Math UA 009
Section 1
FALL 2022

Christiana Mauroyiakoumou (cm4291@nyu.edu)

Lesson 1
Exponents and radicals (1.2)
Integer exponents
If a is $m y$ real number and η is a positive integer, then the $n^{\text {th }}$ power of a is

$$
a_{\text {base }}^{a^{n^{\downarrow}}}=\underbrace{a \cdot a \cdot a \cdots a}_{n \text { factors }}
$$

$$
e . g \cdot(a) 4^{3}=4 \cdot 4 \cdot 4
$$

(b) $\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right)$
(c) $(-3)^{4}=(-3)(-3)(-3)(-3)=81$
(d) $-3^{4}=-(3 \cdot 3 \cdot 3 \cdot 3)=-81$

Note $a^{\circ}=1$ for any base a

$$
a^{-n}=\frac{1}{a^{n}}
$$

Example
(a) $\quad\left(\frac{2}{3}\right)^{0}=1$
(b) $y^{-2}=\frac{1}{y^{2}}$
(c) $(-4)^{-2}=\frac{1}{(-4)^{2}}=\frac{1}{16}$

LAWS OF EXPONENTS

Law

1. $a^{m} a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$

Example
$3^{2} \cdot 3^{5}=3^{2+5}=3^{7}$
$\frac{3^{5}}{3^{2}}=3^{5-2}=3^{3}$
$\left(3^{2}\right)^{5}=3^{2 \cdot 5}=3^{10}$
$(3 \cdot 4)^{2}=3^{2} \cdot 4^{2}$
$\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}$
6. $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}$
7. $\frac{a^{-n}}{b^{-m}}=\frac{b^{m}}{a^{n}} \quad \frac{3^{-2}}{4^{-5}}=\frac{4^{5}}{3^{2}}$

Description
To multiply two powers of the same number, add the exponents.
To divide two powers of the same number, subtract the exponents.
To raise a power to a new power, multiply the exponents.
To raise a product to a power, raise each factor to the power.
To raise a quotient to a power, raise both numerator and denominator to the power.

To raise a fraction to a negative power, invert the fraction and change the sign of the exponent.

To move a number raised to a power from numerator to denominator or from denominator to numerator, change the sign of the exponent.

Examples.

1. $\quad 4^{3} \cdot 4^{5}=4^{8}$
2. $\quad \frac{a^{m}}{a^{n}}=a^{m-n} . \quad a^{m} \cdot \frac{1}{a^{n}}=a^{m} \cdot a^{-n}=a^{m-n}$
3. $\left(2^{4}\right)^{3}=2^{12}$
4. $\left(a b^{n}=a^{n} b^{n}\right.$ e.g. $(2.5)^{3}=2^{3} \cdot 5^{3}$
5. $\left(\frac{2}{5}\right)^{4}=\frac{2^{4}}{5^{4}}$
6. $\left(\frac{4}{9}\right)^{-3}=\left(\frac{9}{4}\right)^{3}=\frac{9^{3}}{4^{3}}$

Simplifying expressions involving exponents

$$
\text { (a) } \begin{aligned}
& \underbrace{\left(4 a^{5} b^{3}\right)^{1}} \cdot \underbrace{\left(5 a b^{2}\right)^{4}}_{\downarrow}=4 \cdot 5^{4} a^{5} b^{3} a^{4}\left(b^{2}\right)^{4} \\
& 5^{4} \cdot a^{4} \cdot\left(b^{2}\right)^{4}=5^{4} a^{4} b^{8} \\
&=4 \cdot 5^{4} a^{5} \cdot a^{4} \cdot b^{3} \cdot b^{8} \\
&=4 \cdot 5^{4} a^{9} b^{11}
\end{aligned}
$$

$$
\text { Recall }\left(a^{m}\right)^{n}=a^{m n}
$$

Example 2
(b) $\quad\left(\frac{x}{y}\right)^{4} \cdot\left(\frac{x y^{2}}{z^{3}}\right)^{2}=\frac{x^{4}}{y^{4}} \cdot \frac{x^{2} \cdot y^{4}}{z^{6}}$

$$
\begin{aligned}
& =\frac{x^{4+2}}{z^{6}} \cdot 1 \\
& =\frac{x^{6}}{z^{6}}
\end{aligned}
$$

Note

$$
\begin{aligned}
& y^{-4} \cdot y^{4} \\
= & y^{-4+4} \\
= & y^{0} \\
= & 1
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \frac{y^{x}}{y^{4 / 2}}=y^{2-4}=y^{-2}=\frac{1}{y^{2}} \\
& \frac{y^{8}}{y^{8} 5}=\frac{1}{y^{5}} \quad y^{3-8}=y^{-5}=\frac{1}{y^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{x^{2}}{x^{6}}=\frac{1}{x^{4}}\right. \\
& x^{2} \cdot \frac{1}{x^{6}}=x^{2} \cdot x^{-6}=x^{2-6}=x^{-4}=\frac{1}{x^{4}}
\end{aligned}
$$

e.g. $\frac{x^{6}}{x^{2}}=x^{4}$

Examples involving negative exponents
(a)

$$
\begin{aligned}
& \frac{10 a^{1} b^{-3}}{2 a^{-2} b^{5}}=5 a^{1-(-2)} b^{-3-5}=5 a^{3} b^{-8}=\frac{5 a^{3}}{b^{8}} \\
& \downarrow \\
& 5 a^{2} \cdot a \cdot \frac{1}{b^{5}} \cdot \frac{1}{b^{3}}=5 a^{3} \cdot \frac{1}{b^{8}}
\end{aligned}
$$

Recall

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

Radicals
If n is any positive integer, then the principal $n^{\text {th }}$ root of a is defined as:

$$
\sqrt[n]{a}=b
$$

This means $b^{n}=a$.
Note. If n is even then both a and 6 must be greater or equal to 0 .

PROPERTIES OF nth ROOTS

Property

1. $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$
2. $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
3. $\sqrt[m]{\sqrt[n]{a}}=\sqrt[m n]{a}$
4. $\sqrt[n]{a^{n}}=a$ if n is odd
5. $\sqrt[n]{a^{n}}=|a|$ if n is even

Example

$$
\begin{aligned}
& \sqrt[3]{-8 \cdot 27}=\sqrt[3]{-8} \sqrt[3]{27}=(-2)(3)=-6 \\
& \sqrt[4]{\frac{16}{81}}=\frac{\sqrt[4]{16}}{\sqrt[4]{81}}=\frac{2}{3} \\
& \sqrt{\sqrt[3]{729}}=\sqrt[6]{729}=3 \\
& \sqrt[3]{(-5)^{3}}=-5, \quad \sqrt[5]{2^{5}}=2 \\
& \sqrt[4]{(-3)^{4}}=|-3|=3
\end{aligned}
$$

Examples.
(a) $\sqrt[4]{81}=3$
(b)

$$
\begin{aligned}
& \sqrt[3]{z^{4}}=\sqrt[3]{z^{3} \cdot z}=\sqrt[3]{z^{3}} \cdot \sqrt[3]{z} \doteq z \cdot \sqrt[3]{z} \\
& \downarrow \\
& \sqrt[3]{z^{2} \cdot z^{2}} \\
& =\underbrace{\sqrt[3]{z^{2}} \cdot \sqrt[3]{z^{2}}}
\end{aligned}
$$

$$
\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

(c)

$$
\begin{aligned}
\sqrt[4]{81 x^{16} y^{8}} & =\sqrt[4]{81} \cdot \sqrt[4]{x^{16}} \cdot \sqrt[4]{y^{8}} \\
& =3 \underbrace{\sqrt[4]{\left(x^{4}\right)^{4}}}_{x^{4}} \underbrace{\sqrt[4]{\left(y^{2}\right)^{4}}}_{\uparrow} \\
& =3 \cdot x^{4} \cdot y^{2} \quad y^{2}
\end{aligned}
$$

Exponent law:

$$
\begin{array}{ll}
\left(a^{m}\right)^{n} & =a^{m \cdot n} \\
\sqrt[n]{a^{n}}=a
\end{array} \quad=3 \cdot x^{4} \cdot y^{2}
$$

Rational exponents (fractional exponent).

$$
\left(a^{\frac{1}{m}}\right)^{m}=a^{\frac{m}{m}}=a^{\prime}=a \quad \Leftrightarrow \quad a^{1 / m}=\sqrt[m]{a} \leftarrow
$$

For any exponent m / n where m and n are integers, $n>0$ then we define

$$
\begin{array}{r}
a^{m / n}=(\sqrt[n]{a})^{m} \\
\downarrow \\
r^{n} \sqrt{a^{m}}
\end{array}
$$

Examples
(a). $8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4$
(b). $125^{-1 / 3}=\frac{1}{125^{1 / 3}}=\frac{1}{\sqrt[3]{125}}=\frac{1}{5}$

Simplifying expressions
(a).

$$
\begin{aligned}
\left(2 a^{4} b^{6}\right)^{2 / 5} & =2^{2 / 5}\left(a^{4}\right)^{2 / 5}\left(b^{6}\right)^{2 / 5} & \\
& =\sqrt[5]{2^{2}} \sqrt[5]{\left(a^{4}\right)^{2}} \sqrt[5]{\left(b^{6}\right)^{2}} & \frac{y^{4}}{y^{1}}=y^{4-1} \\
& =\sqrt[5]{4} \sqrt[5]{a^{8}} \sqrt[5]{b^{12}} & y^{3}=y^{2}
\end{aligned}
$$

(b) $\begin{aligned}\left(\frac{2 x^{3 / 4} 4 \sqrt{4}}{y^{1 / 3}+}\left(\frac{y^{4}}{x^{-1 / 2}}\right)\right. & \downarrow\left(\frac{2^{3} x^{9 / 4} y^{4}}{x^{-1 / 2}}\right.\end{aligned}=\frac{8 x^{\frac{9}{4}} \cdot x^{\frac{1}{2}} y^{3}}{}=8 x^{\frac{1}{4} y^{3}}$.
$\left(a^{m}\right)^{n}$

$$
=a^{m \cdot n}
$$

$$
\frac{9}{4}+\frac{1}{2}=\frac{11}{4}
$$

$$
\begin{aligned}
& \frac{2^{3} x^{\frac{3}{4} \cdot 3}}{y^{\frac{1}{3} \cdot 3}} \cdot \frac{y^{4}}{x^{-1 / 2}}=\frac{8\left(x^{3 / 4}\right)^{3} \cdot \frac{1}{x^{-1 / 2}}}{y} \cdot \frac{y^{4}}{x^{-1 / 2}}=\frac{8 x^{\frac{9}{4}} \cdot \frac{1}{x^{-1 / 2}}=x^{\frac{9}{4}} \cdot x^{\frac{1}{2}}}{x^{-1 / 2} \cdot \frac{y^{4}}{y}=8 x^{\frac{9}{4}} \cdot x^{\frac{1}{2}}} \\
& \text { R ecall } x^{-m}=\frac{1}{x^{m}} \text { or } \frac{1}{x^{-m}}=x^{m} \cdot y^{3} \frac{9}{4}+\frac{1}{2} 3 \\
& =8 x^{3} y^{\frac{9}{4}}
\end{aligned}
$$

Upcoming deadlines

- Homework 1: Sep 18 at 11:59 pm (on Gradescope)
- WebAssign 1.2,1.3: Sep 17
- Quiz 1: $\frac{\text { Sections } 2 \text { and } 4}{\downarrow}$, Sections 3 and 5 : During recitations Sep 20

Sep 22

Rationalizing the denominator (Sec. 1.2)
Sometimes we want to get rid of the radical in the denominator by multiplying both the numerator and the denominator by an appropriate expression

$$
\begin{aligned}
& \text { e.g } \frac{1}{\sqrt{3}}: \frac{\sqrt{3}}{\sqrt{3}}: \quad \text { Recall from last class } \\
& \left(\begin{array}{ll}
\frac{\sqrt{3}}{\sqrt{3 \cdot 3}} & =\frac{\sqrt{3}}{3} \\
=\frac{\sqrt{3}}{\sqrt{3^{z}}}
\end{array}\right)
\end{aligned}
$$

In general if we have $\frac{1}{\sqrt{a}} \frac{\sqrt{a}}{\sqrt{a}}=\frac{\sqrt{a}}{a} \leftarrow$ standard form If we are given $\frac{1}{\sqrt[n]{a^{m}}}$ we have to do the following.

$$
\frac{1}{\sqrt[n]{a^{(m)}}} \cdot \frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n-m}}}=\frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n+n+n-n^{\prime}}}}=\frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n}}}=\frac{\sqrt[n]{a^{n-m}}}{a}
$$

Examples
(1) Rationalize

$$
\begin{array}{r}
\frac{1}{\sqrt[3]{5}} \cdot \frac{\sqrt[3]{5}}{\sqrt[3]{5}}=\frac{\sqrt[3]{5}}{\sqrt[3]{5 \cdot 5}}=\frac{\sqrt[3]{5}}{\sqrt[3]{5^{2}}} \\
\uparrow \\
\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a \cdot b}
\end{array}
$$

$$
\frac{1}{5^{\frac{1}{3}}} \cdot \frac{5^{\frac{2}{3}}}{5^{\frac{2}{3}}}=\frac{5^{\frac{2}{3}}}{5}
$$

$$
\sqrt[3]{5} \cdot \sqrt[3]{5^{2}}
$$

$$
\frac{1}{5^{\frac{1}{3}}} \cdot \frac{5^{x}}{5^{x}}=\frac{5^{x}}{5}
$$

$$
=\sqrt[3]{5^{1+2}}
$$

$$
5^{\frac{1}{3}} 5^{x}=5^{\frac{1}{3}+x} \text { we want } 5^{1}
$$

$$
=\sqrt[3]{5^{3}}
$$

$$
=5
$$

$$
\begin{aligned}
\frac{1}{3}+x & =1 \\
x & =\frac{2}{3}
\end{aligned}
$$

(2) $\frac{2}{\sqrt[2]{5}} \cdot \frac{\sqrt[2]{5}}{\sqrt[2]{5}}=\frac{2 \sqrt{5}}{5}$

$$
\sqrt[2]{5-5}=\sqrt[2]{5^{x}}=5
$$

(3)

$$
\begin{aligned}
\sqrt[5]{\frac{1}{b^{2}}} & =\frac{1}{\sqrt[5]{b^{2}}} \\
& =\frac{1}{b^{\frac{2}{5}}} \cdot \frac{b^{\frac{3}{5}}}{b^{\frac{3}{5}}} \\
& =\frac{b^{\frac{3}{5}}}{b^{1}} \\
& =\frac{5 \sqrt{b^{3}}}{b}
\end{aligned}
$$

Recall from last class $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
(4) $\frac{1}{\sqrt{5 x}} \cdot \frac{\sqrt{5 x}}{\sqrt{5 x}}=\frac{\sqrt{5 x}}{5 x}$

Algebraic expressions (1.3)
A polynomial in the variable x is an expression of the form

$$
\underbrace{a_{n} x^{n}}+\underbrace{a_{n-1} x^{n-1}}+\ldots+a_{1} x+a_{0}
$$

where $a_{0} a_{1}$ term a_{n} term
integer $a_{0}, a_{1}, \ldots, a_{n}$ are constants and n is a nonnegative integer. If $a_{n} \neq 0$ then the polynomial has degree n.
The terms $a_{k} x^{k}$ are called the terms
Adding and subtracting polynomials
Example: $\quad 8 x^{9}+2 x^{9}+1\left(=(8+2) x^{9}+1\right)=10 x^{9}+1$

$$
5 x^{3}-x^{3}=4 x^{3}
$$

Note: $\quad-(a+b)=-a-b$

Multiplying algebraic expressions

$$
(a+b) \cdot(c+d)=a c+a d+b c+b d
$$

Example: (a) $(2 x+1)(x-5)=2 x^{2}-10 x+x-5$

$$
=2 x^{2}-9 x-5
$$

(b)

$$
\begin{aligned}
(2 x)+(3)\left(\frac{x}{\left.x^{2}-4 x+6\right)}\right. & = \\
& 2 x\left(x^{2}-4 x+6\right) \\
& +3\left(x^{2}-4 x+6\right)
\end{aligned}
$$

$$
\begin{aligned}
= & 2 x^{3}-8 x^{2}+12 x \\
& +3 x^{2}-12 x+18 \\
= & 2 x^{3}-5 x^{2}+18
\end{aligned}
$$

1. $(A+B)(A-B)=A^{2}-A B+A B-B^{2}=A^{2}-B^{2}$
2. $(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B$

SPECIAL PRODUCT FORMULAS
If A and B are any real numbers or algebraic expressions, then

1. $(A+B)(A-B)=A^{2}-B^{2}$

Sum and difference of same terms
2. $(A+B)^{2}=A^{2}+2 A B+B^{2}$

Square of a sum
3. $(A-B)^{2}=A^{2}-2 A B+B^{2}$

Square of a difference
4. $(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$

Cube of a sum
5. $(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}$

Cube of a difference
Principle of substitution:
Example.(1)

$$
\begin{aligned}
& \left(x^{2}+y^{5}\right)^{2}=\left(x^{2}+y^{5}\right)\left(x^{2}+y^{5}\right) \\
& (A+B)^{2}=\text { FOIL } \\
& \text { (formula 2.) }=\left(x^{2}\right)^{2}+2\left(x^{2}\right)\left(y^{5}\right)+\left(y^{5}\right)^{2} \\
& A=x^{2}=x^{4}+2 x^{2} y^{5}+y^{10} \\
& B=y^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2). }(3 x-5)^{2}=(3 x)^{2}-2(3 x)(5)+5^{2} \\
& A=3 x \quad=9 x^{2}-30 x+25 \\
& B=5 \\
& \quad(3 x-5)(3 x-5)=9 x^{2}-15 x-15 x+25 \\
& \text { (3) }(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})=9 x^{2}-30 x+25
\end{aligned}
$$

Special product formula \&. $\quad(A+B) \cdot(A-B)=A^{2}-B^{2}$ where $A=\sqrt{x}$ and $B=\sqrt{y}$

$$
(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})=x-y
$$

$$
=(\sqrt{x})^{2}-(\sqrt{y})^{2} \quad(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

(4)

$$
\begin{aligned}
& ((y+x)-1) \cdot((y+x)+1)=(y+x)^{2}-1 \\
& (A-B) \cdot(A+B)=A^{2}-B^{2}=y^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=y+x \\
& B=1
\end{aligned}
$$

Factoring algebraic expressions
(1) $3 x^{2}-9 x^{7}=3 x^{2}\left(1-3 x^{5}\right)$
(2) $8 x^{4} y^{2}+6 x^{3} y^{3}-2 x y^{4}=2 x y^{2}\left(4 x^{3}+3 x^{2} y\right.$
(3) $\left(2 x^{2}+5\right)(x-1) \sim 4(x-1)=\begin{gathered}\left.-y^{2}\right) \\ (x-1) \cdot\left(2 x^{2}+5-4\right)\end{gathered}$

NB $5(x-1)-4(x-1)=(x-1) \quad=(x-1) \cdot\left(2 x^{2}+1\right)$
SPECIAL FACTORING FORMULAS

Formula

1. $A^{2}-B^{2}=(A-B)(A+B)$
2. $A^{2}+2 A B+B^{2}=(A+B)^{2}$
3. $A^{2}-2 A B+B^{2}=(A-B)^{2}$
4. $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
5. $A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$

Name
Difference of squares
Perfect square
Perfect square
Difference of cubes
Sum of cubes

$$
\begin{aligned}
&(\underbrace{\left.2 x^{2}+5\right)(x-1)}-4(x-1)=\underbrace{(x-1) \cdot\left[\left(2 x^{2}+5\right)\right.}_{(x-1)\left(2 x^{2}+5\right)}-4] \\
&-4(x-1)
\end{aligned}
$$

In general, factoring quadratic expressions:

$$
\begin{aligned}
& x^{2}+b x+c \text { where } b, c \text { are } \\
= & (x+r) \cdot(x+s) \text { factored form numbers. } \\
= & x^{2}+s x+r x+r s \\
= & x^{2}+(s+r) \cdot x+r s
\end{aligned}
$$

$$
b=s+r
$$

$$
c=r s
$$

Example

$$
\begin{gathered}
x^{2}+7 x+12 \\
\uparrow \quad \uparrow \\
b \quad c \\
=(x+3)(x+4)
\end{gathered}
$$

$$
1 \cdot 12=c=12
$$

$$
3 \cdot 4=c=12
$$

$$
2 \cdot 6=c=12
$$

A bit more complicated...
Factoring $a x^{2}+b x+c=(p x+r)(q x+s)$

$$
\begin{aligned}
& =p q x^{2}+p s x+r q x+r s \\
& =p q x^{2}+(p s+r q) x+r s
\end{aligned}
$$

$$
\begin{aligned}
& a=p q \\
& b=p s+r q \\
& c=r s
\end{aligned}
$$

Example. $\quad 6 x^{2}+7 x-5=(3 x+5)(2 x-1)$ attempt 1

$$
\left.\begin{array}{rl}
\text { Example. } \quad 6 x^{2}+7 x-5= & \left(\begin{array}{lll}
3 x & 1
\end{array}\right)(2 x, 5
\end{array}\right)
$$

Attempt 1:

$$
\begin{gathered}
6 x^{2}-3 x+10 x-5 \\
=6 x^{2}+7 x-5
\end{gathered}
$$

Note:

