l 2 2 = 0
(A4 0 2%
“f ‘fuq u%
whems u¢ =0
Ug =
20r

if v#0 (ob reo the 1100 is singular)



~@

So them is ™ lpcal rotation abvet ~on-Bor poinis ]j.e. tvigin)

One roay examing the diffeeme betwcen this singdar fow and solid body rotation as
follows. (based on Acheso's book Elementery flwd dymmics)

Gonsider a vorticity meter A

Fov salid body fetation :

moved 23‘-‘ ,

(since anqular
:_:::-am = angvlar velou

e , is wniform

A 'Q o h (i-e. The same ax
i all points)
midpoint X has
N 7
movad throgh angle _
I ,thos 50 most AaB
A
fonsidecing maritn relative 1o midpoint X, we 0 bserve
— e 0 —>» —

i.e. lowd OIEHM gt Pon-32€m poinis.



103
o7 our sinqular flow [u,, Ug) '{0. a"ﬁr)' however the engular Velodty is net uoifok

1+ decreases as v increases. In fact it varies in precisely the right way 5o that ome observes
the following:

A
tgto
7 ~N “9 s L
A’ 8 \ﬂ. a20r
! \
x
\
B \ A /8
N 7
B8

i'e. there is 1o [owl rotation about the midpoint = [or in fact any) other point
not ol the 0igin) & 3er wortichy.

This sinqular flow is In fack Glled o point, vortex flow.

As o measure of giobak rotation of o fluid flow we indrvduce The -fllowing

Gruwildtion Let CIt) be & dosed wmiowr in bne flow domain cach point alorg which moves with
the lowd velouty field
C(x)

The arculation T4 arvund CH) is defined 10 be 1) - i(ﬂ v.dx

wher v is the velodfy field, d= is a vector o mfinitesimal [ength .tangential b ().
0nd weintegrake round CLY with itS inverior on our lefi.




%
() wn be mterpried a5 a measure of e flow around C(t). Atternatively, applYIng

. - ij(w}n ¢S n Cw

dx

Wwhere S(t) & any surfoce Spanning  ((£) and 1 is the unit noYma) (whase direction
Is given by the "ﬁgN"‘“"“ nije. (Note that hew, in order to apply Stekes theorsm we' ve-
assumed ¥ to be non-sMyuiaring),

So [Tt} o also be thought of as the flux of vortiudy threwgh S.

[n 20 we have P =(0,0,0) , W :¢0,0,w) > | My =] W ds
= r

unit vedor in 2 ~djyeckim Siy

Examples @ Solid Iood\y rotation
(u.v) « (-0, 0x)

Pick C 10 be 1he arde x2ty2:zq*

I
A

r -
*¢ v.dx
éc-
=0 ~ydx+xdy)
§ (-ydrrxdy
For (x,‘,)mc i Xz0L0S9 - dx = -asin0d9
y=asing dy = acosodé

w
Themfore . = -QL Y59 +ws24)ds = agfq>
%

2
fiternatively, resalling w= V. AW . 5

r =ﬁs 22dS - 2080a2 o before [avea of cirde S = Tla")



~a
@ Point vortex
(ur. up) *(o. ﬁ-‘}\ <— irmvfational everywhere exteptorigin (i . cirukation -0)

= §c. v .42 d= :(dv, vd)
a2 )[4 b
§ g 0 () ) B
zan b
2N
= 1 70

This s won-em due 40 jhe smjulovny of the flow at fhe ogin. In fact,the vwh’u:y
distribvhmn fov 1his flow 1s
w(x.y) : §(x)
Where §(x,y) isthe delta-fundim d1r-x"9YN =0 for [x.y) #(x'.y")

and f1§ixextiy-yddsel I pey)es
r“des

In the next few dasias we'll have an introduciion o MATLAR. |(Jse this as

eh oypmtuniiy ) mew wﬁ-nns wde on your 0WD 0§ it’s the best woy to leavn!
“This will also be vseful {or Yous fina] projeds. ( MATLAB Crash Course, Univ.of Oxford)

Useful refererces: e D.7.Hinghem and N.J. Higham , MATLAB Guide, SIAM,2005

* T.a4, Dxiscoll , Leasning MATLAB, SIAM, 2009
e C.B.Moler, Nvmeria &mpvﬁna with MATLAR ond Experiments wikh

MATLAS (-melJ available mine : )
* Online MATLAB cowrses:
* MATLAB &da :



Tentative timetable
@ )ntroduction
Theovy |4 Basic operations with the ommand window
fractical ¢
Theory 2: Seripts . logic , ntrol Strucures & aronymous functions
Practical 2

N

Theory 3: [el] arrays, functions , and programming
Pradical 3
'l'beag 4 : Graphics

Guestions
*How mmany of you vsed MATLAB before?
* How many  have coded in another languaqe?

%% Theoryl:

% MATLAB Crash Course: Basic operations with the command window.
%

% Originally written by Nick Hale, Oct. 2013.

% Extended by Asgeir Birkisson, Oct. 2014, 2015.

% Modified by Behnam Hashemi and Hadrien Montanelli, Sep. 2016.

%% First steps
5 + 10

3 -2

3*2

3/2

372

exp(3)
sqrt(9)
factorial(5)
sin(3)
sin(pi)
sind(90)

%% Get help
help sin
doc sin



%% Initialize vectors

a=1[135] % Row vector

a=1[1, 3, 5] % The same

size(a) % Size of a

length(a) % max of the above

a=1[1; 3 ; 5] % Column vector

size(a) % Size of a

a = [1+1i 3 5] % Column vector with complex entries
a = [1+1i 3 5]."' % .' gives the transpose

a = [1+1i 3 5]' % gives the conjugate transpose

%% Simple commands

clc % clear command window
a

max(a) % Maximum value

min(a) % Minimum value

sum(a) % Sum of entries
mean(a) % Average value

%% Addition and multiplication

b =102 6 10]'; % Another column vector
c=a+b

d = 4*a

e = 3*a + 5*Db;

%% Modifying a vector

a
a(2) =11 % Modify second entry

a = [a; 4] % Add an entry at the end
a=1[7; a] % Add an entry at the start
a(3) =[] % Remove the third entry

%% Vector syntax
1:100

1:5:101

10:-2:0
linspace(0, 1, 51)

%% Initialise a matrix

A =1]18; 52] % 2x2 matrix

A' % (Conjugate) Transpose of the matrix
size(A)

length(2)

%% Simple commands -- acting columnwise
max(A)
min(A)
sum(A)
mean(A)

%% Simple commands -- acting rowwise

% Notice extra arguments to the function
max(a, [1, 2)

min(a, [1, 2)

sum(A, 2)

mean(A, 2)

%% Addition and multiplication
B =14 5; 9 31; % Another 2x2 matrix
C =3*™@ + B



%% Matrix syntax

A(l, 2)

A(:, 2)

A(l, @)

D = diag(d) % Diagonal elements
det(A)

%% Useful commands

A = rand(3, 3) % matrix with random elements
A = rand(3) % the same

O = ones(3) % matrix with ones

Z = zeros(3) % matrix with zeros

%% Factorizations
A = rand(5)

[V, D] = eig(A) % Eigenvectors and eigenvalues
[L, U, P] = lu(A) % LU decomposition

[Q, R] = gr(Ad) % OR factorisation

Q*Q'

%% Solve a linear system -- Ax = b

% Solve

2 x1l + 2*x2 =1

% 5*x1 + 8*x2 = 2

A =1[12; 5 8];

b=1[12]";

x = A\b % Use backslash for solving

X = inv(A)*b; % This is not good -- numerical instabilities

Solve with random coefficients and right-hand side:
= rand(2, 2);

= rand(2, 1);

= A\b

X O oo

%% Formats

pi

format long

pi

% Format does NOT affect how Matlab computations are done, just the display
format short

a = sqrt(2)

format long

b = sqrt(2)

a->b

% Get rid of extra linespaces
format compact
a->b

% Reintroduce the extra linespaces
format loose
a->

%% Basic plotting

x = linspace(-1, 1, 100);
plot(x, sin(4*pi*x))

%%

hold on

plot(x, exp(cos(10*x)),
hold off

r')



For the (mst fwo lectures we wil| ook af the basic prindples of
(based on notes by Havimam, NYU Bedin)

We'll start with an example Ahat Considers fishering management.

The question we'll 1y o answer is:

Is thew an optimal fmvsm:g strojegy Hhat maximizes the sustainable cajch or that

maximi2es the profil on a lime- horj3on of several years?

A ssumption: No interaction betw een different species
Based on the logistic population model for a single spedes.