Today weill finish Section 1.3 and do most of 1.4 too.
Today: Office hours at WWH in Room 1025 at 4:30-5:30 pm.
Examples (2)
Factorize:

$$
\begin{array}{ll}
\text { Factorize: } & (2 x+1)(x+3) \\
2 x^{2}+5 x+3 & (x+1)(2 x+3)
\end{array}
$$

$$
2 x^{2}+3 x+2 x+3
$$

(3) $8 x^{2}+10 x+3=(2 x+1)(4 x+3)=2 x^{2}+5 x+3$
(4)

$$
\begin{array}{ll}
6 y^{2}+11 y-21=(y+3)(6 y-7) & 2 \cdot 4 \\
6 \cdot 1 \\
2.3 & 3 \cdot 7=21 \\
6 y^{2}-7 y+18 y-21=6 y^{2}+11 y-21 & 1 \cdot 21=21
\end{array}
$$

Difference of squares: $\quad\left(A^{2}-B\right)^{2}=(A-B)(A+B)$.
Example :

$$
\begin{aligned}
4 x^{2}-36 & =(2 x-6)(2 x+6) \\
9 z^{2}-25 & =(3 z-5)(3 z+5) \\
(a+b)^{2}-c^{2} & =[(a+b)-c][(a+b)+c] \\
A=a+b \quad B & =c
\end{aligned}
$$

Perfect square:

$$
A^{2}+2 A B+B^{2} \text { or } A^{2}-2 A B+B^{2}
$$

To recognize it look if the middle term is plus or minus twice the product of the square root of the two outer terms.

$$
\begin{array}{lll}
\text { e.g 1. } x^{2}+6 x+9=(x+3)^{2} \rightarrow & (x+3)(x+3) \\
\text { 2. } \begin{array}{l}
4 x^{2}-4 x y+y^{2}=(2 x-y)^{2} \\
y \\
(2 x)^{2}
\end{array} \quad=x^{2}+3 x+3 x+9 \\
(y)^{2}
\end{array}
$$

$$
\begin{aligned}
& \sqrt{4 x^{2}} \\
= & \sqrt{4} \sqrt{x^{2}} \\
= & 2 x \\
\Rightarrow & (2 x)^{2}=4 x^{2}
\end{aligned}
$$

Factoring expressions with fractional exponents
Recall

Factorize: $3 x^{3 / 2}-9 x^{1 / 2}+6 x^{-1 / 2}=3 x^{-1 / 2}\left(x^{2}-3 x^{1}+2\right)$
To factor out $x^{-1 / 2}$ from $x^{3 / 2}$:
factor out

$$
\begin{aligned}
x^{3 / 2} & =x^{-1 / 2}\left(x^{\frac{3}{2}}-\left(-\frac{1}{2}\right)\right. \\
& =x^{-1 / 2}\left(x^{2}\right)
\end{aligned}
$$

the power of x with the small est exponent

$$
\begin{aligned}
& 3 x^{-1 / 2} \cdot x^{2} \\
= & 3 x^{-\frac{1}{2}+2} \\
= & 3 x^{-\frac{1}{2}+\frac{4}{2}} \\
= & 3 x^{\frac{3}{2}}
\end{aligned}
$$

ecg.

$$
\begin{aligned}
& (2+x)^{-2 / 3} x+(2+x)^{1 / 3}=(2+x)^{-2 / 3} \cdot\left[x+(2+x)^{0}\right] \\
& x^{m} x^{n}=x^{m+n}
\end{aligned} \begin{aligned}
& (2+x)^{-\frac{2}{3}} \cdot(2+x)^{1} \\
& =(2+x)^{-\frac{2}{3}+1} \\
& =(2+x)^{\frac{1}{3}}
\end{aligned}
$$

Factoring by grouping

$$
\text { 1. } \begin{aligned}
& x^{3}+x^{2}+4 x+4 \\
& \uparrow= \\
& x\left(x^{2}(x+1)+4(x+1)\right. \\
& \downarrow=\frac{(x+1)\left(x^{2}+4\right)}{x} \\
& x(x+1) x \\
& t\left(x^{2}-4\right)=(x-2)(x+2) \\
&(x+2)^{2}
\end{aligned}
$$

2.

$$
\begin{aligned}
\underbrace{3 x^{3}-x^{2}}-\underbrace{12 x+4} & =x^{2}(\underbrace{3 x-1})-4(3 x-1)=x^{2}+4 x+4 \\
& =(3 x-1)\left[x^{2}-4\right] \\
& =(3 x-1)(x-2)(x+2)
\end{aligned}
$$

Section 1.4 RATIONAL EXPRESSIONS

Definition: A rational expression is a fractional expression where both the numerator and the denominator are polynomials.
e.g. $\quad \frac{3 x}{x-2}, \frac{z-2}{z^{2}+4}, \cdots$

But $\frac{x^{3}}{\sqrt{x^{2}+1}}$
this is not a polynomial because of $\sqrt{\cdots}$ so it's not a rational expression.

Domain : the set of values of ' x ' that the variable is allowed to have
e.g. $\frac{3 x}{x-2}$ domain is $\{x \mid x \neq 2\}$
\uparrow
such x is not equal to 2
e.g. $\frac{x}{x^{2}-5 x+6}=\frac{x}{(x-3)(x-2)}$

Domain is $\{x \mid x \neq 2$ and $x \neq 3\}$
avoid the x values that give that the denominator $=0$.
e.g. $\frac{3 \sqrt{x}}{x-5}$ Domain is $\{x \mid x \neq 5$ and $x \geqslant 0\}$ this comes from \sqrt{x}

Simplifying rational expressions
e.g. $\frac{x^{2}-1}{x^{2}+x-2}=\frac{(x+1)(x-1)}{(x+2)(x-1)}=\frac{x+1}{x+2}$

$$
\text { e.g. } \begin{aligned}
\left(\frac{x^{2}+2 x-3}{x^{2}+8 x+16}\right)\left(\frac{3 x+12}{x-1}\right)= & \left(\frac{(x-1)(x+3)}{(x+4)^{2}}\right) \cdot\left(\frac{3(x+4)}{x-1}\right) \\
& (x+4)(x+4) \\
= & \left.\frac{3(x+3)}{(x+4)} \quad=\frac{3 x+9}{x+4}\right)
\end{aligned}
$$

e.g. $\frac{x-4}{x^{2}-4} \div \frac{x^{2}-3 x-4}{x^{2}+5 x+6}=\frac{x-4}{x^{2}-4} \cdot \frac{x^{2}+5 x+6}{x^{2}-3 x-4}$

$$
=\frac{(x-4)}{(x-2)(x+2)} \cdot \frac{(x+2)(x+3)}{(x-4)(x+1)}
$$

$$
=\frac{x+3}{(x-2)(x+1)}
$$

Adding and subtracting rational expressions

$$
\frac{A}{C}+\frac{B}{C}=\frac{A+B}{C}
$$

Note. It's best to use the least common denominator.

Examples
1). $\frac{3}{x-1}+\frac{x}{x+2}$
the denominator will be a product of the $(x-1)$ and

$$
(x+2) .
$$

$$
\begin{aligned}
& =\frac{3(x+2)+x(x-1)}{(x-1) \cdot(x+2)} \\
& =\frac{3 x+6+x^{2}-x}{(x-1)(x+2)} \\
& =\frac{x^{2}+2 x+6}{(x-1)(x+2)}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{3(x+2)}{(x-1)(x+2)}+\frac{x(x-1)}{(x-1)(x+2)} \\
= & \left.\frac{3}{x-1}+\frac{x}{x+2}\right) \\
& (x+1)(x+6) \\
& (x+2)(x+3)
\end{aligned}
$$

2).

$$
\begin{aligned}
\frac{1}{x^{2}-1}-\frac{2}{(x+1)^{2}} & =\frac{1}{(x-1)(x+1)^{1}}-\frac{2}{(x+1)^{2}} \\
& =\frac{x+1-2(x-1)}{(x-1)(x+1)^{2}} \\
& =\frac{x+1-2 x+2}{(x-1)(x+1)^{2}} \\
& =\frac{-x+3}{(x-1)(x+1)^{2}}
\end{aligned}
$$

Compound fractions
Note: A compound fraction is a fraction that has a fraction expression in the numerator, denominator, or both.
eng.

$$
\begin{aligned}
\frac{\frac{a}{b}+1}{1-\frac{b}{a}} & =\frac{\frac{a}{b}+\frac{b}{b}}{\frac{a}{a}-\frac{b}{a}} \\
& =\frac{\frac{a+b}{b}}{\frac{a-b}{a}} \\
& =\frac{a+b}{b} \cdot \frac{a}{a-b} \\
& =\frac{a(a+b)}{b(a-b)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}+1 \\
= & \frac{1}{2}+\frac{2}{2} \\
= & \frac{3}{2}
\end{aligned}
$$

Note.
$\begin{aligned} \frac{\frac{2}{3}}{\frac{4}{5}} & =\frac{2}{3} \cdot \frac{5}{4} \\ & =\frac{5}{6}\end{aligned}$ $\frac{2 \cdot 5}{3 \cdot 4}$

Announcements
(1) In WebAssign it matters whether you write little x or capital X.
(2) Submit the homework though Gradescope, not by email.
(3) If Gradescope doesn't work and you enrolled in class late. let me know. If it gust does nit work, try a different browser.
(4) If you have math questions, use Compuswire.

From the previous section.
Rationalizing denominators or numerators
Use: $\quad(A-B \sqrt{C}) \cdot(A+B \sqrt{C})=A^{2}-B^{2} C$
examples (1) $\frac{1}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}=\frac{1-\sqrt{3}}{1-3}=\frac{1-\sqrt{3}}{-2}<\begin{gathered}\text { this is } \\ \text { correct }\end{gathered}$

$$
\begin{aligned}
(A-B)(A+B) & =A^{2}+A B-A A-B^{2} \\
& =A^{2}-B^{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{\sqrt{4+x}-2}{x} & =\frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2} \\
& =\frac{4+x-4}{x(\sqrt{4+x}+2)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{x(\sqrt{4+x}+2)} \\
& =\frac{1}{\sqrt{4+x}+2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\frac{\sqrt{y+5}-10}{2}= & \frac{\sqrt{y+5}-10}{2} \cdot \frac{\sqrt{y+5}+10}{\sqrt{y+5}+10} \\
= & \frac{(y+5)-100}{2(\sqrt{y+5}+10)} \\
= & y-95 \\
& 2 \sqrt{y+5}+20
\end{aligned}
$$

Section 1.5: Equations

Example:

$$
\begin{aligned}
& 2 x+4=0 \\
&-4-4 \\
& 2 x=-4 \\
& x=-2 \\
& \uparrow
\end{aligned}
$$

the solution is the root of the equation.
Equivalent equations

1. $A=B \Leftrightarrow A+C=B+C$
2. $A=B \Leftrightarrow A \cdot C=B \cdot C \quad($ where $C \neq 0)$.

Linear equation solutions:
egg.

$$
\begin{aligned}
7 x-4 & =5 x+9 \\
7 x & =5 x+13 \\
2 x & =13 \\
x & =\frac{13}{2}
\end{aligned}
$$

egg.

$$
A=2 l h+2 \omega h+2 l w
$$

We want width, w, expressed in terms of all other quantities.

$$
\begin{aligned}
& A-2 l h=2 \omega h+2 l \omega \\
& A-2 l h=2 \omega(h+l) \\
& \omega=\frac{A-2 l h}{2(h+l)}
\end{aligned}
$$

SOLVING QUADRATIC EQUATIONS.
Reminder: A quadratic equation is of the form

$$
a x^{2}+b x+c=0 \quad \text { tr }
$$

where a, b, and c are real numbers with $a \neq 0$

Zero -product property
$A B=0$ if and only if $A=0$ or $B=0$.

Factoring a quadratic to solve it

$$
\begin{aligned}
& \text { ecg. } \frac{x^{2}+5 x=24 .}{x^{2}+5 x-24=0} \\
& (x-3)(x+8)=0 \\
& x=3 \text { or } x=-8
\end{aligned}
$$

p^{0}
NOT
USE $\quad x^{2}+5 x=24$
HIS $x(x+5)=24$
if $x=3$

$$
\begin{aligned}
H H S & =(3)^{2}+5(3) \\
& =9+15 \\
& =24 \\
& =R H S V
\end{aligned}
$$

if $x=-8$

$$
\begin{aligned}
\text { LHS } & =(-8)^{2}+5(-8) \\
& =64-40 \\
& =24 \\
& =\text { RHS }
\end{aligned}
$$

e.g $\quad x^{2}=24, \quad \swarrow \quad(-\sqrt{24})^{2}=+24$

$$
x= \pm \sqrt{24}
$$

$$
\begin{aligned}
& x^{2}=c \\
& x=\sqrt{c},-\sqrt{c}
\end{aligned}
$$

e.g. $(x-3)^{2}=7$
square root both sides

$$
\begin{aligned}
& x-3= \pm \sqrt{7} \\
& x=3 \pm \sqrt{7}
\end{aligned}
$$

COMPLETING THE SQUARE

$$
(x+b)^{2}=x^{2}+2 b x+b^{2}
$$

$$
\underbrace{x^{2}+b x}_{\substack{\text { always (} k) \\ \text { half the } \\ \text { coefficient of } x}}+a=\underbrace{\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}}+a
$$

Check that (t) gives (A)

$$
\begin{aligned}
(x)=\underbrace{\left(x+\frac{b}{2}\right)^{2}}-\left(\frac{b}{2}\right)^{2} & =x^{2}+b x+b^{2} / 4-\frac{b^{2}}{4} \\
& =x^{2}+b x \\
& =\text { (A) }
\end{aligned}
$$

Example
(1) $x^{2}-8 x+13=0$ use completing the square.

$$
\begin{array}{ll}
(x-4)^{2}-4^{2}+13=0 & (x-4)^{2}=(x-4)(x-4) \\
& =x^{2}-8 x+16 \\
(x-4)^{2}-16+13=0 & (x-4)^{2}-4^{2}+13 \\
(x-4)^{2}-3=0 & =x^{2}-8 x+16-16+13 \\
(x-4)^{2}=3 & \\
x-4=x^{2}-8 x+13 \\
x=4 \pm \sqrt{3} &
\end{array}
$$

(3)

$$
\begin{array}{lr}
3 x^{2}-12 x+9=0 & 12 x=0 \\
2 & x=0
\end{array}
$$

$$
3\left(x^{2}-4 x+3\right)=0
$$

$(\div 3)$

$$
\begin{aligned}
& (x-2)^{2}-2^{2}+3=0 \\
& (x-2)^{2}-4+3=0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \underbrace{\left[\begin{array}{c}
(x-2)^{2}-4 \\
7
\end{array}\right]+8=0, ~} \\
& 3(x-2)^{2}-12+8=0 \\
& 3(x-2)^{2}-4=0 \\
& 3(x-2)^{2}=4 \\
& (x-2)^{2}=\frac{4}{3} \\
& x-2= \pm \sqrt{\frac{4}{3}} \\
& x=2 \pm \sqrt{\frac{4}{3}}=2 \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& (x-2)^{2}-1=0 \\
& (x-2)^{2}=1 \\
& x-2= \pm 1 \\
& x=2 \pm 1=3,1
\end{aligned}
$$

(4)

$$
\text { (4) } \begin{gathered}
3 x^{2}+\left(\frac{16}{2} x+5=0\right. \\
3\left[x^{2}+\frac{16}{3} x\right]+5=0 \\
\frac{1}{2}\left(\frac{46}{3}\right)^{8} \quad 3\left[\left(x+\frac{8}{3}\right)^{2}-\left(\frac{8}{3}\right)^{2}\right]+5=0 \\
\Rightarrow 3\left(x+\frac{8}{3}\right)^{2}-3\left(\frac{8}{3}\right)^{2}+5=0 \\
3\left(x+\frac{8}{3}\right)^{2}-\not x\left(\frac{64}{9}\right)+5=0 \\
3\left(x+\frac{8}{3}\right)^{2}-\underbrace{-\frac{64}{3}+\frac{15}{3}}_{-\frac{64}{3}+5=0}= \\
=-\frac{49}{3} \\
3\left(x+\frac{8}{3}\right)^{2}-\frac{49}{3}=0
\end{gathered}
$$

$$
\begin{aligned}
& \left(x+\frac{8}{3}\right)^{2}=\frac{49}{9} \\
& x+\frac{8}{3}= \pm \sqrt{\frac{49}{9}}= \pm \frac{7}{3} \\
& x=-\frac{8}{3} \pm \frac{7}{3}=-\frac{1}{3},-5 \\
& \downarrow \\
& \frac{-8+7}{3}=\frac{1}{3} \\
& \frac{-8-7}{3}=-\frac{15}{3}=-5
\end{aligned}
$$

Sep 21.22
Question about rationalizing denominator

$$
\begin{aligned}
\frac{x}{\sqrt{x^{2}+1}+1} \cdot \frac{\sqrt{x^{2}+1}-1}{\sqrt{x^{2}+1}-1} & =\frac{x\left(\sqrt{x^{2}+1}-1\right)}{x^{2}+1-x} \\
& =\frac{x\left(\sqrt{x^{2}+1}-1\right)}{x^{2}} \\
& =\frac{\sqrt{x^{2}+1}-1}{x}
\end{aligned}
$$

Solving quadratic equations using the quadratic formula.
$a x^{2}+b x+c=0$ where a, b, c are real numbers.

Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

where $a \neq 0$

Example
(1)

$$
\begin{array}{rlrl}
3 x^{2}-5 x-1=0 & a & =3 \\
a x^{2}+b x+c=0 & c=-5 \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-1)}}{2(3)} \\
x & =\frac{5 \pm \sqrt{25+12}}{6} \\
& =\frac{5 \pm \sqrt{37}}{6} \leftarrow
\end{array}
$$

Completing the square: $3 x^{2}-5 x-1=0$

$$
\begin{aligned}
& 3[\underbrace{x^{2}-\frac{5}{3} x}]-1=0 \\
& 3\left[\left(x-\frac{1}{2} \cdot \frac{5}{3}\right)^{2}-\left(\frac{1}{2} \cdot \frac{5}{3}\right)^{2}\right]-1=0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \underbrace{3\left[\left(x-\frac{5}{6}\right)^{2}-3\left(\frac{5}{6}\right)^{2}-\left(\frac{5}{6}\right)^{2}\right]-1=0} \\
& 3\left(x-\frac{5}{6}\right)^{2}-\not \equiv\left(\frac{25}{36}\right)-1=0 \\
& 3\left(x-\frac{5}{6}\right)^{2}-\frac{12}{12}-1=0 \\
& 3\left(x-\frac{5}{6}\right)^{2}-\frac{37}{12}=0 \\
& 3\left(x-\frac{5}{6}\right)^{2}=\frac{37}{12} \div 3 \\
& -\frac{25}{12}-1=-\frac{25}{12}-\frac{12}{12} \\
& =\frac{-25-12}{12} \\
& =-\frac{37}{12} \\
& \frac{1}{3}\left(\frac{37}{12}\right)=\frac{37}{36} \\
& \left(x-\frac{5}{6}\right)^{2}=\frac{37}{36} \\
& x-\frac{5}{6}= \pm \sqrt{\frac{37}{36}} \\
& x-\frac{5}{6}= \pm \frac{\sqrt{37}}{6} \\
& x=\frac{5}{6} \pm \frac{\sqrt{37}}{6} \\
& x=\frac{5 \pm \sqrt{37}}{6}
\end{aligned}
$$

Quadratic formula

Example

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
a=1
$$

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{2^{2}-4(1)(2)}}{2(1)} \\
& b=2 \\
& c=2 \\
& =\frac{-2 \pm \sqrt{4-8}}{2} \\
& =-\frac{2 \pm \sqrt{-4}}{2} \\
& \sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
& =\frac{-2 \pm \sqrt{4} \sqrt{-1}}{2} \\
& =\frac{-2 \pm 2 \sqrt{-1}}{2} \\
& =\frac{x(-1 \pm \sqrt{-1})}{x} \\
& \begin{array}{c}
=-1 \pm \underbrace{\sqrt{-1}}_{\text {imaginary numbers, } i}=-1 \pm i \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \leftarrow \text { discriminant } \\
\rightarrow D=0=b^{2}-4 a c \\
x=\frac{-b \pm 0}{2 a}=-\frac{b}{2 a}
\end{array} \\
& a+i b
\end{aligned}
$$

The discriminant of a quadratic equation $a x^{2}+b x+c=0$ ($a \neq 0$) is defined by

$$
\begin{aligned}
D=b^{2}-4 a c \quad \begin{array}{l}
\text { (term under the square root } \\
\text { in the quadratic formula) }
\end{array}
\end{aligned}
$$

(1) If $D>0$ then you have two distinct real solutions
(2) If $D=0$ then you have only one real solution
(3) If $D<0$ then you have no real solution

Example Projectile paths

We throw a ball upwards with an initial speed of $v_{0} \mathrm{ft} / \mathrm{s}$ and it reaches a height h after t seconds. The formula that models this motion is t is time

$$
h=-16 t^{2}+v_{0} t
$$

\uparrow constant
(a) When does the ball reach the ground?
find t

$$
\text { Ground is } h=0
$$

$$
\begin{aligned}
& 0=-16 t^{2}+v_{0} t \\
& 0=\underset{\lambda}{0}\left(-16 t+v_{0}\right), \frac{+16 t \quad+16 t}{-16 t+v_{0}=0} \\
& v_{0}=16 t
\end{aligned}
$$

Solve for $t: \quad t=0 \quad t=\frac{V_{0}}{16}$
(b) When does the ball reach a height of 6400 ft

$$
V_{0}=800 \mathrm{ft} / \mathrm{s} .
$$

$$
\begin{gathered}
h=-16 t^{2}+v_{0} t=-16 t^{2}+800 t \\
6400=-16 t^{2}+800 t \\
16 t^{2}-800 t+6400=0 \\
t^{2}-50 t+400=0 \\
(t-40)(t-10)=0 \\
t=40 \text { or } t=10 .
\end{gathered}
$$

Cc) When does it reach a height of 12000 ft ?

$$
\begin{gathered}
h=-16 t^{2}+800 t \\
12000=-16 t^{2}+800 t \\
16 t^{2}-800 t+12000=0 \\
t^{2}-50 t+750=0
\end{gathered}
$$

$$
\begin{aligned}
& b^{2}-4 a c \\
&(-50)^{2}-4(1)(750) t=\frac{50 \pm \sqrt{(-50)^{2}-4(1)(750)}}{2(1)} \\
&=250-3000=\frac{50 \pm \sqrt{250-3000}}{2} \\
&=-2750<0=\frac{50 \pm \sqrt{-2750}}{2} \text { no }
\end{aligned}
$$

The ball never reaches 12000 ft .
\qquad
Other types of equations.
Solve for x :

$$
\frac{3}{x}-\frac{2}{x-3}=\frac{-12}{x^{2}-9}
$$

$$
\frac{3}{x}-\frac{2}{x-3}=\frac{-12}{(x-3)(x+3)}
$$

LCD
$\downarrow^{\text {multiply by what the denominator is }}$ lowest common denominator is $x(x-3)(x+3)$

$$
\rightarrow \frac{3(x-3)(x+3)}{x(x-3)(x+3)}-\frac{2 x(x+3)}{x(x-3)(x+3)}=\frac{-12 x^{\text {missing }}}{x(x-3)(x+3)}
$$

$$
3(x-3)(x+3)-2 x(x+3)=-12 x
$$

$$
3\left(x^{2}-9\right)-2 x^{2}-6 x=-12 x
$$

$$
3 x^{2}-27-2 x^{2}-6 x+12 x=0
$$

$$
\begin{gathered}
x^{2}+6 x-27=0 \\
(x-3)(x+9)=0
\end{gathered}
$$

$x=3 \quad x=-9$
not a solution.

Example. Solve for x the following

$$
\begin{aligned}
& 2 x=1-\sqrt{2-x} \\
& 2 x-1=-\sqrt{2-x} \rightarrow(-(2 x-1))^{2}=(\sqrt{2-x})^{2}
\end{aligned}
$$

square both
sides

$$
\begin{aligned}
& (2 x-1)^{2}=(-\sqrt{2-x})^{2} \\
& 4 x^{2}-4 x+1=2-x \\
& 4.1 \rightarrow 4 x^{2}-3 x-1=0 \quad(4 x+1)(x-1)=0 \\
& (4 x+1)(x-1)=0 . \\
& x=-\frac{1}{4} \text { or } x=1
\end{aligned}
$$

$x=-\frac{1}{4}$ plug it in into original equation $2 x=1-\sqrt{2-x}$

$$
\begin{aligned}
L H S & =2\left(-\frac{1}{4}\right)=-\frac{1}{2} \\
\text { RHS }=1-\sqrt{2-\left(-\frac{1}{4}\right)}=1-\sqrt{2+\frac{1}{4}}=1-\sqrt{\frac{9}{4}} & =1-\frac{3}{2} \\
& =-\frac{1}{2} \\
& =L H S
\end{aligned}
$$

$x=1$ plug it in into $2 x=1-\sqrt{2-x}$

$$
\begin{aligned}
& L H S=2(1)=2 \\
& \text { RHS }=1-\sqrt{2-1}=1-1=0 \neq 2 \\
& \text { HHS } \neq R H S
\end{aligned}
$$

Thus $x=1$ is not a solution.

Inequalities (Section 1.8)

Starting with linear inequalities.

$$
\begin{aligned}
2 x+5=3 \text { Equality } \quad \begin{aligned}
2 x & =-2 \\
x & =-1
\end{aligned} \text { 据 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Inequality } 2 x+5 \leq 3 \\
& 2 x \leq-2 \\
& x \leq-1
\end{aligned}
$$

number line

Example. $\quad 3 x<9 x+8$
ways $-6 x<8$

$$
0<6 x+8
$$

Way 2

$$
\begin{gathered}
-8<6 x \\
-8<6 x \\
(\div 6) \quad(\div 6)
\end{gathered}
$$

$$
\begin{gathered}
x>\frac{8}{-6} \\
x>\frac{4}{-3} \\
x>-\frac{4}{3}
\end{gathered}
$$

Reminders: (1) Homework 2 due tonight at midnight
(2) Quiz 2 during your recitation this week
(3) Office hours on -200m today at $3: 30-4: 30 \mathrm{pm}$ (link in Brightspace under Course info).

Quiz 2 will include • Section 1.4 (Rational expressions)

- Section 1.5 (Equations)

Solving a pair of inequalities
Example.

$$
4<2 x-3 \leq 8
$$

Find the values for x.
Step 1 Add 3 everywhere

$$
7<2 x \leq 11
$$

Step Divide by 2 throughout

$$
\frac{7}{2}<x \leqslant \frac{11}{2}
$$

This in interval notation is $\left(\frac{7}{2}, \frac{11}{2}\right]$
open parenthesis
\Rightarrow strict inequality
square braces
\Rightarrow less than or equal.

Note:

$$
\begin{array}{cll}
-2 \leqslant x \leqslant 4 & : & {[-2,4]} \\
x>3 & : & (3, \infty)
\end{array}
$$

GUIDELINES FOR SOLVING NONLINEAR INEQUALITIES

1. Move All Terms to One Side. If necessary, rewrite the inequality so that all nonzero terms appear on one side of the inequality sign. If the nonzero side of the inequality involves quotients, bring them to a common denominator.
2. Factor. Factor the nonzero side of the inequality.
3. Find the Intervals. Determine the values for which each factor is zero. These numbers will divide the real line into intervals. List the intervals that are determined by these numbers.
4. Make a Table or Diagram. Use test values to make a table or diagram of the signs of each factor on each interval. In the last row of the table determine the sign of the product (or quotient) of these factors.
5. Solve. Use the sign table to find the intervals on which the inequality is satisfied. Check whether the endpoints of these intervals satisfy the inequality. (This may happen if the inequality involves \leq or \geq.)

Example । Nonlinear inequalities.

$$
\begin{gathered}
x^{2} \leqslant 5 x-6 \\
x^{2}-5 x+6 \leqslant 0 \\
\Rightarrow \\
(x-2)(x-3) \circledast 0
\end{gathered}
$$

(Find the possible values of x).

this is the number
sign of you think of

$$
\begin{aligned}
& \text { sign of in each region } \\
& (x-3)
\end{aligned} \quad+
$$

sign of

$$
(x-2)(x-3)
$$

the inequality we are trying to solve is

$$
(x-2)(x-3) \leq 0
$$

Thus $(x-2)(x-3) \leq 0$ when $2 \leq x \leq 3$.
or in interval notation $[2,3]$.
This is from HW 3

$$
\begin{gathered}
-2 \leq 2 x-3<5 \\
1 \leq 2 x<8 \\
\frac{1}{2} \leq x<4
\end{gathered}
$$

Interval notation.

$$
\left[\frac{1}{2}, 4\right)
$$

$$
-3<1-4 x \leq 17
$$

$\rightarrow-4<-4 x \leq 16$
Divide by -4 but remember when you divide by a negative number the inequalities reverse.

$$
\begin{aligned}
& \frac{16}{-4} \leq x<\frac{-4}{-4} \\
& -4 \leq x<1, \quad[-4,1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nonlinear inequality. } \\
& \text { Example }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
\operatorname{sign} \text { of }(x) & \checkmark- & + & + & + & 0<x<1 \\
\operatorname{sign} \text { of }(x-1)^{2} & \checkmark+ & + \\
+ & + & + & 1<x<3
\end{array} \\
& \text { sign of } x(x-1)^{2}(x-3) \pm \Theta+ \\
& (-)(+)(-)=(t) \quad \backslash(+)(+)(-)=(-) \\
& \text { The regions that satisfy } x(x-1)^{2}(x-3)<0 \text { are } \\
& \text { if } x(x-1)^{2}(x-3)>0 \\
& \begin{array}{c}
x(x-1)^{2}(x-3)>0 \\
x<0, x>3
\end{array} \\
& (-\infty, 0) \cup(3, \infty)
\end{aligned}
$$

Solving inequalities moving quotients
Example Solve for x the inequality $\frac{1+x}{1-x} \geqslant 1$.
STEP 1. Move everything to one side.

$$
\frac{1+x}{1-x}-1 \geq 0
$$

$$
\begin{aligned}
\left(\frac{1+x}{1-x}\right)-\left(\frac{1-x}{1-x}\right) & \geqslant 0 \\
\frac{1+x-(1-x)}{1-x} & \geqslant 0 \\
\frac{1+x-1+x x}{1-x} & \geqslant 0 \\
\frac{2 x}{1-x} & \geqslant 0 \quad(\div 2) \\
\frac{x}{1-x} & \geqslant 0
\end{aligned}
$$

$\begin{array}{llll}\text { sign of } x & - & + & + \\ \text { sign of }(1-x) & + & + & - \\ \operatorname{sign} \text { of } \frac{x}{1-x} & \frac{(-)}{(+)} & (+)(t) & (+) /(-) \\ & =\frac{1}{r} & =(+) & =-\frac{1}{t}\end{array}$

Absolute value inequalities
Aside. $\quad y=|x|= \begin{cases}x, & x>0 \\ -x, & x \leqslant 0\end{cases}$

Properties

1. $|x|<c \Leftrightarrow-c<x<c$

2. $|x| \leqslant c \Leftrightarrow-c \leqslant x \leqslant c$
3. $|x|>c \Leftrightarrow x<-c$ or $\ll x$

4. $|x| \geqslant c \Leftrightarrow x \leqslant-c$ or $c \leqslant x$

Example.

1. Solve $|x-5|<$ (2.)
$-2<x-5<2$ (compare to property 1)
Add 5 : $3<x<7$ or $(3,7)$
2. Solve $|x-10|<3$

$$
-3<x-10<3
$$

Add 10: $7<x<13$
3. Solve. $\quad|3 x+2| \geqslant 4$

$$
\begin{gathered}
3 x+2 \leq-4 \\
3 x \leq-6 \\
x \leq-2
\end{gathered}
$$

$$
\begin{aligned}
& 4 \leq 3 x+2 \\
& 2 \leq 3 x \\
& \frac{2}{3} \leq x
\end{aligned}
$$

Interval notation

it includes

$$
-2
$$

Lines (section 1.10)
Slope of a line
The slope m of a line that is not vertical and passes through the points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ is given by

$$
\text { slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { change in output }}{\text { change in input }}=\frac{\text { rise }}{\text { run }}
$$

NB The slope of a vertical line is not defined.

slope is positive

$$
\begin{aligned}
\text { vise }= & \text { change in } \\
& y \text {-coordinates }
\end{aligned}
$$

run $=$ change in x-coordinates.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-2}{1-(-1)} \\
& =\frac{0}{2}=0
\end{aligned}
$$

Finding the slope of a line from two points.
e.g. $\quad P=(1,3)$ and $Q=(2,4)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-3}{2-1}=\frac{1}{1}=1
$$

Point-slope formula for the equation of a line

$\left(x_{1}, y_{1}\right)$ is the given point on the line
Example. Find the equation of a line that passes through

$$
\begin{aligned}
& (1,-3) \text { and } \begin{array}{l}
(2,0) \\
\left(x, y_{1}\right) \\
\left(x_{2}, y_{2}\right) \\
m=\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-(-3)}{2-1}=3
\end{array},=\text { in }
\end{aligned}
$$

Use the point $(1,-3)$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-3)=3(x-1) \\
y+3=3 x-3 \\
y=3 x-6
\end{gathered}
$$

Use the point $(2,0)$

$$
\begin{aligned}
y-0 & =3(x-2) \\
y & =3 x-6
\end{aligned}
$$

to check plug in the other point.
e.g. When $x=2$

$$
\begin{aligned}
y & =3(2)-6 \\
& =6-6 \\
& =0
\end{aligned}
$$

Sketch the line.

Example Find the equation of a line that satisfies the following:

$$
\text { slope }=\frac{2}{5} \text { and } \underset{\substack{y \text {-intercept } \\
\Downarrow}}{ } \text { is } 4 . \quad \text { Coordinate is } \begin{gathered}
(0,4) \\
\uparrow=0
\end{gathered}
$$

Recall $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-4=\frac{2}{5}(x-0) \\
& y-4=\frac{2}{5} x \\
& y=\frac{2}{5} x+4
\end{aligned}
$$

SLOPE -INTERCEPT FORM OF THE EQUATION OF A LINE

An equation with slope m and y-intercept b is given by

$$
y=m x+b
$$

Note
slope

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-y_{1}=m x-m x_{1} \\
& y=m x-\underbrace{m x_{1}+y_{1}}_{\text {just } a \text { number }}=m x+b
\end{aligned}
$$ crosses the y-axis)

Example (1) Find the equation of the line with slope 4 and
 y-intercept - 2

$$
\begin{aligned}
& y=\frac{\text { slope }}{m x+b t-y \text {-intercept }} \\
& y=4 x-2
\end{aligned}
$$

$$
x \text {-intercept : } y=0
$$

$$
\begin{aligned}
0 & =4 x-2 \\
2 & =4 x \\
x & =\frac{1}{2}
\end{aligned}
$$

(2) Find both the slope and the y-intercept of the line

$$
3 y-2 x=1
$$

Step 1 Rearrange the equation so that it's of the form

$$
\begin{aligned}
y & =m x+b \\
3 y & =2 x+1 \\
y & =\frac{2 x+1}{3}
\end{aligned}
$$

$$
\left.\begin{array}{l}
y=\left(\begin{array}{l}
m \\
y \\
y
\end{array}\right) x+\left(\frac{b}{3}\right.
\end{array}\right)
$$

Step 2 Compare with $y=m x+b$ and read off m and b.

$$
\begin{array}{ll}
m=\frac{2}{3}, & b=\frac{1}{3} \\
\text { slope } & y \text {-intercept. }
\end{array}
$$

Vertical and horizontal lines

- An equation of a vertical line through the point (a, b) is $x=a$

- An equation of a horizontal line through the point (a, b)
 is $y=b$

Note. If you are given a horizontal line $y=-4$ then the y-intercept is -4.

GENERAL FORM OF THE EQUATION OF A LINE
The graph of every linear equation

$$
A x+B y+C=0 \text { where } A, B \text { are both non-zono }
$$

is a line.

$$
A x+B y+C=0 \Rightarrow B y=-A x-C
$$

$$
y=-\frac{A}{B} x-\frac{C}{B}=m x+b
$$

linear \Rightarrow constant slope

Parallel and perpendicular lines
Parallel lines. Two nonvertical lines are parallel if and only if their slopes are the same.

Find an equation of a line that is parallel to $4 x+6 y+5=0$ that also passes through $(5,2)$.

Write $4 x+6 y+5=0$ in the form of $y=m x+b$

$$
\begin{aligned}
& 6 y=-4 x-5 \\
& y=-\frac{4}{6} x-\frac{5}{6}=-\frac{2}{3} x-\frac{5}{6} \\
& m_{1}=-\frac{2}{3}
\end{aligned}
$$

L_{2} has the same slope as L_{1}

$$
\Rightarrow \quad m_{2}=m_{1}=-\frac{2}{3} .
$$

Given $(5,2)$ and $m_{2}=-\frac{2}{3}$ we $\left(x_{1}, y_{1}\right)$ can use $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
\Rightarrow \quad y-2 & =-\frac{2}{3}(x-5) \\
y-2 & =-\frac{2}{3} x+\frac{10}{3} \\
y & =-\frac{2}{3} x+\frac{10}{3}+2 \\
y & =-\frac{2}{3} x+\frac{16}{3}
\end{aligned}
$$

General form of the equation: $A x+B y+C=0$

$$
\begin{aligned}
& 3 y=-2 x+16 \\
& 3 y+2 x-16=0
\end{aligned}
$$

Perpendicularines
Two lines with slopes m_{1} and m_{2} are perpendicular if they satisfy $m_{1} m_{2}=-1 \Rightarrow m_{2}=-\frac{1}{m_{1}}$

Example find the equation of the mine that is perpendicular to $4 x+6 y+20$ that passes through $(1,2)$.

$$
\begin{aligned}
& L_{1}: \quad 6 y=-4 x-2 \\
& y=-\frac{4 x}{6}-\frac{2}{6}=-\frac{2}{3} x-\frac{1}{3} \\
& m_{1}=-\frac{2}{3}
\end{aligned}
$$

What is m_{2} ? $\quad m_{2}=-\frac{1}{m_{1}}=-\frac{1}{\left(-\frac{2}{3}\right)}=\frac{3}{2}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

We have $\left(x_{1}, y_{1}\right)=(1,2)$ and $m_{2}=\frac{3}{2}$

$$
\begin{aligned}
y-2 & =\frac{3}{2}(x-1) \\
y-2 & =\frac{3}{2} x-\frac{3}{2} \\
y & =\frac{3}{2} x-\frac{3}{2}+2 \\
y & =\frac{3}{2} x+\frac{1}{2}
\end{aligned}
$$

Check: plug in $X=1$ and you should get

$$
\begin{aligned}
& y=2 \\
& y=\frac{3}{2}(1)+\frac{1}{2} \\
&=\frac{3}{2}+\frac{1}{2} \\
&=2
\end{aligned}
$$

Example 2.
Determine whether the lines are parallel or perpendicular.

$$
L_{1}: 2 x-3 y=10 \text { and } 3 y-2 x-7=0: L_{2}
$$

Write both in the form $y=m x+b$

$$
\begin{aligned}
& L_{1}: \quad-3 y=10-2 x \\
& y=-\frac{10}{3}+\frac{2}{3} x \\
& L_{2}: \quad 3 y=2 x+7 \\
& y=\frac{2}{3} x+\frac{7}{3}
\end{aligned}
$$

$$
\begin{array}{ll}
y=\frac{2}{3} x-\frac{10}{3} & m_{2}=\frac{2}{3} \\
m_{1}=\frac{2}{3} & y=-\frac{3}{2} x+8 \\
\text { re lines are parallel. } & m_{2}=-\frac{3}{2} \\
& m_{1} \cdot m_{2}=\frac{2}{3}\left(-\frac{3}{2}\right)=-1
\end{array}
$$

Since $m_{1}=m_{2}$, the lines are parallel.