We irroduce the following functions:

X(-)eR xit) = fish popuiation at time ©
b() € IR bt) = number of boats operating at time

h()eR h(t) = hawes'h'ns rm+e at timet

HARVESTING STRATEGY: &n‘omlling the rumber of boats used for fishing

Call b the [control variable| even theugh it is a piecewise defined functin b:[0.6)=IR

We consider the {ollowirg parameters
G >0 : owrhead wst per beat and unit of tme

n : pumber of fishermen per boat

w : fishemen's salary per unit of time
p: warket price of one unit of {ish



\Q

The boundary torditions and available parameters determine what o q9%d
hawvesting strategy is.

eq_ Maxim{2ing the sustainable tatthis different from maximi2ing lhe long-tevm
profit ) which may be different from maximising dhe short -term profit .

SETTING VP THE MopEL-

Relate +he havvest rate h with the number of fish x and the number of boais b

between these variables Is wlled .  Gonstitutive relation .

The |statc relaion
This Is di fevent from the dynamic felakim between different species in a predator preg

model.
e .g. Hooke's law is o constifutive mlarim (kinemahc relalm beiween the Hforce

exerjed by a spwing and ils extensim).
Newton's [aw expresses a dynamical relahm beiween force and acceleration.

Here We assume $hat %e hawesting raie is propovhinal to both the number of fish and
the number of bands, e. WG assume the following relahe,

h(t)= ? x@® &t)

here g>0 is & wnstant of pvapovﬁonaug that depends an the efficay of the
'Ffshina boaks .

The hawesling rate is the rale by which the growth vate of a fish population fs
reduced as an effect of {ishing-
We assume that he fish populatim evolves acwrding 1o the legisiic equation

gf ol k& (’ 'T{)"‘ s A0)=X, 70 [+>




(N5
Y 20 : iniHal growlh rafe of the populaHion when x is smal) oS

K>0 « Capacily of the ecwasystem withwt fishing

Moaximizing any given objectve, Such as Sustainable uatch 9 profit under 1he constraini
<thai 1he fish pepulation evolves aCwrding 10 the dynamics qiven by (1) is not rossible,
without furiber spedfying whal the admissible antrok b(.) are.

Assume thal the mly admissivie strategies ae of Jbe form

N
b 1>¢*

with 4he two adjustable, but @ priodl unknown paramete® t*20, hvo

Tovs, our harvesting strategy can be wntmiled by choosing the right time t*
o} which {rshing is stavted and the corespanding number b. of boaks.

Resulting logistic mode s a switched 0DE 0¢ the form .

dx _ h[n-%—), t<t*
-
¥

gy e
(8- 3).

Rewlll thal we had the constitutive relation hm.qx(t)bu) and so at > t™ we have
hie) = queelbe). Thus ot £26%  dx o (1= &) he (=) <970
= _ab, ~
X X(i %; k) v
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Suppase we want to choose b, 0 that Jhe averoge long-term cotch is 'maximized

— We mst Mot overfih, otherwise the fish population qoes extinct and hence jhe
long- term caich is 3ero.

Fov the average long-tem catch it does not matper how t¥ Is chesen, so we can set it
‘o 32em0 ond ignore it fvom row on.

We identify the Sustainable populatiom under fishirg with the asymptotimlly ctable
equilibrivm of the system fov by20.

ts essential for the long -term audch because it I8 Fhis that

guarantess Hhat wder small pertwbdrions 1he equilibrivrm s robust.
In other words, the population refurns fo ifs equilibrium size after a small perturbaﬁm
<hat may be, eg. due to -I‘M{uo}iry environmenta) condifioms.

if one is fishing at an unstable equiibvivm instead the fjuctuaims may Cause the-
popwlation 1o drift awey from its equilibrivmn and eventually qo extinct .
he i n¥ta) gmuﬁh “rate of the pwpviation o hen x is small

, real this 1s 1
x*=[l- ‘1%: K is the wigue Stable apuilibvivm.

lemma. (et J)C;bo . Then

At eqm, d2 <o X

”*
.4_"-: x (-Q«h‘- _&):0 = 7(*'-'0 oR |-L '-’-‘R:O
dt 'z[ Yy K ¥

X" K(l-ﬁ%")
N_ﬁ_e_ The assumphion b’)’bo makes surethat the fish Pop.aa-]-;m, erowing with

Tate y when gufﬁcjen-]-]d 4ar awg from the LGPG»U{'_\’ hmib, 5 Mot eafen up
by the fishing. For y<qbo the single stable &qui Fbrivm fs x * =0,
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The solofion of the logishc euaim {‘or]_:::_g is found wsing separation of variabls