WW 3
(1)c) Solve for x.

$$
x^{\frac{1}{2}}+3 x^{-\frac{1}{2}}=10 x^{-3 / 2} \longleftarrow
$$

Hint: Let $t=x^{1 / 2}$ and rewrite the entire equation in terms of t.

$$
\begin{gathered}
x^{1 / 2}=t \\
x^{-\frac{1}{2}}=t^{-1} \\
x^{-\frac{3}{2}}=t^{-3}
\end{gathered}
$$

$$
\begin{gathered}
\left(a^{m}\right)^{n}=a^{m n} \\
x^{1 / 2}=t \\
x^{-3 / 2}=\left(x^{1 / 2}\right)^{-3}=t^{-3}
\end{gathered}
$$

$\underset{\text { bstitute this in the original equation }}{\downarrow} x^{\frac{1}{2}}+3 x^{-\frac{1}{2}}=10 x^{-\frac{3}{2}}$

$$
\begin{aligned}
& t+3 t^{-1}=10 t^{-3} \\
& t+\frac{3}{t}=\frac{10}{t^{3}}
\end{aligned}
$$

Multiply through hour by t^{3} :

$$
t^{4}+3 t^{2}=10 \leftarrow
$$

$$
\begin{gathered}
t^{3}\left(t+\frac{3}{t}\right)=t^{3}\left(\frac{10}{t^{3}}\right) \\
t^{4}+\frac{3 t^{3 / 2}}{t}=10 \\
t^{4}+3 t^{2}=10
\end{gathered}
$$

Let $u=t^{2} u^{2} \Rightarrow u u^{2}+3 u-10=0$

$$
(u+5)(u-2)=0
$$

$u=-5 \Rightarrow-5=t^{2}$ not possible

$$
u=2 \Rightarrow 2=t^{2} \Rightarrow t= \pm \sqrt{2}
$$

We also had $t=x^{1 / 2}=\sqrt{x}$

$$
\begin{aligned}
& \sqrt{2}=\sqrt{x} \Rightarrow x=2 \\
& \sqrt{2}=\sqrt{x} \\
& (\sqrt{2})^{\frac{2}{2}}=(\sqrt{x})^{2} \\
& 2=x
\end{aligned}
$$

Section 2.1: Functions

Definition: A function f is a rule that assigns to each element x in a set A exactly one element, which we call $f(x)$, into set B.
e.g. $f(x)=x^{2}$

Domain : It is set of all possible input values for the function.
Range: It is the set of all possible output values $f(x)$

$$
\text { range }=\{f(x) \text { such that } x \in A\}
$$

dependent variable. it is an element of

$$
y=f(x)
$$

$\tau_{\text {independent }}$ variable

Evaluating functions
Example. $\quad f(\underset{\uparrow}{k})=2 x_{\uparrow}^{k 2}+5 \underset{\uparrow}{\downarrow}-1$
(a) $f(a)=2 a^{2}+5 a-1$
(b) $\quad f(-a)=2(-a)^{2}+5(-a)-1=2 a^{2}-5 a-1$
(c)

$$
\begin{aligned}
& \frac{f(a+h)-f(a)}{h} \\
& \begin{aligned}
f(a+h) & =2(a+h)^{2}+5(a+h)-1 \\
& =2\left(a^{2}+2 a h+h^{2}\right)+5 a+5 h-1 \\
& =2 a^{2}+4 a h+2 h^{2}+5 a+5 h-1
\end{aligned}
\end{aligned}
$$

$$
\text { Thus } \frac{f(a+h)-f(a)}{h}=\frac{\left.\left.2 a^{2} 2\right)+4 a h+2 h^{2}+5 a+5 h-1 /-\left(2 a^{2}\right)+5 a-2\right)}{h}
$$

$$
=\frac{4 a h+2 h^{2}+5 h}{h}
$$

Let $f(x)=x^{2}$

$$
=\frac{K(4 a+2 h+5)}{h}
$$

$$
\begin{aligned}
& f(a+h)=(a+h)^{2} \neq \quad=4 a+2 h+5 \\
& f(a)+f(h)=a^{2}+h^{2} \\
& (a+h)^{2}=(a+h)(a+h) \\
& (2+3)^{2}=5^{2}=25 \\
& =a^{2}+2 a h+h^{2} \\
& 2^{2}+3^{2}=4+9=13 \\
& (a+b)^{2}=a^{2}+b^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

Domain and range
Examples.
(1) Find the domain of each function
(a) $f(x)=\frac{1}{x^{2}-x}=\frac{1}{x(x-1)}$ So when $x=0$ or $x=1$ the denominator equals to 0
The domain of f is $\{x \mid x \neq 0, x \neq 1\}$
the x-values such that $x \neq 0$ or $x \neq 1$
or in interval notation: $(-\infty, 0) \cup(0,1) \cup(1, \infty)$

(b) $g(x)=\sqrt{25-x^{2}}$

$$
\begin{aligned}
& \text { This is a function when } \begin{array}{l}
25-x^{2} \geqslant 0 \rightarrow x^{2}
\end{array} \rightarrow \underbrace{(5-x)(5+x) \geqslant 0} \\
& \underset{-5}{\rightarrow \underbrace{}_{5}} \begin{array}{l}
x^{2} \leqslant 25 \\
x \leqslant 5 \\
\text { or } x \geqslant-5
\end{array} \\
& \text { The domain is }-5 \leq x \leq 5 \\
& \text { Interval notation: }[-5,5]
\end{aligned}
$$

$$
\Rightarrow-5 \leqslant x \leqslant 5
$$

(c)

$$
h(\omega)=\frac{\omega}{\sqrt{\omega+1}} \begin{aligned}
& \text { What should } \omega+1 \text { satisfy so that } \\
& \begin{array}{l}
\sqrt{\omega+1} \text { is valid? }
\end{array} \\
& \begin{array}{c}
\text { when } \omega+1=0 \\
\text { then } \omega=-1
\end{array} \\
& \begin{array}{l}
\text { it also includes } \\
\omega+1=0
\end{array}
\end{aligned} \quad \begin{aligned}
& \text { and then you } \\
& \text { are dividing } \\
& \text { by } 0
\end{aligned}
$$

(d) $z(x)=\frac{1}{\sqrt{x}}$

Domain: $x \geqslant 0$

$$
x>0
$$

$$
z(0)=\frac{1}{\sqrt{0}} \text { not ok }
$$

From before: $\quad h(\omega)=\frac{\omega}{\sqrt{\omega+1}}$
Domain:

$$
\begin{aligned}
\omega+1 & >0 \\
\omega & >-1
\end{aligned}
$$

if $\omega=-1 \quad h(-1)=\frac{-1}{\sqrt{-1+1}}=\frac{-1}{\sqrt{0}} x$

$$
\begin{aligned}
f(x) & =\sqrt[3]{x} \\
f(x) & =\frac{1}{\sqrt[3]{x}} \quad(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

Piecewise - defined functions
Example. (1) $f(\underline{x})= \begin{cases}x^{2} & \text { if } x<0 \\ x+1 & \text { if } x \geqslant 0 \\ \text { quadratic }\end{cases}$
Evaluate (a) $\begin{gathered}x \\ f(\underline{-2})\end{gathered}=(-2)^{2}=4$
(b) $f(-1)=(-1)^{2}=1$
(c) $f(0)=0+1=1$
(d) $f(1)=1+1=2$
(e) $f(2)=2+1=3$
(2) $f(x)=\left\{\begin{array}{cl}x^{2}+2 x & \text { if } x \leqslant-1 \\ x & \text { if }-1<x \leqslant 1 \\ -1 & \text { if } x>1\end{array}\right.$
(a) $f(-4)=(-4)^{2}+2(-4)=16-8=8$
(b) $f(-3 / 2)=\left(-\frac{3}{2}\right)^{2}+2\left(-\frac{3}{2}\right)=\frac{9}{4}-3=-\frac{3}{4}$
(c) $f(-1)=(-1)^{2}+2(-1)=10$
(c) $f(-1)=(-1)^{2}+2(-1)=1-2=-1$
(d) $f(0)=0$
(e) $f(25)=-1$

Example. Evaluate $\frac{f(a+h)-f(a)}{h}$ where $h \neq 0$ $f(x)=3 x^{2}+1$

$$
\begin{aligned}
& f(a+h)=3(a+h)^{2}+1=3\left(a^{2}+2 a h+b^{2}\right)+1=3 a^{2}+6 a h+3 h^{2}+1 \\
& f(a)=3 a^{2}+1
\end{aligned}
$$

Altogether $\frac{f(a+h)-f(a)}{h}=\frac{3 a^{2}+6 a h+3 h^{2}+1-\left(3 a^{2}+1\right)}{h}$

$$
\begin{aligned}
& =\frac{33 a^{2}+6 a h+3 h^{2}+-3 a^{2}-1}{h} \\
& =\frac{6 a h+3 h^{2}}{h} \\
& =3 K(2 a+h) \\
& =3(2 a+h) .
\end{aligned}
$$

2.2: Graphs of functions

If f is a function with a domain A, then the graph of the function is the set of all ordered pars

$$
\{(x, f(x)) \mid x \in A\}
$$

plotted in the coordinate plane.

Plot $f(x)=3$

Plot $f(x)=x^{2}+1$

x	y	
-3	$(-3)^{2}+1=9+1$	
-2	5	$=10$
-1	2	
0	1	
1	2	
2	5	
3	10	

Graphing piecewise -defined functions
Example (1) $f(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\ 2 x+1 & \text { if } x>1\end{cases}$

$$
-x+3
$$ $m x+b$ $b=3$

$$
0=2 x+3 \Rightarrow 2 x=-3
$$

$$
x=-\frac{3}{2}
$$

$$
f(x)=3-x
$$

$$
\begin{aligned}
& x \text {-intercept of } f(x)=3-x \\
& 0=3-x \\
& x=3
\end{aligned}
$$

$$
\begin{array}{r}
f(x)=2 x+3 \\
\text { if } x=-1
\end{array}
$$

$$
\text { If } x \geqslant-1
$$

Vertical line test
A curve in the coordinate plane is the graph of a function if and only if no vertical line intersects the curve more than once.

Graph is a function

Not a graph of a function.

Which equations represent functions?
An equation $y=f(x)$ defines a function that gives one value of y for each value of x.

Example
(1) Does the equation define y as a function of x ?
(a)

$$
\begin{aligned}
& y-x^{2}=2 \\
& y=x^{2}+2
\end{aligned}
$$

Since this equation gives one value of y for each value of x this defines y as a function of x.

(b)

$$
\begin{aligned}
x^{2}+y^{2} & =9 \\
y^{2} & =9-x^{2} \\
y & = \pm \sqrt{9-x^{2}}
\end{aligned}
$$

check if $x=1$

$$
y= \pm \sqrt{9-1^{2}}= \pm \sqrt{8}
$$

$$
-\sqrt{8} \cdot \sqrt{8}
$$

Since for each value of x we get more than one value of y this is not a function.

(c) $\sqrt{y}-x=5$
egg.
check $x=-6$

$$
\sqrt{y}-(-6)=5
$$

$$
\sqrt{y}+6=5
$$

$$
\sqrt{y}=-1
$$

$$
\begin{aligned}
y & =(5+x)^{2} \\
& =(x+5)^{2} \\
\pm & \sqrt{y}=x+5
\end{aligned}
$$

This is a function.

Section 2.3: Getting information from the graph
Finding the domain and range from graphs.

Domain: $[-2,2]$
Range : $[0,2]$

Values of a Function The graph of a function h is given.
(a) Find $h(-2), h(0), h(2)$, and $h(3)$.
(b) Find the domain and range of h.
(c) Find the values of x for which $h(x)=3$.
(d) Find the values of x for which $h(x) \leq 3$.
(d) Find the net change in h between $x=-3$ and $x=3$.

$h(x)(3) 3$

$$
h(x)=3
$$

(a)

$$
\begin{aligned}
h(-2) & =1 \\
h(0) & =-1 \\
h(2) & =3 \\
h(3) & =4
\end{aligned}
$$

(b) Domain: $[-3,4]$, Range: $[-1,4]$
(c) For $h(x)=3$ we have $x=-3,2,4$
(d) For $h(x) \leqslant 3$ the interval is $[-3,2]$

Solving equations and inequalities graphically

- The solutions) of the equation $f(x)=g(x)$ are the values of x Where the graphs of f and g intersect.
- The solution (s) of the inequality $f(x)<g(x)$ are the values of x where the graph of g is higher than the graph of f.

The solution to $f(x)<g(x)$ is $a<x<b$.
(a, b). interval notation

The solutions to $f(x)=g(x)$ are $x=a$ and b.

Example.
Solve the following graphically
(a)

$$
\begin{aligned}
& 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
& x=-\frac{1}{2}, x=3
\end{aligned}
$$

(b) parabola straight line

Solution: $\quad\left[-\frac{1}{2}, 3\right]$
(c) $2 x^{2}+3>5 x+6$

$$
\left(-\infty,-\frac{1}{2}\right) \cup(3, \infty)
$$

Note. You could rearrange the equation so that all terms are on one side, then graph the function that corresponds to the nonzero side of the equation and then find the solution.

$$
\begin{aligned}
& 2 x^{2}+3>5 x+6 \\
& 2 x^{2}-5 x-3>0 \\
& (2 x+1)(x-3)>0
\end{aligned}
$$

Zeros: $x=-\frac{L}{2}, 3$

Solution:

$$
\left(-\infty,-\frac{1}{2}\right) \cup(3 . \infty)
$$

Increasing and decreasing functions

Definition. f is increasing on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.
f is decreasing on an interval I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.

if $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
for an increasing function. (the graph rises)

$$
\text { if } x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

for a decreasing function (the graph falls)

31-34 - Increasing and Decreasing The graph of a function f is given. Use the graph to estimate the following. (a) The domain and range of f. (b) The intervals on which f is increasing and on which f is decreasing.
31.

33.

32.

34.

(31) (a) Domain: $[-1,4]$, Range: $[-1,3]$
(b) Increasing: $[-1,1] \cup[2,4]$

Decreasing: $(1,2)$
(33) (a) Domain: $[-3,3]$, Range: $[-2,2]$
(b) Increasing: $[-2,-1] \cup[1,2]$ Decreasing:

$$
(-3,-2) \cup(-1,1) \cup(2,3)
$$

Local maxima and local minima of a function
(1) The function value $f(a)$ is a local minimum value of f if

$$
f(a) \leq f(x) \quad \text { for } x \text { near } a
$$

f has a local min at $x=a$.
(2) The function value $f(a)$ is a local max value of f if

$$
f(a) \geqslant f(x) \text { when } x \text { is near } a .
$$

Section 2.4: Average rate of change

Definition. The average rate of change of a function $y=f(x)$ between $x=a$ and $x=b$ is

$$
\text { aver. rate of change }=\frac{f(b)-f(a)}{b-a} \quad\left(\frac{\text { change in } y}{\text { change in } x}\right) \text {. }
$$

Example. Given $f(x)=(x-3)^{2}$
Find the average rate of change between
(a) $x=1$ and $x=3$

$$
\begin{aligned}
& \text { average rate of change }=\frac{f(3)-f(1)}{3-1} \\
& \begin{aligned}
f(1) & =(1-3)^{2} \\
& =4
\end{aligned}
\end{aligned}
$$

(b) $x=4$ and $x=8$

$$
=\frac{0-4}{3-1}=-2
$$

$$
\begin{aligned}
& \text { average rate of change }=\frac{f(8)-f(4)}{8-4} \\
&=\frac{25-1}{4} \\
&-3)^{2}=25 \\
&-3)^{2}=1 \frac{24}{4} \\
&=6 .
\end{aligned}
$$

Example. An object is dropped from a diff and the distance it travels after t seconds is given by $d(t)=16 t^{2}$.
Determine the average rate of cha noe between $t=a$ and $t=a+h$.

$$
\begin{aligned}
\text { average rate of change } & =\frac{d(a+h)-d(a)}{(a+h)-a} \leftarrow \begin{array}{c}
\text { change } \\
\text { in output } \\
\text { change in } \\
\text { input }
\end{array} \\
& =\frac{16(a+h)^{2}-16 a^{2}}{q+h-\alpha} \\
& =\frac{16\left(a^{2}+2 a h+h^{2}\right)-16 a^{2}}{h} \\
& =\frac{16 / a^{2}+32 a h+16 h^{2}-16 a^{2}}{h} \\
& =\frac{16 h(2 a+h)}{h} \\
& =16(2 a+h) .
\end{aligned}
$$

Average rate of change.
Example. notation.

Let $f(x)=4 x-7$ t
(a) Avg. rate of change between $x=2$ and $x=6$

$$
\underset{\substack{\text { avg. } \\ \text { of change }}}{ }=\frac{f(b)-f(a)}{b-a}
$$

$$
\begin{aligned}
& =\frac{f(6)-f(2)}{6-2)} \quad \begin{array}{l}
f(6)=4(6)-7 \\
\\
=\frac{f(2)}{}=4(2)-7 \\
4 \\
=\frac{(4(6)-7]-[4(2)-7]}{4} \rightarrow f(6)-f(2) \\
=\frac{24-7-1}{4} \\
=4
\end{array} \\
& =\frac{16}{4} \\
&
\end{aligned}
$$

(b) Aug. rate of change from $x=3$ and $x=3+h$

$$
f(3+h)=4(3+h)-7
$$

$$
=12+4 h-7
$$

$$
=5+4 h
$$

$$
\begin{aligned}
\frac{f(b)-f(a)}{b-a} & =\frac{f(3+h)-f(3)}{3+h-5} \\
& =\frac{f(3+h)-f(3)}{h} \quad \begin{array}{l}
\text { difference } \\
\text { quotient }
\end{array} \\
& =\frac{5+4 h-5}{h} \\
& =\frac{4 h}{h}
\end{aligned}
$$

$$
f(3)=4(3)-7=12-7=5 \quad=4
$$

Section 2.5 : Linear functions
A linear function is of the form $\frac{f(x)=a x+b}{\downarrow}$
6 here is the
a here is the SLOPE
Question: Which of the following is a linear function?
(A) $f(x)=1-2 x$
(B) $g(t)=t(3+5 t) \leftarrow$ Quadratic
(C) $h(w)=\frac{2-4 w}{3}$

Note. For a function $f(x)=a x+b$

$$
\text { Slope of } f=a=\text { rate of change of } f \text {. }
$$

Section 2.6. Transformations of functions

VERTICAL SHIFTS.

Suppose $h>0$

- To graph $y=f(x)+h$, shift the graph of $y=f(x)$ upward by h units.
- To graph $y=f(x)-h$, shift the graph of $y=f(x)$ downward by h units.

Example. Use the graph of $f(x)=x^{2}$ to plot $g(x)=x^{2}+4$
(a) $g(x)=x^{2}+4$
(b) $z(x)=x^{2}-1$

HORIZONTAL SHIFTS

Suppose $c>0$

- To graph $y=f(x-c)$, shift the graph of $f(x)$ to the right c units
- To graph $y=f(x+c)$. shift the graph of $f(x)$ to the left c units.

Example. Let $f(x)=x^{2}$. Plot

$$
x^{2}+6 x+9
$$

(a) $g(x)=(x+3)^{2}$
(b) $z(x)=(x-1)^{2}$

$$
z(x)=(x-1)^{2}
$$

$$
x^{2}-2 x+1
$$

$$
\begin{aligned}
& g(0)=(0+3)^{2}=9 \\
& z(0)=(0-1)^{2}=1
\end{aligned}
$$

x-intercept when $y=0$

$$
0=(x+3)^{2} \Rightarrow x=-3
$$

Example Given $f(x)=\sqrt{x}$. sketch $g(x)=\sqrt{x-1}+2$

Reflections

- To graph $y=-f(x)$, reflect the graph of $f(x)$ in the x-axis

- To graph $y=f(-x)$, reflect the graph of $f(x)$ in the y-axis

$$
\Rightarrow \begin{array}{ll}
(2,3) & -f(2) \\
f(2)=3 & =-3
\end{array}
$$

Example (1) Consider $f(x)=x^{2}$. Graph $g(x)=-x^{2}=-f(x)$

$$
g(x)=f(-x)=(-x)^{2}=x^{2}=f(x)
$$

(2) Consider $r(\omega)=\sqrt{\omega}$

$$
h(\omega)=\sqrt{-\omega}
$$

VERTICAL STRETCHES / COM PRESSIONS
To graph $y=c f(x)$

- If $c>1$, stretch the graph of $y=f(x)$ vertically by a factor of C.
- If $0<c<1$, shrink / compress the graph of $f(x)$ vertically by a factor of c.

Example.

$$
\begin{aligned}
& g(x)=2 \cdot f(x) \\
& \text { For } f(x): \\
& \text { Domain: }[0,2 \pi] \\
& \text { Range: }[-1,1]
\end{aligned}
$$

For $g(x)$:
Domain: $[0,2 \pi]$
Range: $[-2,2]$
all $x, \quad x \neq 3$ Interval notation: $(-\infty, 3) \cup(3, \infty)$
$x \geqslant 0, x \neq 2$ interval notation: $[0,2) \cup(2, \infty)$

$$
\text { all } x, x \neq-5, x \neq 1 \quad / / \quad(-\infty,-5) \cup(-5,1) \cup(1, \infty)
$$

To graph $y=f(a x)$

- If $a>1$, shrink / compress the graph of $y=f(x)$ horizontally by a factor of $1 / a$.
- If $0<a<1$, stretch the graph of $y=f(x)$ horizontally by a factor of $1 / a$

(7) Order of transformations.
choose either Horizontal or Vertical.

1) reflection
2) stretch/compression] the order of these 2 can be switched
3) Shift \leftarrow this is ALWAYS last.

63-68 ■ Finding Formulas for Transformations The graphs of f and g are given. Find a formula for the function g.
63.

shift to the right by 2

$$
\begin{gathered}
f(x)=x^{2} \\
g(x)=\quad f(x-2)=(x-2)^{2}
\end{gathered}
$$

69-70 ■ Identifying Transformations The graph of $y=f(x)$ is given. Match each equation with its graph.
69. (a) ${ }^{(3)} y=f(x-4)^{7}$ she tito
(b) $y=f(x)+$
shift
(d) $y=-f(2 x)$ up by 3
(c) $y=2 f(x+6)$ by 4 reflection along x-axis
(2) stretch by 2 vertically and shift to the left by 6. and compression by $\frac{1}{2}$ horizontally

Blue $(f(x))$
Domain: $[0,3]$
Range : $[0,3]$
(d) $y=-\frac{f}{i}(2 x)$

Domain: [0, $\frac{3}{2}$]
Range: $[-3,0]$

$$
-\underset{i}{f(2 x)}
$$

$$
[0,3] \rightarrow[-3,0]
$$

$$
[0,3] \rightarrow\left[0, \frac{3}{2}\right]
$$

25-28 ■ Identifying Transformations Match the graph with the function. (See the graph of $y=|x|$ on page 96.)
25. $y=|x+1|$
26. $y=|x-1|$
27. $y=|x|-1$
28. $y=-|x|$

Shift by I unit down

$$
y=|x|-1
$$

II

Even and odd functions
Let f be a function

- f is even if $f(x)=f(-x)$

The graph of an even function is symmetric about the y-axis.

- f is odd if $f(x)=-f(-x)$
$\uparrow^{y} \quad$ here there are two ref erections one across the x-axis and one across the y-axis

$$
-f(-x)
$$

The graph of an odd function is symMETRIC about the origin

Example. Determine whether the functions are odd, even, or neither even or odd.
(a)

$$
\begin{aligned}
f(x) & =x^{5}+x \\
f(-x) & =(-x)^{5}+(-x) \\
& =-x^{5}-x \\
& =-\left(x^{5}+x\right) \\
& =-f(x)
\end{aligned}
$$

$$
\begin{aligned}
& -f(x)=f(-x) \\
& \text { ODD: } f(x)=-f(-x) \\
& \text { EVEN: } f(x)=f(-x) . \\
& \\
& \begin{aligned}
(-x)^{3} & =(-1)^{3} x^{3} \\
(a b)^{3}=a^{3} b^{3} & =-1 \cdot x^{3} \\
& =-x^{3}
\end{aligned}
\end{aligned}
$$

$\Rightarrow f(-x)=-f(x) \Rightarrow f(x)=x^{5}+x$ is odd.
(b)

$$
\begin{aligned}
f(x) & =2 x-x^{2} \\
f(-x) & =2(-x)^{\downarrow}-\left((-x)^{2},\right. \\
& =-2 x-x^{2} \\
& =-\left(2 x+x^{2} x^{2}=x^{2}\right.
\end{aligned}
$$

Since $f(x) \neq f(-x)$ and $f(x) \neq-f(-x)$, the function is neither odd or even
(c)

$$
\begin{aligned}
& f(x)=1-x^{6} \\
& f(-x)=1-(-x)^{6} \\
&=1-x^{6} \\
&=f(x) \\
& \Rightarrow f(-x)=f(x)
\end{aligned}
$$

Thus $f(x)$ is even.
(d)

$$
\begin{aligned}
& g(x)=x^{3} \\
& g(-x)=(-x)^{3}=-x^{3}=-g(x) \\
& \quad \Rightarrow g(x) \text { is odd. }
\end{aligned}
$$

THIS CONCLUDES THE MATERIAL FOR EXAM.
Section 2.7. Composition of functions /combinations of functions
Let f and g be two different functions with domains A and B. Then the functions $f+g, f-g, f \cdot g, \frac{f}{g}$ are defined as follows intersection.

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x) & \text { Domain } A \cap B \\
(f-g)(x)=f(x)-g(x) & \text { Domain } A \cap B \\
(f g)(x)=f(x) g(x) & \text { Domain } A \cap B \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & \text { Domain }\{x \in A \cap B \text { sit. } \\
& \\
&
\end{array}
$$

Example. Let $f(x)=\frac{1}{x+2}$ and $g(x)=\sqrt{x}$.
Find $(f+g)(x),(f-g)(x),(f g)(x),\left(\frac{f}{g}\right)(x)$ and their domain.

$$
(f+g)(x)=\frac{1}{x+2}+\sqrt{x} \quad \text { Domain: } x \neq-2, x \geqslant 0
$$

Do main of $f(x): x \neq-2$

$$
(-\infty,-2) \cup(-2, \infty)
$$

Domain of $g(x): x \geqslant 0$

$$
\begin{gathered}
{[0, \infty)} \\
(f-g)(x)=\frac{1}{x+2}-\sqrt{x} \\
(f g)(x)=\frac{\sqrt{x}}{x+2} \\
\frac{1}{x+2} \cdot \sqrt{x} \\
\left(\frac{f}{g}\right)(x)=\frac{1}{\sqrt{x}(x+2)}
\end{gathered}
$$

$$
(f-g)(x)=\frac{1}{x+2}-\sqrt{x} \quad \text { Domain: }[0, \infty)
$$

if instead $f(x)=\frac{1}{x-2}$ $x \neq 2$

$$
[0,2) \cup(2, \infty)
$$

Domain: $[0, \infty)$

Domain: $(0, \infty)$

COMPOST ION OF FUNCTIONS
$f(g(x)))$
new input for f

Given two functions f and g, the composite function $f \circ g$ is defined as

Example . Let $f(x)=\sqrt{x+1}, g(x)=x^{2}$
(a) Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\sqrt{g(x)+1} \\
& =\sqrt{x^{2}+1} \\
(g \circ f)(x) & =g(f(x)) \\
& =(f(x))^{2} \\
& =(\sqrt{x+1})^{2} \\
& =x+1
\end{aligned}
$$

Note. In general $f \circ g \neq g \circ f$.
remember that here g is applied first and F is applied second.

Example Let $f(x)=\sqrt{x}$ and $g(x)=\sqrt{2-x}$.

$$
\text { Find } \begin{aligned}
(f \circ f)(x) & =f(f(x)) \\
& =\sqrt{f(x)} \\
& =\sqrt{\sqrt{x}} \\
& =\left((x)^{1 / 2}\right)^{1 / 2} \\
& =x^{1 / 4} \\
& =\sqrt[4]{x} \quad \text { Domain: }[0, \infty) .
\end{aligned}
$$

$$
\text { Find } \begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\sqrt{g(x)} \\
& =\sqrt{\sqrt{2-x}} \\
& =(2-x)^{1 / 4} \\
& =\sqrt[4]{(2-x)} \quad \text { Domain: }(-\infty, 2]
\end{aligned}
$$

Solve for $2-x \geqslant 0$

$$
2 \geqslant x \Rightarrow x \leq 2 .
$$

$$
\text { Find }(g \circ f)(x)=g(f(x))=\sqrt{2-f(x)}
$$

$$
=\sqrt{2-(\sqrt{x})}
$$

Domain of $(g \circ f)(x)$ is $[0,4]$

$$
\text { Find } \begin{aligned}
(g \circ g)(x) & =g(g(x)) \\
& =\sqrt{2-g(x)} \text { new input } \\
& =\sqrt{2-\sqrt{2-x}}\}
\end{aligned}
$$

Domain of $\sqrt{2-x}$ is $2-x \geqslant 0$

$$
\begin{aligned}
& \quad+x+x \\
& 2 \geqslant x \\
& x \leqslant 2
\end{aligned}
$$

$$
\begin{gathered}
2-\sqrt{2-x} \geqslant 0 \\
+\sqrt{2-x}+5 \\
2 \geqslant \sqrt{2-x} \\
4 \geqslant 2-x \\
2 \geqslant-x \\
x \geqslant-2
\end{gathered}
$$

$$
+\sqrt{2-x}+\sqrt{2-x}
$$

$$
2 \geqslant \sqrt{2-x} \quad \rightarrow \quad 2^{2} \geqslant(\sqrt{2-x})^{2}
$$

Domain is $[-2,2]$.

Compositions of 3 functions

$$
(f \circ g \circ h)(x)=f(g(h(x)))
$$

Example. Let $f(x)=\frac{x}{x+1}, g(x)=x^{8}, h(x)=x-2$
Find $(f \circ g \circ h)(3)$

$$
\begin{array}{rlrl}
(f \circ g \circ h)(x) & =f(g(h(x))) & \\
& =f(g(x-2)) & g(x-2) \\
& =f\left((x-2)^{8}\right) & =(x-2)^{8} \\
& =\frac{(x-2)^{8}}{(x-2)^{8}+1} \\
(f \circ g \circ h)(3) & =\frac{(3-2)^{8}}{(3-2)^{8}+1}=\frac{1}{1+1}=\frac{1}{2} .
\end{array}
$$

Recognizing a composition of functions.

1. Given $h(x)=\sqrt[3]{x+9}$ find $f(x)$ and $g(x)$ such that

$$
\begin{aligned}
& h(x)=(f \circ g)(x) . \\
h(x) & =(f \circ g)(x) \\
& =f(g(x)) \\
& =f(x+9) \quad \text { where I used that } g(x)=x+9 \\
& =\sqrt[3]{x+9} \quad f(x)=\sqrt[3]{x}
\end{aligned}
$$

2. $F(x)=2+\sqrt{x+1}=f(g(x))$. Find $f(x)$ and $g(x)$.

$$
\begin{aligned}
& f(x)=2+\sqrt{x} \\
& g(x)=x+1
\end{aligned}
$$

Section 2.8: One-to-one functions and their inverses
Definition : A function is one-to-one if no two elements in the domain A have the same image (i.e. if no two elements in the domain A have the same output)

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \text { whenever } x_{1} \neq x_{2} \text {. }
$$

Horizontal line test
A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example.

S passes the horizontal line test so it's one-to-one.
 the horizontal line passes more than once through the graph so this function is not one-to-one.

If you restrict the domain to $x \geqslant 0$ then $y=x^{2}$ is

The inverse of a function

Let f be a one-to-one function with domain A and range B. Then the inverse of f is denoted f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \text { if and only if } f(x)=y
$$

for any y in B.

Note: $\left[\begin{array}{c}\text { domain of } f^{-1}=\text { range of } f \\ \text { range of } f^{-1}=\text { domain of } f\end{array}\right] *$

Example: (1) $f(3)=4, f(4)=6, f(5)=2$

$$
f(x)=y
$$

Find $\underbrace{f^{-1}(6)}_{\substack{11 \\ 4}}, \quad f^{-1}(2)=5$.

$$
\begin{aligned}
f\left(\begin{array}{l}
\downarrow \\
4
\end{array}\right. & =6 \\
4 & =f^{-1}(6)
\end{aligned}
$$

$$
x=f^{-1}(y)
$$

Find $f^{-1}(5)=4$

$$
\begin{gather*}
f(5)=7 \tag{2}\\
1
\end{gather*}
$$

$$
f^{-1}(8)=2
$$

Recall from lost time what compositions of functions are.

$$
f(\underset{\uparrow}{(x)}) \text { six) is the new input for function } f \text {. }
$$

x is the input of g
In general. $f(g(x)) \neq g(f(x))$
Property of inverse functions
Let f be a one-to-one function with domain A and range B. The inverse f^{-1} satisfies
" f^{-1} with f cancel each other"

$$
f^{-1}(f(x))=x \text { for ever } x \text { in } A \text {. }
$$

$$
f\left(f^{-1}(x)\right)=x \text { for every } x \text { in B. }
$$

note B is the domain of f^{-1}.

Example. Let $f(x)=x^{\frac{1}{3}}$ and let $g(x)=x^{-1}(x)$
Determine whether f and g are inverses of each other.
Domain of $f(x)$ is $(-\infty, \infty)$
Domain of $g(x)$ is $(-\infty, \infty)$.

Check whether $f(g(x))=x$ and $g(f(x))=x$.

- $f(g(x))=f\left(x^{3}\right)=\left(x^{3}\right)^{1 / 3}=x$
- $g(f(x))=g\left(x^{1 / 3}\right)=\left(x^{1 / 3}\right)^{3}=x$

Thus f and g are inverses of each other.
(*) Finding the inverse of a function.
STEP I. Write $y=f(x)$
STEP2. Solve this equation for x in terms of y.
STEP 3. Interchange x and y. Write the resiting equation as $y=f^{-1}(x)$.
Example. Let $f(x)=4 x+5$. Find $f^{-1}(x)$.
STGP 1. $y=4 x+5$
STEP 2. $\quad \frac{y-5}{4}=x$
STEP 3.

$$
\begin{aligned}
& \frac{x-5}{4}=y \\
& f^{-1}(x)=\frac{x-5}{4}
\end{aligned}
$$

inverse
check.

$$
\text { eck. } \begin{aligned}
& f^{-1}(f(x))=x \\
& f\left(f^{-1}(x)\right)=x . \\
& f^{-1}(f(x))=f^{-1}(4 x+5) \\
&=\frac{(4 x+5)-5}{4} \\
&= \frac{4 x}{4} \\
&=x
\end{aligned}
$$

STEP I $\quad y=\frac{x^{5}+3}{2} \quad \begin{aligned} & \text { Replace } f(x) \\ & \text { with } y\end{aligned}$
STEP2 Make x the subject of the formula

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f\left(\frac{x-5}{4}\right) \\
& =4\left(\frac{x-5}{4}\right)+5 \\
& =x-5+5
\end{aligned}
$$

$$
\begin{aligned}
& 2 y=x^{5}+3 \\
& 2 y-3=x^{5} \\
\rightarrow & x=(2 y-3)^{1 / 5}=\sqrt[5]{2 y-3}
\end{aligned}
$$

STEP 3 Interchange x with y

$$
y=(2 x-3)^{1 / 5} \text { or } y=\sqrt[5]{2 x-3}
$$

Change y into $f^{-1}(x)$

$$
f^{-1}(x)=(2 x-3)^{1 / 5} \text { or } f^{-1}(x)=\sqrt[5]{2 x-3}
$$

Example 3. Involving rational expressions.

$$
g(x)=\frac{2 x+5}{x-1}
$$

STEP 1. $\quad y=\frac{2 x+5}{x-1}$
STEP 2. Make x the subject of the formula

$$
\begin{gathered}
y \cdot(x-1)=2 x+5 \\
x y-y=2 x+5 \\
(x y-2 x)=5+y \\
x(y-2)=5+y \\
x=\frac{5+y}{y-2}
\end{gathered}
$$

STEP 3. $y=\frac{5+x}{x-2} \Rightarrow g^{7}(x)=\frac{5+x}{x-2}$
Graphing inverse functions
The graph of f^{-1} is found by reflecting the graph of f in the line $y=x$.

Example. Let $f(x)=\sqrt{x}$. Sketch $f^{-1}(x)$

Does $y=x$ intersect with $y=\sqrt{x}$?

$$
\begin{aligned}
& x=\sqrt{x} \\
& x^{2}=x \\
& x^{2}-x=0 \\
& x(x-1)=0 \\
& x=0 \quad x=1
\end{aligned}
$$

(*) Note.
Solve for x.

$$
\sqrt{\sqrt{3+x}-5}=\frac{\text { HS }}{(x+4}(x) .
$$

$$
\begin{aligned}
& \sqrt{3+x}=x+9 \\
& 3+x=(x+9)^{2} \\
& 3+x=x^{2}+18 x+81 \\
& x^{2}+17 x+78=0 \\
& x=\frac{-17 \pm \sqrt{17^{2}-4(1)(78)}}{2} \\
& x_{1}=\cdots \\
& x_{2}=\cdots
\end{aligned}
$$

check whether x_{1} and x_{2} satisfy (x)

Section 3.1 Quadratic functions.

Reminder. A quadratic function is a polynomial of degree 2 and is of the form

$$
f(x)=a x^{2}+b x+c \quad \text { where } a \neq 0 \text {. }
$$

Standard Form of a quadratic function

$$
f(x)=a(x-h)^{2}+k
$$

To go from $a x^{2}+b x+c$ to the standard form use completing the square. The graph of $f(x)$ is a parabola with vertex (h, k).

The parabola opens up when $a>0$ 11 opens downward when $a<0$

$$
f(x)=a(x-h)^{2}+k \text { with }
$$

$a>0$

$$
f(x)=a(x-h)^{2}+2
$$

with a<0.

Example. Let $f(x)=2 x^{2}-12 x+13$.
Find what $f(x)$ bewmes in standard form.

$$
f(x)=2\left(x^{2}-\frac{b}{6 x}\right)+13+\underset{L}{L}\left(x-\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2} \text { al ways. }
$$

$$
\begin{aligned}
& =2\left[(x-3)^{2}-9\right]+13 \\
& =2(x-3)^{2}-18+13 \\
& =2(x-3)^{2}-5 \quad \text { vertex: }(3,-5) \\
f(x) & =a(x-h)^{2}+k
\end{aligned}
$$

y-intercept if $x=0$

$$
\begin{aligned}
f(0) & =2(0-3)^{2}-5 \\
& =2(9)-5 \\
& =13 .
\end{aligned}
$$

Range: $[-5, \infty)$
Domain: $(-\infty, \infty)$.

Web Assign 2.7
(6)? Consider $f(x)=\frac{x}{x+1}$ and $g(x)=\frac{1}{x}$.
(a)

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}}{\frac{1}{x}+1}=\frac{\frac{1}{x}}{\frac{1}{x}+\frac{x}{x}} \\
& =\frac{\frac{1}{x}}{\frac{1+x}{x}}=\frac{1}{x /} \cdot \frac{x}{1+x}=\frac{1}{1+x}
\end{aligned}
$$

(b) Domain : $(-\infty,-1) \cup(-1,0) \cup(0, \infty)$

$$
x \neq-1,0
$$

(c)

$$
\begin{aligned}
(g \circ f)(x) & =g\left(f^{f(x)}\right)=g(\underbrace{\frac{x}{x+1}}_{\uparrow}) \\
& =\frac{1}{\left(\frac{x}{x+1}\right)} \\
& =\underbrace{\frac{x+1}{x}}_{n} \quad x \neq-1,0
\end{aligned}
$$

(d) Domain: $(-\infty,-1) \cup(-1,0) \cup(0, \infty)$
(e) $(f \circ f)(x)=f(f(x))=f\left(\left(\frac{x}{x+1}\right)\right)$

Recodl $f(x)=\frac{x}{x+1}$

$$
g(x)=\frac{1}{x}
$$

$$
=\frac{\frac{x}{x+1}}{\frac{x}{x+1}+\frac{x+1}{x+1}}
$$

$$
=\frac{\frac{x}{x+1}}{\frac{2 x+1}{x+1}}
$$

$$
=\frac{x}{2 x+1} \quad x \neq-\frac{1}{2}
$$

(f) Domain: $(-\infty,-1) \cup\left(-1,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$.
(g) $(g \circ g)(x)=g\left(\frac{1}{x}\right)=\frac{1}{\left(\frac{1}{x}\right)}=x$

Recall $g(x)=\frac{1}{x}$

$$
x \neq 0
$$

Domain: $(-\infty, 0) \cup(0, \infty)$.

Web Assign 2.8
(10). Find the inverse of f.

$$
\begin{aligned}
f(x) & =x^{2}+7 x \\
& =\left(x+\frac{7}{2}\right)^{2}-\frac{49}{4}
\end{aligned}
$$

$$
f(x)=x^{2}+7 x, \quad\left[x \geqslant-\frac{7}{2}\right]
$$

Find $f^{-1}(x)$ when $x \geqslant-\frac{49}{4}$

$$
y=x^{2}+7 x
$$

Make x the subject of the formula:

$$
x^{2}+\frac{7 x}{7}-y=0
$$

Use the quadratic formula

$$
\begin{aligned}
x & =\frac{-7 \pm \sqrt{7^{2}-4(1)(-y)}}{2(1)} \\
& =\frac{-7 \pm \sqrt{49+4 y}}{2}
\end{aligned}
$$

Use only the + square root. Final answer:

$$
f^{-1}(x)=\frac{-7+\sqrt{49+4 x}}{2}
$$

WebAssign 27
rate at which the radius is
(a) $\quad f(t)=3 t$ increasing is $3 \mathrm{~cm} / \mathrm{s}$.
(b) Volume of sphere as a function of the radius.

$$
g(r)=V=\frac{4 \pi r^{3}}{3}
$$

(c) $g \circ f=g(f(t))=g(3 t)=\frac{4 \pi(3 t)^{3}}{3} \leftarrow$
overall output $=36 \pi t^{3}$.
is the output of
9 which is the \uparrow
volume of a sphere
The function represents the volume as a function of time.

Section 3.1 continuing Quadratic functions.

$$
f(x)=a(x-h)^{2}+k
$$

Maximum and minimum value of a quadratic

$$
\text { minimum occurs at } x=h
$$ and the $y(h)=k$. $a>0$.

maximum occurs at $x=h$ and $y(h)=k$ $a<0$

For any quadratic formula $f(x)=y=a x^{2}+b x+c$ the maximum/minimum occurs at

$$
x=\frac{-b}{2 a}
$$

and if $a>0$, the minimum value is $f\left(-\frac{b}{2 a}\right)$ if $a<0$, the maximum value is $f\left(-\frac{b}{2 a}\right)$.

Examples
(1). Find the max/min value of each quadratic formula

$$
f(x)=-2 x^{2}+4 x-5=a x^{2}+b x+c
$$

\max becoulse $a<0$.

$$
\begin{aligned}
& a=-2 \\
& b=4 \\
& c=-5
\end{aligned}
$$

Maximum occurs at $x=-\frac{b}{2 a}=-\frac{4}{2(-2)}=1$

$$
\begin{aligned}
f\left(-\frac{b}{2 a}\right)=f(1)=-2(1)^{2}+4(1)-5= & -2+4-5 \\
& =-3
\end{aligned}
$$

ALTERNATIVE.
Write

$$
\begin{aligned}
& -2 x^{2}+4 x-5 \\
& =-2\left[x^{2}-2 x\right]-5 \\
& =-2\left((x-1)^{2}-1\right)-5 \\
& =-2(x-1)^{2}+2-5 \\
& =-2(x-1)^{2}-3 \\
& =a(x-h)^{2}+k
\end{aligned}
$$

vertex at $(h, k)=(1,-3)$
\uparrow max y value.
x value at Which max occurs

Section 3.2 Polynomial functions and their graphs
Def.
A polynomial function of degree n is a function of the form
leading coefficient

$$
f(x)=\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right.
$$

where n is a non-negative integer and $a_{n} \neq 0$.

- $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are the coefficients
- a_{0} is the constant coeff. of the constant firm
- $a_{n} x^{n}$ is the leading term

Graphs of basic polynomials

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

* the n is a non-negative integer.

 about the origin

ODD Function: $f(x)=\underbrace{-f(-x)}$
transformations

- reflection about the y-axis
- reflection about the x-axis.

Note $f(x)=x^{n}$ this has the same general shape as $y=x^{2}$ when n is even however the larger the n is, the - flatter the graph gets around the origin and steeper elsewhere.

- this has the same general shape as x^{3} when n is odd.