% (R

d x
=|4 dF
Jximp 7

Cxpress the lefh -hand side integrand as a partial fradtion

——=hA . B
X()‘% 4 (l"ﬁ
gy
bet+ x=0: A=l
x=K : B= i
K

Thes L o L + 41— - Going back o integ rative vying sapaiation of

e R

varigbles , we have

J("?“' ,’4@) dx< sz\'
LalA - Ln|k-x] = gL +C

L"Jf:;(|=zt+c

%,
Lox Ae

0% t

X = HAeﬁ "Axc%

X (|+Aem)= baed

HAeﬁt

[ +AeBY

X[ =




.whem 71 K are parameters of Jhe model but A tomes from the
inteqration constant and wn thus b8 determined from the jnitial Condihion

AO)=Xo.

Thus, Fhe soludion 4o the logistic ejeatim with bo=0 s

+ KX st 1
X(t) K—-v%o 34 . Kxoe‘ﬁ‘t _ K%e € )
xe, Bt ety Kt Yo €T
L W —Xg¥ %o
50, 'ﬂie so) vkim 10 the (agisﬁc, eqvaﬁm saHsHes
lm w2 =K
4 »00 °
(with bo=0)
The fishing reduces the wpadfy of the ewsysiem by o fochr - 9%*.’3

model, wovld ok as Followy

N

A solvfion of {his

X() fishing, K

fish
populafion

%o

-~
initial
va|ve e

“+V

%
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We "ow define the avernge long -tem cat dh as \U\
To(be) = fim S"' htt)dE
T30l

whens the exprascion fur the assodiatel sustainable with rate foijows from htf)=9 =Dbi)

1 - *Lo 7‘
ghd it takes the foom  h(¥)=gx el Y
. relation
By the Jemma ,sine the asy mp’m‘fuﬂg cvable egm is

x*=K(|-‘i7'°°)

we hove that T (b)- qvu(,-q,_\ga% be

The funchiom () is Sl‘ncﬂy con cowe, Which impli es that 1t has o unigue Maximvm

input Is be,s0
N

(9]

R

The maximizer k' =orgmax B (by) 16 given by bo* = ’;i‘; » which rovnd ed

to the nearestinieq er qives the Optimol Twmber of fishing boaks.

The correspovding opfimal sustaindole mtdh & ~r=K(1- ‘Lg’)= K[, -\}{iﬁ;))a %

e.9. Nys used

We see that the maximum sustainable (akch 5 Independent of the effitay J“L/ ec

which Seems tounterintuikive . However if we realize that b* Is inverse(:‘

Pmpo-mmal to q, ik makes sense sinte it makes the optimal havves ing ~vale
independent of g,
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A |ower Qf{iw\lg Tequires more boads ad vice versa. N
Wilh qoo many boais he {ish populaiion is depleted joo moch which results in

lower tatth . The same happens when oo few bods are al wole, which conserves
“be '[lSh Popdqﬁm, bwk (s subOPﬁMal m ferms Df jhe wtd)

Optimal contw

We 0“’“ saw et The Fundion T, is symmetvic ebout its Maximum so If Yhe
optima] mumber of bools wAS 09 boc4.6the sustainable wrd with bo=5 boare
wovld be .sb‘gbi{y hig))er than @ith ) =4

However, I we toke into auount that @shing boats are wostly. bo=4 wil be
probably be the more veasonable choice.

{bjective funciional:

We now want {0 Maximize profit vather than Cakch. So we need 4o tate ‘™o e.tomy

* Costs of mdintaining o.ﬁ.shing fleet,
* the wmarket place of fish, etc.

Detinition: profit = revenue st

Tofit vate = vevenue rate — vate of totol casts,
U.Sing +hat’[revenue 16 the watth times the market price of ﬁgh] and that the
[tota) wst isthe Sum of the overhead costs and the salaries of the -ﬁ’sbomen]; e,

P()= phlt) - (cg+nuw)bly) profit rale
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The +tota profit  until time t=T is then obtained by integrating the profit rai‘e\

from te0 o ¥=T. To stmplify Hhis, e assume that T=00 and we diswount the
faure profit with o constant diswund vate §>0.