End behavior of polynomials
It is determined by the degree of the polynomial and the sign of the leading coefficient a_{n} as $x \rightarrow \infty$
$f(x)$ has odd degree
egg

as $x \rightarrow-\infty$
x goes to $-\infty$
tends to approaches
$y \rightarrow-\infty$
LEAding coefficient is positive

$$
\text { as } x \rightarrow+\infty
$$

$$
\begin{aligned}
y & =(x+2 x(x-3)(x+1)] \\
& =\frac{1}{1 \cdot x^{3}+\ldots} \\
& \text { positive } \\
& =(x+2)\left[x^{2}-2 x-3\right] \\
\rightarrow+\infty & =x^{3}-2 x^{2}+\ldots
\end{aligned}
$$

$$
y \rightarrow-\infty
$$

LEADING COEFFICIENT
is $N \in G$ AlIVE

$f(x)$ has even degree

LEADING COEFACIENT is negative

LEADING COEFFICIENT
is positive

Example. Determine the end behavior of a polynomial.

$$
f(x)=-2 x^{4}+5 x^{3}+4 x-7
$$

as $x \rightarrow-\infty$

$$
y \rightarrow-\infty
$$

Zeros of a polynomial
as $x \rightarrow+\infty$

$$
y \rightarrow-\infty
$$

Study
inverse functions for quiz.

If $f(x)$ is a polynomial and c is a real number then we have the following equivalent statements.

1. $\quad C$ is a zero of $f(x)$
2. $x=c$ is a solution of the polynomial of $f(x)$
3. $x-c$ is a factor of $f(x)$

$$
f(x)=(\underbrace{(x-3})(\underbrace{x+4})=0
$$

4. C is an x-intercept of the graph of $f(x) . \quad x=-4,3$

Graphing a polynomial

1. Find the zeros
2. Test various points.
3. Cook at the end behavior (as $x \rightarrow \pm \infty, y \rightarrow$?)
4. Graph.

Examples
Sketch the graph of $f(x)=(x+2)(x-3)(x+1)$
zeros: $\quad x=-2,-1,3$
y-intercept: when $x=0$

$$
\begin{aligned}
f(0) & =(0+2)(0-3)(0+1) \\
& =-6
\end{aligned}
$$

Test other points

e.g. When $x=-1.5 \quad f(x)=(t)(-)(-)=(t)$

$$
\begin{aligned}
x=1 \quad f(x) & =(t)(-)(t)=(-) \\
& =(3)(-2)(2) \\
& =-12
\end{aligned}
$$

End-behavior $\quad f(x)=(x+2)(x-3)(x+1)$

$$
\begin{array}{ll}
\text { as } x \rightarrow+\infty & f(x) \rightarrow+\infty \\
\text { as } x \rightarrow-\infty & f(x) \rightarrow-\infty
\end{array}
$$

Example.

$$
\begin{aligned}
P(x) & =x^{3}-2 x^{2}-3 x \\
& =x\left(x^{2}-2 x-3\right) \\
& =x(x+1)(x-3)
\end{aligned}
$$

Zeros: $\quad x=-1,0,3$.

End-behavior:- leading coeff. is positive

- odd degree.

$$
\begin{array}{ll}
x \rightarrow+\infty & y \rightarrow+\infty \\
x \rightarrow-\infty & y \rightarrow-\infty
\end{array}
$$

Example. $f(x)=-2 x^{4}-x^{3}+3 x^{2}$. Sketch its graph.

$$
\begin{aligned}
& =-x^{2}\left(2 x^{2}+x-3\right) \\
& =-x^{2}(2 x+3)(x-1)
\end{aligned}
$$

zeros

$$
x=-\frac{3}{2}, \bigcap_{\text {repeated root. }}^{0,1}
$$

End-behavior: Even degree polynomial.
Negative leading coeff.

$$
\left[\begin{array}{ccc}
\text { as } x \rightarrow+\infty, & y \rightarrow-\infty \\
\text { as } x \rightarrow-\infty, & y \rightarrow-\infty
\end{array}\right]
$$

as $x \rightarrow \pm \infty$

Multiplicities of the roots
Shape of polynomial near a zero of multiplicity m.
Assume c is a zero of $f(x)$ and has multipllity m. The shape of the graph of $f(x)$ near c is as follows.

- m is even, $m>1$

- m is odd, $m>1$

Compare

$$
\begin{array}{rlrl}
y=x^{2} & \text { to } y=x^{4} & \text { as } x & \rightarrow \infty \\
y & \rightarrow \infty \\
x=\frac{1}{2} y=\frac{1}{4} & x=\frac{1}{2} y=\frac{1}{16} & \text { as } x & \rightarrow-\infty \\
y & \rightarrow+\infty
\end{array}
$$

Example Sketch $\frac{f(x)=x^{4}(x-2)^{3}(x+1)^{2}}{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots}$
zeros: $\quad x=-1,0,2$

$$
\mu \uparrow \uparrow
$$

multiplicity: 243

$$
\begin{aligned}
& \quad \begin{array}{ll}
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \\
x^{m} \cdot x^{n} \\
=x^{m+n} & x^{4} \frac{(x-2)^{3}}{\downarrow} \underbrace{(x+1)^{2}}
\end{array}=x^{x^{4}} x^{\left(x^{3}+\ldots\right)}+x^{2}+\ldots \\
& \text { End-behavior: odd - degree }
\end{aligned}=x^{4+3+2}+\ldots .
$$

positive leading coff.
as $x \rightarrow+\infty, y \rightarrow+\infty$ and as $x \rightarrow-\infty, y \rightarrow-\infty$.

Local extrema of polynomials
If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial of degree n, then the graph of $f(x)$ will have at most $n \rightarrow 1$ local extrema.
\min or max

Find the maximum of $f(x) \ldots$

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \quad \underbrace{f(h)}=a(h-h)^{2}+k=k \\
x=h \rightarrow y=\hat{k} \leftarrow \max / \min
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& \quad \text { use } \quad x=-\frac{b}{2 a} \\
& \quad \max / \min \quad f\left(-\frac{b}{2 a}\right)=\cdots
\end{aligned}
$$

\qquad

- Quiz this week on Section 3.2: Polynomial functions \& their graphs
- HW 6 due tonight at 11:59 pm
- HW7 can also be found on Brightspace and Gradescope.

Section 3.3: Dividing polynomials
LONG DIVISION OF POLYNOMIALS

Division algorithm
If $f(x)$ and $D(x)$ are polynomials where $D(x) \neq 0$ then there is a unique polynomial $Q(x)$ and $R(x)$, where $R(x)$ is either 0 or of degree less than the degree of $D(x)$.

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

or equiv valently,

$$
\underbrace{P(x)}_{\uparrow}=\underbrace{D(x)}_{\uparrow} \cdot \underbrace{Q(x)}_{\uparrow}+\underbrace{R(x)}_{\uparrow}
$$

Long division algorithm
Example 1 Let $P(x)=6 x^{2}-26 x+12$. Divide by $x-4$.

$$
\begin{array}{r}
x - 4 \longdiv { 6 x - 2 } \begin{array} { r }
{ 6 x ^ { 6 } - 2 6 x + 1 2 } \\
{ \frac { 6 x ^ { 2 x } - 2 4 x } { } \downarrow } \\
{ - 2 x + 1 2 } \\
{ - \frac { 2 x + 8 } { 4 } }
\end{array}
\end{array}
$$

1. $\quad \frac{6 x^{2}-26 x+12}{x-4}=6 x-2+\frac{4}{x-4}$
2. $6 x^{2}-26 x+12=(x-4) \cdot(6 x-2)+4$
dividend divisor quotient remainder
Example z- Divide $8 x^{4}+6 x^{2}-3 x+1$ by $2 x^{2}-x+2$

$$
\begin{array}{r}
2 x ^ { 2 } - x + 2 \longdiv { 8 x ^ { 2 } + 2 x } 8 x ^ { 4 } + 0 x ^ { 3 } + 6 x ^ { 2 } - 3 x + 1 \\
-\frac{8 x^{4}-4 x^{3}+8 x^{2}}{4 x^{3}-2 x^{2}-3 x} \\
\frac{-4 x^{3}-2 x^{2}+4 x}{-7 x+1} \\
\frac{8 x^{4}+6 x^{2}-3 x+1}{2 x^{2}-x+2}=4 x^{2}+2 x+\left(\frac{-7 x+1)}{2 x^{2}-x+2}\right.
\end{array}
$$

OR $\quad 8 x^{4}+6 x^{2}-3 x+1=\left(2 x^{2}-x+2\right)\left(4 x^{2}+2 x\right)-7 x+1$.

Example 3. Divide $2 x^{2}-x-3$ by $x-3$

$$
\begin{aligned}
& x-3 \frac{2 x+5}{2 x^{2}-x-3} \\
&-\frac{2 x^{2}-6 x}{5 x-3} \\
& 2 x^{2}-x-3=(x-3)(2 x+5)+12
\end{aligned}
$$

Example 4

$$
\begin{aligned}
& \frac{x^{6}+x^{4}+x^{2}+1}{x+1} \\
& x + 1 \longdiv { x ^ { 5 } - x ^ { 4 } + 2 x ^ { 3 } - 2 x ^ { 2 } + 3 x - 3 } \underset { x ^ { 6 } + 0 x ^ { 5 } + x ^ { 4 } + 0 x ^ { 3 } + x ^ { 2 } + 0 x + 1 } { (x ^ { 6 } + x ^ { 5 } } \\
& \begin{array}{r}
\frac{x^{6}+x^{5}}{} \begin{array}{l}
\downarrow \\
-x^{5}+x^{4} \\
\frac{-x^{5}-x^{4}}{} \\
-\frac{2 x^{4}+0 x^{3}}{2 x^{4}+2 x^{3}}
\end{array} \downarrow \\
-2 x^{3}+x^{2}
\end{array} \\
& \frac{-2 x^{3}-2 x^{2}}{-3 x^{2}+0 x} \\
& 3 x^{2}+3 x \\
& \begin{array}{l}
-3 x+1 \\
-3 x-3 \\
\hline
\end{array}
\end{aligned}
$$

$$
\frac{x^{6}+x^{4}+x^{2}+1}{x+1}=x^{5}-x^{4}+2 x^{3}-2 x^{2}+3 x-3+\frac{4}{x+1}
$$

SYNTHETIC DIVISION
Example. Divide $2 x^{3}-7 x^{2}+5$ by $x-3$
(3) $2 \quad-7 \quad 0 \quad 5^{\text {K }}$
result from the multiplication
the coefficients of each term in the original poly nomial.
(2) $\quad-1 \quad-3-4$
coefficients of
remainder. the quotient

$$
\begin{gathered}
2 x^{3}-7 x^{2}+5=(x-3) \cdot\left(2 x^{2}-x-3\right)-4 \\
\text { dividend } \quad \text { divisor }
\end{gathered}
$$

$$
\begin{array}{r}
\frac{2 x^{2}-x-3}{2} \begin{array}{r}
2 x^{3}-7 x^{2}+0 x+5 \\
-\frac{2 x^{3}-6 x^{2}}{-x^{2}+0 x} \\
\frac{-x^{2}+3 x}{-3 x+5} \\
\frac{-3 x+9}{-4}
\end{array}
\end{array}
$$

\pm Use synthetic division to divide $P(x)=3 x^{5}+5 x^{4}-4 x^{3}+7 x+3$ by $x+2 \rightarrow$

Find $P(-2)=5$

$$
\begin{array}{r|rrrrr}
\left.-2 \left\lvert\, \begin{array}{cccccc}
3 & 5 & -4 & 0 & 7 & 3 \\
\hline & -6 & 2 & 4 & -8 & 2 \\
\hline 3 & -1 & -2 & 4 & -1 & \\
\hline
\end{array}\right.\right)
\end{array}
$$

$$
\begin{gathered}
3 x^{5}+5 x^{4}-4 x^{3}+7 x+3=\left(3 x^{4}-x^{3}-2 x^{2}+4 x-1\right)(x+2) \\
+5
\end{gathered}
$$

Exercise. Use synthetic division for

$$
\frac{4 x^{2}-3}{x-2}
$$

2 | | | |
| :---: | :---: | :---: |
| 4 | 0 | -3 |
| | 8 | 16 |
| 4 | 8 | 13 |

$$
\begin{aligned}
& \frac{4 x^{2}-3}{x-2}=(4 x+8)+\frac{13}{x-2} \\
& 4 x^{2}-3=(x-2) \cdot(4 x+8)+13
\end{aligned}
$$

NOTE Synthetic division can only be used if the divisor is of the form $(x-c)$.
$\{$ Remainder theorem.
If the polynomial $P(x)$ is divided $x-c$, then the remainder is the value $P(c)$.
optional Proof:

$$
\begin{array}{ll}
& P(x)=(x-c) \cdot Q(x)+r \\
x=c & P(c)=(c-c)-\theta(c)^{0}+r=r
\end{array}
$$

$P(c)$ is the remainder r.

$$
\left\{\begin{array}{l}
\text { Factor theorem } \\
c \text { is a zero of } P \text { if and only if } x-c \text { is a factor of } P(x) .
\end{array}\right.
$$

optional. Proof. If $P(x)$ factors as $P(x)=(x-c) \cdot Q(x)$ then

$$
P(c)=(\underbrace{c-c}_{0}) \cdot Q(c)=0
$$

Conversely, if $P(c)=0$ then by the remainder theorem

$$
\begin{aligned}
P(x) & =(x-c) Q(x)+0 \\
& =(x-c) \cdot Q(x)
\end{aligned}
$$

$\Rightarrow \quad x-c$ is a factor of $P(x)$
... continuing Section 3.3 "Dividing polynomials from last time.

Web Assign 3.3.
(8) Find a polynomial of degree 3 that has zeros $1,-6,7$ and in which the coefficient of x^{2} is 3 .

From the factor theorem we know that

$$
x-1, \quad x-(-6), \text { and }(x-7)
$$

are factors of the desired polynomial

$$
P(x)=a(x-1)(x-(-6))(x-7)
$$

constant to be found.
chef of

$$
\begin{aligned}
\Rightarrow P(x) & =a(x-1)(x+6)(x-7) \\
& =a(x-1)\left(x^{2}-x-42\right) \\
& =a\left(x^{3}-x^{2}-42 x-x^{2}+x+42\right) \\
& =a\left(x^{3}-2 x^{2}-41 x+42\right) \\
& =a x^{3}-2 a x^{2}-41 a x+42 a
\end{aligned}
$$

$$
x^{2}: \quad-2 a=3 \Rightarrow a=-\frac{3}{2}
$$

Therefore $\quad P(x)=-\frac{3}{2}\left(x^{3}-2 x^{2}-41 x+42\right)$

$$
O R=-\frac{3}{2} x^{3}+3 x^{2}+\frac{123}{2} x-63
$$

Example. Find a polynomial of degree 4 that has zeros $-3,0,1$, and 5 and has coefficient -6 in front of x^{3}.

Fado rs $\quad x-(-3), x, x-1, x-5$

$$
\begin{aligned}
P(x) & =a(x+3)(x)(\underbrace{x-1)(x-5)} \\
& =a(x+3)(\underbrace{(x)\left(x^{2}-6 x+5\right)} \\
& =a(\underbrace{x+3)\left(x^{3}-6 x^{2}+5 x\right.}) \\
& =a\left(x^{4}-6 x^{3}+5 x^{2}+3 x^{3}-18 x^{2}+15 x\right) \\
& =a\left(x^{4}-3 x^{3}-13 x^{2}+15 x\right) \\
& =a x^{4}-3 a x^{3}-13 a x^{2}+15 a x \\
x^{3}: \quad & -3 a=-6 \Rightarrow a=2
\end{aligned}
$$

So $P(x)=2 x^{4}-6 x^{3}-26 x^{2}+30 x$.

Example: Consider $f(x)=x^{3}-7 x+6$. Show that $f(1)=0$ and using this factor $f(x)$ completely.

$$
f(1)=1^{3}-7(1)+6=1-7+6=0
$$

Because $f(1)=0 \Rightarrow x=1$ is a zens of $f(x)$
$\Rightarrow x-1$ is a factor of $f(x)$ (by the factor theorem).

$$
f(x)=x^{3}-7 x+6=(x-1) \cdot Q(x)+R(x) .
$$

Long
Division

$$
\begin{array}{r}
\frac{x^{2}+x-6}{x^{3}+0 x^{2}-7 x+6} \\
-\frac{x^{3}-x^{2}}{x^{2}-7 x} \\
\frac{x^{2}-x}{} \\
\frac{-6 x+6}{} \\
\frac{-6 x+6}{0}
\end{array}
$$

Section 3.6 : Rational functions.
Definition: A rational function is of the form

$$
r(x)=\frac{P(x)}{Q(x)}
$$

Recall

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}
$$ is a polynomial when the exponents are non-negative integers.

Synthetic division

remain.

$$
\begin{aligned}
\Rightarrow f(x) & =(x-1)\left(x^{2}+x-6\right) \\
& =(x-1)(x+3)(x-2)
\end{aligned}
$$

Where $P(x)$ and $Q(x)$ are polynomials and have no common factor.

Example: One of the simplest rational functions is

Note: $\frac{1}{\text { big number }}=$ small number

$$
\frac{1}{\text { small number }}=\text { big number }
$$

$$
\frac{1}{0.01}=\frac{1}{\left(\frac{1}{100}\right)}=100
$$

Symbols
$x \rightarrow a^{-} \quad x$ tends to a from the left
$x \rightarrow a^{+} \quad x$ tends to a from the right
$x \rightarrow \infty \quad x$ tends to infinity (i.e. x increases without bound)
$x \rightarrow-\infty \quad x$ tends to negative infinity (ie. x deacases $\begin{aligned} & \text { without bound }\end{aligned}$ without bound)

Definitions
Vertical asymptotes. The line $x=a$ is a vertical asymptote of $y=f(x)$ is y approaches $\pm \infty$ as x approaches a either from the right of from the left

$$
\begin{gathered}
x=a \\
y \rightarrow \infty \\
\text { as } x \rightarrow a^{+}
\end{gathered}
$$

$$
y \rightarrow \infty \text { as }
$$

$$
x \rightarrow a^{-}
$$

$$
y \rightarrow-\infty \text { as } x \rightarrow a^{-}
$$

Horizontal asymptotes The line $y=b$ is a horizontal asymptote of $y=f(x)$ if y approaches b as $x \rightarrow \pm \infty$.

$y \rightarrow b$ as $x \rightarrow \infty$

$$
y \rightarrow b \text { as } x \rightarrow-\infty
$$

$$
y \rightarrow b \text { as } x \rightarrow-\infty
$$

Graphing rational functions.

Ex 1. Graph $r(x)=\frac{2}{x-3}$.

$$
=2\left(\frac{1}{x-3}\right)
$$

$$
=2 f(x-3)
$$

$$
\begin{aligned}
& y=0 \Rightarrow 0=\frac{2}{x-3} \\
& \text { solve for } x ? \\
& 0 \neq 2 \\
& \text { no } x \text {-interest. }
\end{aligned}
$$

Vertical stretch by a factor of 2
Horizontal shift to the right by 3 .
vertical asymptote at $x=3 \quad(x$-val ce for which the denominator is zero).
horizontal asymptote at $y=0$

y-intercept

In general $r(x)=\frac{a x+b}{c x+d}$ linear fractional transformations. lose $\frac{1}{x}$ as your guide).
e.g. $\quad \tau(x)=\frac{3 x+5}{x+2}$. Graph $r(x)$.

$$
\begin{aligned}
& x + 2 \longdiv { 3 } \frac { 3 } { 3 x + 5 } \\
& r(x)=3-\frac{1}{x+2} \\
& \frac{-3 x+6}{-1} \\
& r(x)=\underset{\text { max }}{Q(x)}+\frac{R(x)}{D(x)} \\
& f(x)=\frac{1}{x} \\
& r(x)=-\frac{1}{x+2}+3 \\
& =-f(x+2)+3 \\
& f(x)=\frac{1}{x} \\
& f(x+2)=\frac{1}{x+2}
\end{aligned}
$$

Transformations:

$$
\left[\begin{array}{ll}
\text { Reflections about } x \text {-axis } & f\left(\frac{1}{x+2}\right)=\frac{1}{\left(\frac{1}{x+2}\right)}=x+2 \\
\text { Shift up by } 3 \text { units } & f(x+2)=\frac{1}{x+2} \\
\text { Horiz. shift to the left by 2. }
\end{array}\right.
$$

From lost time...

$$
\begin{array}{ll}
f(x)=\frac{1}{x} \\
f\left(\frac{1}{2}\right)=\frac{1}{\left(\frac{1}{2}\right)}=2 & f(x+2)=\frac{1}{x+2} \\
f(2)=\frac{1}{2} & f(x-3)=\frac{1}{x-3} \\
& f\left(\frac{1}{x+1}\right)=\frac{1}{\left(\frac{1}{x+1}\right)}=x+1 \\
r(x)=\frac{1}{x+2}=f(x+2)
\end{array}
$$

- Quiz this week: Long division and synthetic division
- HW7 due tonight at $11: 59$ pm
- Webassign
- Office hours today on Zoom at 3:30-4:30pm

Example. Write $r(x)=\frac{2 x-9}{x-4}$ as a transformation of $f(x)=\frac{1}{x}$.

$$
\left[\begin{array}{rl}
x-4 \frac{2}{2 x-9} & r(x)=2-\frac{1}{x-4}
\end{array}\right]
$$

OR

$$
\begin{aligned}
r(x)=\frac{(2 x-8)+(8-9)}{x-4}=\frac{2(x-4)-1}{x-4}=2-\frac{1}{x-4} & =-\frac{1}{x-4}+2 \\
& =-f(x-4)+2
\end{aligned}
$$

ASYMPTOTES
To find the vertical asymptote (v.A.) you set the denominator to zero and solve for x. The V.A. is an equation of the form $x=a$ for some constant a.