Together whh the constitudive relafion  hif)= 9x1t)bld - the overall profit as
a fiundion of b bewmes

T = | *phit [ cgrrw) bile "
J ﬁpch(‘t) blY) ~ (gt mw)blt)]e $a¢
= " bO[pgxf)-CGrm] "
= . “ o [pgx(0 -] ety el profiv

w here we Bed |Ci= CgtnNW| “The disount fagor S o.wounts for inflafion, inveress
rates or the fact thot Future cewards arc l&ts profitable than Immediate rewards
It alo ensures that J is inite for our dwice of o.dmissible contro) variables b(-)

Extremvmn prindple e want <o maximize the overall pyofib
Jby = jom bW [ paxtt)-¢) e 8% dr-
over all admissible hanwesting strodegies. .. over the and the

Since the population x(t) depends on this choice, our optimal harvesting probiem
i of the form of a. maximixation problem with oo Wnstraint:

wmax J(b)
ma 4)
. It
overthe Set of admisible Soniwl Straigie 0:[o, )R  bit) = ?:o 3>tF
*
and Jubjed to EZE(' .-7 ’6"(\"”5-) t<t #
W"{ q’? -Z t>t*
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Generally, problems of fhis fwym can be solved by the method o lagu nge

moltipisess o2 by eliminating the onstraint.

* & 00 ) 'St
Note that T(b):jvt b(,t)[pqxlt)-ﬂe iy -rjt* bl‘t)[pqx(ﬂ c]e dr
M -
= b [mm0-cle Stat

This, we cansave (1) and () by first detemnining the optimal swilthing 11me ¥ which

allows for solving 4 analytially and Pligging the Solrtion xtt) into (1), whith then
eliminales the wonstraint and allows us to tompute the aptimal mumber of boats.

g\;g‘, We maximize overthe aoHchirg time 1‘*.

Cleavly the opiimal surtching 1ime  coill depend o  the initial walue X, :
(€ xois larger than The moximvm aapaufy under fishing fhen & pays off 10 Nsume
mi.aq‘ {ich  fishing front the very beginning
Popum\—ion
lf however the initral fish populatin is below the apacity) then ame should wait and
resume ((shihg onee the {ish populahion has reached the fishable wlpadiy. Waiﬂn3 longer

to {uriher increase the population does not pay off , in pavticular since future profits
are diswuntel .

x(t) fishing, K

flsh
populalion

valve




The solviion of the swiiched logistic equ atim at the s‘wﬁd)i'a peint +*
is wnfinwous but ot differentiable bewruse the contro) vaviahle hasa jump
discontinuity of t* and jumps from b(1*) =0 to b t™+¢)= bu.

let us assume that ¥, <x* and recal that from separation of variable we

determined thetthe ish populalion has the form

1t
}Axgc—"

Rt %o €51

He) =

when|b.=0|. We Can rewnic this as

XH)= Hxo ,(04

Ke V%, (1-¢TY) g}‘/

= Kx,
(K-x)e 8t + %,
= K X
%-)e‘ e
= A . telot™]

The optima)} Swilching ime isthen determined by the condidion xIt7) = x*

So\vina the equation fov t* yields
* K

l — >
|+(‘2"’-9e"3t

~22



x™* ¢ x*(.f._§e~5t*= KK

X* (.ﬁ— ~5 Q—Kt* = K“)(*

%o
*
e¥t = x ¥ (& -
K-x*
* * K
Jt7= bog [ ¥ (% ")1
K-x*

> 4t gl ) ()]

FICERELE R

el e

me P ng., we ‘fouﬂd

K- 5)

:hich determines the optimol sitching Fime +* = t™{ bo) as a fund
ch
umber of boaks (ua the wpaLily K, the is & funcim op b.) e
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Stepz. Next,we eliminale 1he wnstraint fom T, by noting hat
x)ex* Virt*

fenie J< | bofpg* ~de St
-~ 0o )
= be Jr*(b,) (PaK(1-%) -<)e St gt h
) % 4o [(P‘Pk{"c‘%) ’C> e-St]vt*(bo)

b pur(1-15)0) g, (P - HE)

o {for 8§70
- 'f(m“(' ) ()
—St*(b.)

‘l

b‘[ mK l w)-
tG V>0 then J)70
The profit function is non-negative when Pq}‘(l

‘L—-)>c wHh C';'&Mb:f
Then rvearranging 1his I'V\equm_‘j fov b, we arrive at

| - “\2’27 4_

- &= P?K e Lo

b < %(lv i)

which mplies that for
<X (-%
0z b, %(; P%")

the function JCb) Js bounded fyom below by 0 and has & unigue meximum by Rolle's

B &P