Horizontal asymptotes (H.A.)
Let r be a rational function of the form

$$
r(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{n-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

1. If $n>m$. then r has no horizontal asymptote.
if $r(x)=\frac{x^{2}}{x+2}$
2. If $n<m$, then r has a H.A. at $y=0$.
3. If $n=m$, then r has a H.A. at $y=\frac{a_{n}}{b_{m}}$

Example. (1) Find the vertical and horizontal asymptote o of

$$
\begin{gathered}
r(x)=\frac{3 x^{2}-2 x-1}{2 x^{2}+3 x-2} . \\
r(x)=\frac{3 x^{2}-2 x-1}{(2 x-1)(x+2)} \quad \text { V.A. } \quad x=\frac{1}{2},-2 \\
\text { H.A. } \quad y=\frac{3}{2}
\end{gathered}
$$

(2) $r(x)=\frac{2 x-3}{x^{2}-1}=\frac{2 x-3}{(x-1) \cdot(x+1)}$
V.A. $x=-1,1$
H.A. $y=0$
(3) $r(x)=\frac{6 x^{3}-2}{2 x^{3}+5 x^{2}+6 x}=\frac{6 x^{3}-2}{x\left(2 x^{2}+5 x+6\right)}$

$$
\begin{aligned}
& \text { V.A. } x=0 \\
& \text { H.A. } y=3
\end{aligned}
$$

Example. Graphing rational functions

$$
r(x)=\frac{x^{2}-4}{2 x^{2}+2 x}
$$

STGP 1. Try to factor $r(x)=\frac{(x-2)(x+2)}{2 x(x+1)} *$
STEP. x-intercepts: Set $y=0$ (the numerator is 0)

$$
\begin{array}{ll}
x \text {-intercepts : set } y=0 & \text { (the numerator is } 0) \\
y \text {-intercepts }: \text { set } x=0 & r(0) \stackrel{(-2,0),(2,0)}{0(1)} \text { No } y \text {-intercept }
\end{array}
$$

STEP 3. Find V.A. and H.A.

$$
\begin{array}{ll}
\text { V.A: } & x=-1,0 \\
\text { H.A: } & y=\frac{1}{2} .
\end{array}
$$

STEP 4. Find the behavior close to the V.A.

As $\begin{array}{rl}x \rightarrow-1^{-} \\ \text {e.g. } x=-1.1 & y \rightarrow \frac{(-\lambda(t)}{(-)(-)}=(-)\end{array}$
$\begin{aligned} & \text { As } x \rightarrow-1^{+} \\ & \text {e.g } x=-0.9\end{aligned} \quad y \rightarrow \frac{(-)(t)}{(-)(t)}=(+)$
As $x \rightarrow 0^{-} \quad y \rightarrow \frac{(-x(t)}{(-)(t)}=(t)$
$\begin{aligned} & \text { As } x \rightarrow 0^{+} \\ & \text {e.g. } x=0.1\end{aligned} \quad y \rightarrow \frac{(-)(t)}{(+)(t)}=(\rightarrow)$

HOLES in rational functions.

1. Consider $r(x)=\frac{x-3}{x^{2}-3 x}=-\frac{x-3}{x(x-3)} \quad x=3$ is a hole.

$$
=\frac{1}{x} \text { for } x \neq 3
$$

2. $r(x)=\frac{x^{3}-2 x^{2}}{x-2}=\frac{x^{2}(x-2)}{x-2} \quad$ Hole $x=2$

$$
=x^{2} \text { for } x \neq 2
$$

SLANT ASYMPTOTES
If $r(x)=\frac{P(x)}{Q(x)}$ is a rational function in which the degree
of the numerator is one more than the degree of the denominator r, we can use long division to wite it in the form

$$
r(x)=a x+b+\frac{R(x)}{Q(x)}
$$

where the degree of $R(x)$ is less than the degree of Q and $a \neq 0$.
Example. Consider $r(x)=\frac{x^{2}-4 x-5}{x-3}$. Graph.

$$
r(x)=\frac{(x+1)(x-5)}{x-3}
$$

x-intercepts : $(-1,0),(5,0)$
$\sqrt{ } y$-intercepts : $r(0)=\frac{1(-5)}{(-3)}=\frac{5}{3} \quad\left(0, \frac{5}{3}\right)$.
V.A. $\quad x=3$
H.A. No H.A.

$$
\text { egg. } x=2.9
$$

Behavior close to the V.A. as $x \rightarrow 3^{-} \quad y \rightarrow \frac{(+)(-)}{(-)}=(t)$

SLANT ASYMPTOTE.

$$
\begin{aligned}
& \text { as } x \rightarrow 3^{+} \quad y \rightarrow \frac{(t)(-)}{(+)}=(-) . \\
& \text { e.g. } x=3.1
\end{aligned}
$$

$$
\text { egg. } x=3.1
$$

$$
\text { Wanted: } r(x) \quad a x+b+\frac{R(x)}{Q(x)}
$$

$$
r(x)=x-1-\frac{8}{x-3}
$$

$$
\begin{array}{r}
x-3 \begin{array}{l}
\frac{x-1}{x^{2}-4 x-5} \\
-\frac{x^{2}-3 x}{-x-5} \\
\frac{-x+3}{-8}
\end{array}
\end{array}
$$

Since the denominator is one degree less than the numerator, the function has a slant asymptote

Slant asymptote: $y=x-1$;

Section 4. 1 Exponential functions.
Definition: The exponential function with base a is defined for all real values x by

$$
f(x)=a^{x}
$$

e.g. 2^{x} as $x \rightarrow-\infty$

$$
2^{-1000000}
$$

Where $a>0$ and $a \neq 1$.

$$
f(0)=a^{0}=1 \approx 0
$$

e.g. Graph 3^{x} and $\left(\frac{1}{3}\right)^{x}=\frac{1}{3^{x}}$

$$
\text { as } \begin{aligned}
x & \rightarrow \infty \\
y & \rightarrow 0
\end{aligned}
$$

as $x \rightarrow-\infty$

$$
y \rightarrow \infty
$$

y-intercepts set $x=0=\frac{1}{2^{1000} 0000}$

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{-2} & =\frac{1}{3^{-2}}=\frac{3^{-2}}{3^{2}}=\frac{1}{9} \\
& =3^{2}=9
\end{aligned}
$$

In general, we summarize it like this

$$
f(x)=a^{x}, a>1
$$

$$
f(x)=a^{x}, \quad 0<a<1
$$

Example. Graph $f(x)=-2^{x}$.

Office hours today at $5: 30-6: 30 \mathrm{pm}$ in wWW Room 1025.

Transformations of exponential functions
e.g. Graph $f(x)=1+3^{x}$.

e.g Graph $h(x)=4^{x-1}$ shift to the right by 1 .

Domain: $(-\infty, \infty)$
when $x=0 \Rightarrow h(0)=4^{0-1}$
Range: $(0, \infty)$

$$
\begin{aligned}
& =4^{-1} \\
& =\frac{1}{4}
\end{aligned}
$$

Upcoming HW: STUDY FOR MIDTERM !
Ex. Find the exponential function of the form $y=C \cdot a^{x^{\downarrow}}$ which passes through $(-1,2)$ and $(4,5)$.

STEP 1: Use one of the coordinates.
want to find a and C.

$$
\begin{gathered}
(-1,2) \\
\uparrow \uparrow \\
x y \\
2=C \cdot a^{-1} \Rightarrow 2=\frac{C}{a} \Rightarrow C=2 a
\end{gathered}
$$

STEP 2: Use the other point $(4,5)$

$$
x y
$$

$$
5=C \cdot a^{4}
$$

Subst. $C=2 a$ into $\quad 5=C \cdot a^{4}$

$$
\begin{aligned}
& \text { we } C=2 a \\
& \Rightarrow C=2 \cdot\left(\frac{5}{2}\right)^{1 / 5}
\end{aligned}
$$

$$
\begin{aligned}
5=2 a \cdot a^{4} \Rightarrow & 5=2 \cdot a^{5} \\
\frac{5}{2} & =a^{5} \\
a & =\sqrt[5]{\frac{5}{2}} \\
\left(\frac{5}{2}\right)^{1 / 5} & \text { or } a=\left(\frac{5}{2}\right)^{\frac{1}{5}}
\end{aligned}
$$

We also have $C=2 a$

Now subst. into $y=C \cdot a^{x} \Rightarrow y=2 \cdot\left(\frac{5}{2}\right)^{\frac{1}{5}} \cdot\left[\left(\frac{5}{2}\right)^{\frac{1}{5}}\right]^{x}$

$$
\left(a^{m}\right)^{n}=a^{m \cdot n} \quad y=2\left(\frac{5}{2}\right)^{1 / 5} \cdot\left(\frac{5}{2}\right)^{x / 5}
$$

WebAssign 4.1

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

12. Graph $y=2^{-x}+1=\frac{1}{2^{x}}+1=\left(\frac{1}{2}\right)^{x}+1$

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{x} & =\frac{1 x}{2^{x}} \\
& =\frac{1}{2^{x}}
\end{aligned}
$$

Domain: $(-\infty, \infty)$
Range: $(1, \infty)$.
State the asymptote: $y=1$
Section 4.2 : The natural exponential function.
The number e :

$$
e \approx 2.71828 \ldots
$$

[Aside: $\left.e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \cdot\right]_{3^{x}}$
sketch on the same axis

$$
\begin{gathered}
y=2^{x} \text { and } \\
y=3^{x} .
\end{gathered}
$$

$$
\begin{array}{ll}
y=2^{x}, & x=1 \\
y=2 \\
y=e^{x}, & x=1 \\
y=3^{x}, & y=1 \\
y=3
\end{array}
$$

$$
\begin{array}{ll}
y=2^{x} & x=-1, y=2^{-1}=\frac{1}{2} \\
y=e^{x} & x=-1, y=\frac{1}{e} \\
y=3^{x} & x=-1, y=\frac{1}{3}
\end{array}
$$

Transformations of the natural exponential Alenction e.g Graph $y=3 e^{\frac{1}{2} x}$. Find the domain, the range, and asymptote

Sketch first $y=e^{x}$

$$
y=0-\cdots
$$

Vertical stretch by a factor of 3 .
Horizontal stretch by a factor of 2 .

APPLICATIONS OF EXPONENTIAL FUNCTIONS
An infectious disease begins to spread in a city with population 10000 . After t days, the number of people who have the virus is given by

$$
r(t)=\frac{10000}{5+1245 e^{-0.97 t}}=\frac{e^{-0.97 t}}{e^{0.97 t}}
$$

(a) How many people had the vines initially ? [Find $v(t)$ when $t=0$]

$$
\begin{aligned}
& \text { as } t \rightarrow \infty \\
& e^{-0.97 t} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \quad V(0)=\frac{10000}{5+1245\left(e^{-0.97(0)}\right.}=\frac{1000 \varnothing}{125 \varnothing}=8 \text { people. } \\
& C \cdot(a)^{x} \Leftrightarrow C \cdot e^{k x}=C \cdot\left(e^{k}\right)^{x} \text { using } a^{m n}=\left(a^{m}\right)^{n} \\
& \Rightarrow a=e^{k}
\end{aligned}
$$

(b) Find the number of people that have the virus by doxy 5 .

$$
V(5)=\frac{10000}{S+1245 e^{-0.97(5)}} \text { people. }
$$

COMPOUND INT ERGOT
I not going to ask about this in midterm 2 but might be This is calculated by the formula in the final). r : interest rate per year
 t number of years
amount after t years.
number of times the interest is compounded per year.

Example. A sum of $\$ 1000$ is invested at a rate of 12% per year. Find the amount in the account after 3 years if it's compounded, annually, monty and daily.

$$
\begin{aligned}
P & =\$ 1000 \\
r & =0.12 \\
t & =3
\end{aligned}
$$

$$
\begin{aligned}
& =1000(1.12)^{3} \\
& =\$ 1404.93 \\
& \text { daily } n=365 \\
& A(3)=1000\left(1+\frac{0.12}{365}\right)^{365(3)} \\
& A(3)=1000\left(1+\frac{0.12}{12}\right)^{12(3)} \\
& =\$ 1433.24 \text {. }
\end{aligned}
$$

Note that exponential functions grow faster than polynomial or power functions

Note
Exponential functions: $y=C \cdot a^{x}$ e.g. $y=2^{x}$
Power functions: $y=C \cdot x^{a}$
e.g. $y=x^{2}$

Try the following exerases: (Quiz next week).
(1) Sketch $h(x)=4+\left(\frac{1}{3}\right)^{x}$. State domain, range, asymptote
(2) Sketch $g(x)=2^{x-4}-1$. State domain, range, asymptote.

 shift down

$$
y=2^{x-4}-1
$$ the right by 4

y-intercept: $x=0$

$$
\begin{aligned}
2^{0-4}-1 & =2^{-4}-1 \\
& =\frac{1}{2^{4}}-1 \\
& =\frac{1}{16}-1 \\
& =-\frac{15}{16}
\end{aligned}
$$

Domain: $(-\infty, \infty)$
Range: $(-1, \infty)$
Asymptote: $y=-1$.
Recall.
Difference quotient. $\frac{f(x+h)-f(x)}{h}$
e.f. If $f(x)=3^{\downarrow}{ }^{\downarrow-1}$, show that $\frac{f(x+h)-f(x)}{h}=3^{x-1}\left(\frac{3^{h}-1}{h}\right)$.

$$
f(x+h)=3^{x+h-1}, f(x)=3^{x-1}
$$

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{3^{x+h-1}-3^{x-1}}{h} \\
& a^{x+y}=a^{x} a^{y} \\
& 3^{x+h-1}=3^{x-1+h} \\
&=3^{x-1} 3^{h} \\
& \frac{3^{x-1}}{3^{h}-3^{x-1}} \\
& \frac{2(3)}{6}=2 \cdot\left(\frac{3}{6}\right)=\frac{3^{x-1}\left(3^{h}-1\right)}{h} \\
&=3^{x-1} \cdot\left(\frac{3^{h}-1}{h}\right)
\end{aligned}
$$

Midterm 2: Sections $2.7,2.8,3.1-3.3,3.6,4.1,4.2$
Layout for the exam: 10 multiple choice questions (4 pts each)
5 free response questions (6 pts each)

Section 4.3 : Logarithmic functions
Definition: Let a be a positive number $(a \neq 1)$, then the
 is defined by

$$
\begin{aligned}
& \log _{2} 8=3 \Leftrightarrow 2^{3}=8 \\
& \log _{2}\left(\frac{1}{8}\right)=? \Leftrightarrow 2^{?}=\frac{1}{8} \quad \text { where } ?=-3
\end{aligned}
$$

$$
\begin{aligned}
& \log _{10}(1000000)=6 \\
& \log _{2} x=5 \Leftrightarrow 2^{5}=x \Rightarrow x=32 .
\end{aligned}
$$

Properties

1. $\log _{a} 1=0 \quad\left(a^{0}=1\right)$
2. $\log _{a} a=1 \quad\left(a^{\prime}=a\right)$
3. $\log _{a} a^{x}=x$
4. $a^{\log _{a} x}=x{ }^{4} \log _{a} x$ and a^{x} are inverses of each other

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=x \\
& f^{-1}(f(x))=x
\end{aligned}
$$

Graphs of logarithmic functions

Domain of $\log _{a}(x):(0, \infty)$
Range of $\log _{a}(x)$:

$$
(-\infty, \infty)
$$

In general. logarithmic functions with different bases look as follows

Example. Sketch the following graphs vising transformations of $\log _{a}(x)$.
(a) $y=\log _{3}(-x)$ Domain: $(-\infty, 0)$, Range: $(-\infty, \infty)$

(b) $y=-\log _{5}(x)$

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$

(c) $y=\log _{4}(x-2)$

$$
y=-\log _{5}(x)
$$

$$
0=-\log _{5} x
$$

shift $\log _{4} x$
to the right by 2

$$
5^{\circ}=x
$$

$$
x=1
$$

Common logarithms
The logarithm with base 10 is called the common logarithm and usually we omit the base:

$$
\log x=\log _{10} x
$$

e.g

$$
\begin{aligned}
& \log 100=2 \\
& \log _{10} 10=1 \\
& \log _{10} 100=2 \\
& \log 0.001=-3
\end{aligned}
$$

Example. The loudness in a room is measured in $d B$ and is given by

$$
B=10 \log \left(\frac{I}{I_{0}}\right)^{2}
$$

intensity of the sound

Find the loudness level in $d B$ When $I=100 I_{0}$.

$$
\begin{aligned}
B & =10 \log \left(\frac{100 I_{6}}{7_{0}}\right) \\
& =10 \log (100) \\
& =10(2) \\
& =20 \mathrm{~dB}
\end{aligned}
$$

Natural LOGARITHM
The logarithm with base e is called the natural logarithm and is written as

$$
\ln (x)=\log _{e}(x)
$$

Note: $\quad \ln (x)=y \Leftrightarrow e^{y}=x$

Properties of the natural logarithm

$$
\begin{aligned}
& \ln (x)=y \\
& \log _{e}(x)=y \\
& e^{y}=x
\end{aligned}
$$

1. $\ln 1=0$
2. $\ln e=1$
3. $\ln e^{x}=x$
4. $\left.e^{\ln x}=x\right] \quad e^{x}$ and $\ln (x)$ are inverses of each other
so by $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$ we get properties 3. and 4.
eg. $\ln \left(\frac{1}{e^{2}}\right)=\ln \left(e^{-2}\right)=-2$ (by 3.)
e.g. $e^{\ln 8}=8$

Exercises.

1. Express the following equations in exponential form
(a) $\log _{8} 4=\frac{2}{3} \Leftrightarrow 8^{2 / 3}=4 \quad\left((\sqrt[3]{8})^{2}=2^{2}=4\right) \log _{a} b=x$
(b) $\log _{10} 3=2 t \Leftrightarrow 10^{2 t}=3$ $a^{x}=b$
(c) $\ln (x-1)=4 \Leftrightarrow e^{4}=x-1$
2. Evaluate the following.
(a) $\log _{6} 1=0$
(b),$e^{\ln \left(\frac{1}{\pi}\right)}=\frac{1}{\pi}$

$$
e^{\ln x}=x
$$

(c) $\log _{4} \sqrt{2}=x$. Find x.

$$
4^{x}=\sqrt{2} \Rightarrow\left(2^{2}\right)^{x}=\sqrt{2}
$$

(d) $\log _{5} 125=3$.

$$
\begin{aligned}
2^{2 x} & =2^{1 / 2} \\
2 x & =\frac{1}{2} \Rightarrow x=\frac{1}{4}
\end{aligned}
$$

Section 4.4. Laws of logarithms
Laws
Common mistakes

1. $\log _{a}(A B)=\log _{a} A+\log _{a} B$
2. $\log _{a}\left(\frac{A}{B}\right)=\log _{a} A-\log _{a} B$
3. $\log _{a}\left(A^{C}\right)=C \cdot \log _{a}(A)$

Examples
Evaluate each of the following

1. $\quad \log _{4} 2+\log _{4} 32=\log _{4}(2 \cdot 32)$

$$
\begin{aligned}
& =\log _{4}(64) \\
& =3
\end{aligned}
$$

2. $-\frac{1}{3} \log 8=\log \left(8^{-1 / 3}\right)$

$$
=\log \left(\frac{1}{8^{1 / 3}}\right)
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
=\log \left(\frac{1}{\sqrt[3]{8}}\right)
$$

$$
=\log _{10}\left(\frac{1}{2}\right)
$$

$$
10^{\Omega^{2}}=\frac{1}{2}
$$

≈-0.301 (using col culator)

Expanding and combining logarithms. Use the laws to expand these.
e.g. (a) $\log _{5}\left(x^{3} y^{6}\right)=\log _{5} x^{3}+\log _{5} y^{6}=3 \log _{5} x+6 \log _{5} y$

$$
\frac{\operatorname{Law} 1}{\log _{a}(A B)}=\log _{a}(A)+\log _{a}(B)
$$

Law 3: $\log _{a}\left(A^{C}\right)=C \log _{a} A$
(b)

$$
\begin{aligned}
\ln \left(\frac{x y^{1 / 2}}{\sqrt[3]{z}}\right) & =\ln \left(x y^{1 / 2}\right)-\ln (\sqrt[3]{z}) \\
& =\ln (x)+\ln \left(y^{1 / 2}\right)-\ln (\sqrt[3]{z}) \\
& =\ln (x)+\frac{1}{2} \ln (y)-\frac{1}{3} \ln (z)
\end{aligned}
$$

Law 2

$$
\ln \left(\frac{A}{B}\right)=\ln (A)-\ln (B)
$$

Expressing logarithms as a single logarithm
Ex. (a)

$$
\begin{array}{rlr}
& 4 \ln (s)+\frac{1}{3} \ln \left(w^{2}\right)-\ln \left(p^{2}-1\right) & \\
= & \ln \left(s^{4}\right)+\ln \left(w^{2 / 3}\right)-\ln \left(p^{2}-1\right) \quad \text { using law } 3 \\
= & \ln \left(s^{4} \cdot w^{2 / 3}\right)-\ln \left(p^{2}-1\right) \quad \log _{a}\left(A^{c}\right)=C \log _{a} A \\
= & \ln \left(\frac{s^{4} w^{2 / 3}}{p^{2}-1}\right) &
\end{array}
$$

$$
\begin{aligned}
(b) & \begin{aligned}
& \frac{1}{3} \log \left((x+2)^{3}\right)+\frac{1}{2} \log x^{4}-\log (x-1) \\
& \left.\log (x+2)^{3 \cdot 1 / 3}\right) \\
= & \log (x+2)+\log \left(x^{2}\right)-\log (x-1) \\
= & \log \left(x^{2}(x+2)\right)-\log (x-1) \\
= & \log \left(\frac{x^{2}(x+2)}{x-1}\right) \operatorname{low} 2
\end{aligned} \sqrt{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& (A+B)^{2} \neq A^{2}+B^{2} \\
(x-1) & \left(A^{2}+2 A B+B^{2}\right) \\
= & (A+B)(A+B) \\
= & A^{2}+\frac{\left(A B+A B+B^{2}\right.}{1 / 2} \\
\sqrt{x^{2}+4}= & \left(x^{2}+4\right)^{1 / 2} \neq x+2 \\
\downarrow & (A+B)^{1 / 2} \neq A^{1 / 2}+B^{1 / 2}
\end{aligned}
$$

Expanding: $\log \sqrt{\frac{x^{2}+4}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}}=\log \left(\left(\frac{x^{2}+4}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}\right)^{1 / 2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \log \left(\frac{x^{2}+4}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}\right)=\frac{1}{2}[\log \left(x^{2}+4\right)-\underbrace{\log \left(\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}\right.})] \\
& =\frac{1}{2}[\log \left(x^{2}+4\right)-(\underbrace{\log \left(x^{2}+1\right)+\log \left(x^{3}-7\right)^{2}})] \\
& =\frac{1}{2}\left[\log \left(x^{2}+4\right)-\log \left(x^{2}+1\right)-\log \left(\left(x^{3}-7\right)^{2}\right)\right] \\
& =\frac{1}{2} \log \left(x^{2}+4\right)-\frac{1}{2} \log \left(x^{2}+1\right)-\log \left(x^{3}-7\right) \\
& \left.\log \left(\frac{\left(x^{2}+4\right.}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}\right)^{1 / 2}\right)=\log \left(\frac{\left(x^{2}+4\right)^{1 / 2}}{\left(x^{2}+1\right)^{1 / 2}\left(x^{3}-7\right)^{1}}\right) \\
& =\log \left(x^{2}+4\right)^{1 / 2}-\left(\log \left(\left(x^{2}+1\right)^{1 / 2}\right)+\log \left(x^{3}-7\right)\right)
\end{aligned}
$$

Change of base formula

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Suppose you are given $\log _{a} x$ and you want to find $\log _{b} x$
A special case of this is $\log _{a} b=\frac{1}{\log _{b} a}$. e. Use the formula to evaluate use $b=8$ and $a=10$.

$$
\log _{8} 5=\frac{\log _{10} 5}{\log _{10} 8}=\ldots \text { (use callie ator). }
$$

$$
\begin{aligned}
\log (\sqrt{x \sqrt{y \sqrt{z}}}) & =\log \left((x \sqrt{y \sqrt{z}})^{\frac{1}{2}}\right) \\
& =\frac{1}{2} \log (x \sqrt{y \sqrt{z}}) \log (A B)=\log A+\log B \\
& =\frac{1}{2}[\log (x)+\log (\sqrt{y \sqrt{z}})] \\
& =\frac{1}{2}\left[\log (x)+\log \left((y \sqrt{z})^{1 / 2}\right)\right] \\
& =\frac{1}{2}\left[\log (x)+\frac{1}{2} \log (y \sqrt{z})\right] \\
& =\frac{1}{2}\left[\log x+\frac{1}{2}[\log y+\log \sqrt{z}]\right] \\
& =\frac{1}{2}\left[\log x+\frac{1}{2}\left(\log y+\frac{1}{2} \log z\right)\right) \\
& =\frac{1}{2} \log x+\frac{1}{4} \log y+\frac{1}{8} \log z
\end{aligned}
$$

- New Homework (\#9) on Gradescope

Section 5.1: The Unit Circe
The unit circle is a arcle with radius 1 and center of the origin given the equation

$$
x^{2}+y^{2}=1
$$

In general, the equation of any circle with radius r and center at (a, b) is given by

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Terminal points
Given some number t. if $t \geqslant 0$ then you measure the distance t along the unit circle starting at $(1,0)$ and mong in the counter clock wise direction

If $t<0$, then you move $|t|$ in the clockwise direction starting at $(1,0)$.
egg.

Finding the terminal points.
Note
(1) Assume we are on the unit circle.
(a) $t=3 \pi$
(b) $t=-\frac{\pi}{2}$.
(c) $t=-\frac{3 \pi}{2}$

Circumference of a unit circle is 2π.

$$
\begin{aligned}
(C=2 \pi r & =2 \pi(1) \\
& =2 \pi)
\end{aligned}
$$

(a)

(b)

(c)

$t=\pi / 2$ and $t=-\frac{3 \pi}{2}$
give us the same terminal point.

The reference number
let t be a real number. The t is the shortest distance along the unit circle between the terminal point determined by the value t and the x-axis.

terminal point
e.g. Find the reference number for each t value.
(a) $t=\frac{5 \pi}{6}<\pi$
(b) $t=-\frac{2 \pi}{3}$

(c) $t=\frac{7 \pi}{4}$
(a) Reference number $=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}$
(b) $\begin{aligned} & \text { reference number }=\pi-\frac{2 \pi}{3}=\frac{\pi}{3} \text { } \\ & t=-3 \pi / 2\end{aligned}$

$$
\begin{aligned}
& C=2 \pi \\
& t=-2 \pi / 3
\end{aligned}
$$

$$
\frac{2 \pi}{3}=\frac{4 \pi}{6}>\frac{3 \pi}{6}=\frac{\pi}{2}
$$

(c) $t=\frac{7 \pi}{4}$

Reference number

$$
=2 \pi-\frac{7 \pi}{4}=\frac{\pi}{4}
$$

(d)
 egg.

$$
2 \frac{1}{3}=\frac{7}{3}
$$

$$
=4 \pi+\frac{5 \pi}{6}
$$

two
full

$$
\pi-5 \frac{\pi}{6}=\frac{\pi}{6}
$$

$$
t=-\frac{7 \pi}{8}
$$

revolutions of the circle

Section 6.1 Angle measures
Note. In general if the angle measure is not specified it means it's in radians.

Radian measure If you are given the unit circle (i.e, radius I) then the measure of the angle is the length of the arc that subtends the angle.

$$
\theta=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}
$$

Degrees \longrightarrow Radians
$360^{\circ} \rightarrow 2 \pi$ (circumference)
$180^{\circ} \rightarrow \pi$
In general, to convert from degrees to radians you multiply by $\frac{\pi}{180}$
e.g. $\theta=45^{\circ}$. What is θ in radians?
$45^{\circ} \frac{\pi}{180^{\circ}}=\frac{\pi}{4}$ radians.

Radians \longrightarrow Degrees
$2 \pi \rightarrow 360^{\circ}$
To convert from radians to degrees multiply by $\frac{180^{\circ}}{\pi}$

Find the angle in degrees.

$$
\theta=\frac{\pi}{3} .
$$

$$
\frac{\pi}{3} \cdot \frac{180^{\circ}}{Y \prime}=60^{\circ}
$$

Angles in standard position / coterminal angles
An angle is in standard position if it is drawn in the $x-y$ plane with its vertex at the origin and initial side on the positive x-axis.
Examples

Coterminal angles: Two angles that are in standard position are coterminal if their sides coincide

Exeruises.(1) Find two coterminal angles with the angle $\theta=30^{\circ}$ in standard position.

$$
\begin{gathered}
1 \mathrm{rev} \\
\theta=30^{\circ}+360^{\circ}=390^{\circ} \\
\theta=30^{\circ}+720^{\circ}=750^{\circ} \\
2 \mathrm{rev} . \\
\theta=30^{\circ}-360^{\circ}=-330^{\circ}
\end{gathered}
$$

(2) Find two coterminal angles with the angle $\theta=\frac{\pi}{4} \quad\left(\frac{\pi}{4} \cdot \frac{180}{\pi}=45^{\circ}\right)$

$$
\begin{gathered}
\theta_{1}=\frac{\pi}{4}+2 \pi=\frac{9 \pi}{4} \\
\theta_{2}=\frac{\pi}{4}+6 \pi=\frac{25 \pi}{4}
\end{gathered}
$$

(3) Find an angle with measure between 0° and 360° that is coterminal with the angle of 1290° in standard position.

$$
\begin{aligned}
& 3\left(360^{\circ}\right)=1080^{\circ} \text { (3 revolutions around the circle) } \\
& 1290^{\circ}-1080^{\circ}=210^{\circ} . \\
& \text { coterminal } \\
& \text { to } 1290^{\circ}
\end{aligned}
$$

Length of an arc of a circle

$$
\theta=\frac{s}{r} \text { arc length }
$$

$$
\Rightarrow S=r \theta
$$

angle in
radians
(a) Find the length of an arc of a circle with radius 3 m that subtends an an angle of 60°.

$$
\theta=60^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{3} \text { radians., } r=3
$$

$$
S=r \theta=3 \cdot \frac{\pi}{3}=\pi \text { arc length. }
$$

(b) Given that the radius is 6 m and the arc length is 5 m find the angle θ in degrees

$$
\begin{aligned}
& \theta=\frac{s}{r}=\frac{5}{6} \text { radians } \\
& \theta=\frac{5}{6} \cdot \frac{186}{\pi}^{30}=\left(\frac{150}{\pi}\right)^{0} .
\end{aligned}
$$

Area of a sector of a circle

$$
\begin{aligned}
& \text { Area }=\left(\frac{\theta}{2 \pi^{\prime}}\right) \cdot \lambda \pi r^{2}=\frac{1}{2} \theta r^{2} \\
& \text { of sector }
\end{aligned}
$$

always in radians
e.g. Find the area of a sector of a circle with angle the radius is 4 m .

$$
\begin{aligned}
\pi & \rightarrow 180 \\
\frac{5}{6} & \rightarrow ? \\
\pi ? & =180 \cdot \frac{5}{6} \\
? & =\frac{180}{\pi} \frac{5}{6}
\end{aligned}
$$

Final exam information
location: Room Cantor 101
Date : $12 / 19 / 2022$ (Monday)
Time: $10-11: 50 \mathrm{am}$

Trigonometric functions

$$
\begin{aligned}
\sin (\theta)= & \frac{\text { opposite }}{\text { hypotenuse }} \\
\cos (\theta)= & \underset{\text { adjacent }}{\text { hypotenuse }} \quad \text { CAB }
\end{aligned}
$$

$\begin{array}{rl}\text { Pythagoras' theorem: : } r^{2} & =x^{2}+y^{2} \quad \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }} \\ r & r=\sqrt{x^{2}+y^{2}}\end{array}$
TA

$$
\cos \frac{1}{\sec }(\theta)=\csc (\theta)=\frac{1}{\sin ^{2}(\theta)}=\frac{\text { hypo tenuse }}{\text { opposite }}
$$

$$
\begin{aligned}
& \sec _{\sim}^{\downarrow}(\theta)=\frac{1}{\cos (\theta)}=\frac{\text { hypotenuse }}{\text { adjacent }} \\
& \stackrel{\downarrow}{\cot (\theta)}=\frac{1}{\tan (\theta)}=\frac{\text { adjacent }}{\text { opposite }}
\end{aligned}
$$

Note: be careful not to divide by zero.

Example
Consider $\cos \theta=\frac{5}{13}$. Find the other 5 trigonometric functions for this triangle
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{s}{13}$

$$
r^{2}=x^{2}+y^{2}
$$

unknown y

$$
\begin{aligned}
13^{2} & =5^{2}+y^{2} \\
y & =\sqrt{13^{2}-5^{2}} \\
& =\sqrt{169-25} \\
& =\sqrt{144} \\
& =12
\end{aligned}
$$

Note: SPECIAL RATIOS OF SIDES.

$$
\begin{aligned}
45^{\circ} \cdot \frac{\pi}{180^{\circ}} & =\frac{\pi}{4} \\
\pi^{\circ} \cdot \frac{\pi}{180} & =\frac{\pi^{2}}{180} \\
\frac{1}{2}^{\circ} \cdot \frac{\pi}{180^{\circ}} & =\frac{1}{180}
\end{aligned}
$$

$$
\begin{aligned}
& h=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& \sin 45^{\circ}=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \cos 45^{\circ}=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \tan 45^{\circ}=\tan \left(\frac{\pi}{4}\right)=1
\end{aligned}
$$

Note. $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$

$$
=\frac{\sqrt{2}}{2}
$$

Equilateral triangles

Assumption
Each side has a length of 2

$\sin 0^{\circ}\left\{\begin{array}{l}\sin 30^{\circ}=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \\ \cos 30^{\circ}=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\ \tan 30^{\circ}=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}=\end{array}\right.$

$$
\left[\begin{array}{l}
\sin 60^{\circ}=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \\
\cos 60^{\circ}=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
\tan 60^{\circ}=\tan \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{1}=\sqrt{3}
\end{array}\right.
$$

Example (1) Find $\cos \left(135^{\circ}\right)$.

(2) Find $\tan \left(390^{\circ}\right)$

$$
\begin{aligned}
\tan \left(390^{\circ}\right)=\tan \left(30^{\circ}\right)=\left(\tan \left(\frac{\pi}{6}\right)\right. & =) \frac{\sqrt{3}}{3} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

$\tan 30^{\circ}=\frac{\text { opp }}{\text { adj }}$
(3) Find $\sec \left(\frac{5 \pi}{4}\right)=\frac{1}{\cos \left(\frac{5 \pi}{4}\right)}\left[=\frac{\text { hyp }}{\operatorname{adj}}\right]$

$$
=-\frac{2}{\sqrt{2}}
$$

$$
\begin{aligned}
& s \mid A \\
& \hline T
\end{aligned}=\frac{1}{\sqrt{3}}
$$

Find $\tan \left(\frac{5 \pi}{4}\right), \sin \left(\frac{5 \pi}{4}\right), \quad \operatorname{cosec}\left(\frac{5 \pi}{4}\right)$

$$
\left.\begin{array}{rlrl}
\tan \left(\frac{5 \pi}{4}\right) & =+\tan \left(\frac{\pi}{4}\right) & \sin \left(\frac{5 \pi}{4}\right) & =-\sin \left(\frac{\pi}{4}\right)
\end{array}\right) \operatorname{cosec}\left(\frac{5 \pi}{4}\right)=\frac{1}{\sin \left(\frac{5 \pi}{4}\right)}
$$

(4) Find $\begin{gathered}\text { negative } \\ \tan \left(870^{\circ}\right), \\ \sin \left(870^{\circ}\right), \\ \cos \left(870^{\circ}\right)\end{gathered}$

J Step 1: Determine the quadrant the angle lies in
Step 2: Find the small angle you know the \sin , \cos, tan of
Step 3: Determine the sign based on $\left.\frac{|E|}{T} \right\rvert\, \frac{A}{C}$

$$
\begin{aligned}
& 2\left(360^{\circ}\right)=720^{\circ} \\
& \text { Remaining }=870-720=150^{\circ} \\
& \tan \left(870^{\circ}\right)=-\tan \left(30^{\circ}\right)=-\frac{1}{\sqrt{3}} \\
& \sin \left(870^{\circ}\right)=\sin \left(30^{\circ}\right)=\frac{1}{2} \\
& \cos \left(870^{\circ}\right)=-\cos \left(30^{\circ}\right)=-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(Sections $5.2,6.2 .6 .3)$

Trigonometric Graphs
The period of sine and cosine is 2π. (This tells you every how many units in x the shape of the graph repeats itself).

$$
\begin{aligned}
& \cos (\theta+2 \pi \cdot n)=\cos \theta, \quad \sin (\theta+2 \pi n)=\sin \theta \\
& {\left[\cos \left(\theta^{\circ}+360^{\circ} n\right)=\cos \theta\right]}
\end{aligned}
$$

The period of tan is (T)

Sketch of $y=\sin (\theta)$
Domain is $(-\infty, \infty)$ Range is $[-1,1]$

Domain is $(-\infty, \infty)$
Sketch of $y=\cos (\theta)$

How to remember special angles: radians \rightarrow degrees

From the book.

$$
\begin{array}{lll}
t & \sin t & \cos t \\
0 & \sqrt{0} / 2=0 & \sqrt{4} / 2=1 \\
\frac{\pi}{6} & \sqrt{1} / 2=1 / 2 & \sqrt{3} / 2 \\
\frac{\pi}{4} & \sqrt{2} / 2 & \sqrt{2} / 2 \\
\frac{\pi}{3} & \sqrt{3} / 2 & \sqrt{1} / 2=1 / 2 \\
\frac{\pi}{2} & \sqrt{4} / 2=\frac{2}{2}=1 & \sqrt{0} / 2=0
\end{array}
$$

Ho 9
Q6 (a) $\theta=-\pi / 4$
$\frac{\text { only }}{\text { is positive }}-3 \pi / 2$
here 2
here 2
this quadrant are positive
starting at tue x-axis

T $-\pi / 2$ only tan is positive here

Quadrant 4

$$
\begin{aligned}
& \text { Reference angle }=\pi / 4 \quad \text { reference angle } \\
& \cos (\theta)=\cos \left(-\frac{\pi}{4}\right)=+\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& \sin (\theta)=\sin \left(-\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}=-\frac{1}{\sqrt{2}} \\
& \tan (\theta)=\tan \left(-\frac{\pi}{4}\right)=-\tan \left(\frac{\pi}{4}\right)=-1
\end{aligned}
$$

signs determined from the quadrant

S	A
T	C

(c) $\theta=\frac{5 \pi}{6}$
(positive \Rightarrow counterclockwise)

Quadrant 2
Reference angle $=\frac{\pi}{6}$

$$
\begin{aligned}
& \cos \left(\frac{5 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2} \\
& \sin \left(\frac{5 \pi}{6}\right)=+\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \\
& \tan \left(\frac{5 \pi}{6}\right)=-\tan \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

(j) $\theta=\frac{3 \pi}{2}$

The angle lies on the negative y-axis between quadrant 3 and 4

Reference angle $=\frac{\pi}{2}$

$$
\begin{aligned}
& \cos \left(\frac{3 \pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0 \\
& \sin \left(\frac{3 \pi}{2}\right)=-\sin \left(\frac{\pi}{2}\right)=-1 \\
& \tan \left(\frac{3 \pi}{2}\right)=\tan \left(\frac{\pi}{2}\right)=\text { undefined. }
\end{aligned}
$$

$$
\begin{aligned}
\cos (\theta) & =\frac{x}{r} \\
\sin (\theta) & =\frac{y}{r} \\
\tan (\theta) & =\frac{y}{x} \\
& =\frac{\sin (\theta)}{\cos (\theta)}
\end{aligned}
$$

Office hours today on Zoom at $3: 30 \mathrm{pm}$
WebAssign 5.1

C

$$
\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

$x=\cos \left(\frac{2 \pi}{3}\right)$

$$
\begin{aligned}
& \cos (\theta)=\frac{\text { adj }}{h y p} \\
& \cos (\theta)=\frac{x}{1} \frac{1}{1} S^{\pi / 3}
\end{aligned} y_{\text {opp }}
$$

$$
x=\cos \left(\frac{2 \pi}{3}\right)
$$

$$
(x, y)^{\prime}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{3}\right) \\
& -1
\end{aligned}
$$

$$
\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

$$
\Rightarrow x=\cos \theta \quad a \quad x j_{j}
$$

$$
\begin{gathered}
y \underbrace{}_{\pi / 3}=-\cos \left(\begin{array}{l}
0 \\
x
\end{array}\right. \\
y=\sin \left(\frac{2 \pi}{3}\right) \\
=\sin \left(\frac{\pi}{3}\right)
\end{gathered}
$$

$$
2
$$

$$
\frac{\pi}{2} \quad(0,1)
$$

$$
\begin{array}{ll}
\frac{x}{1} & y=\sin (\\
)=\frac{1}{2} & =\frac{\sqrt{3}}{2} \\
y &
\end{array}
$$

$\frac{+\pi}{6}$
$\frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}$

$$
\begin{aligned}
\frac{\pi}{6}+\frac{\pi}{6} & =\frac{2 \pi}{6} \\
& =\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{3}\right)=\frac{x}{1} \\
& x=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
& \sin \left(\frac{\pi}{3}\right)=\frac{y}{1} \\
& y=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

$$
\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

$$
+\frac{\pi}{6} \quad \pi \quad(-1,0)
$$

$$
\begin{array}{ll}
\frac{7 \pi}{6} & \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\
\frac{4 \pi}{3} & \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
\end{array}
$$

$$
\frac{3 \pi}{2} \quad(0,-1)
$$

$$
\begin{cases}\frac{3 \pi}{2}+\frac{\pi}{6} & \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \\ =\frac{9 \pi}{6}+\frac{\pi}{6} & \\ =\frac{10 \pi}{6}=\frac{5 \pi}{3} & \left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\ \frac{11 \pi}{6} & \\ 2 \pi & (1,0)\end{cases}
$$

Trigonometric graphs

Definition

$$
\begin{aligned}
& \text { Recall } \sec (\theta)=\frac{1}{\cos (\theta)} \\
& \operatorname{cosec}(\theta)=\frac{1}{\sin (\theta)} \\
& \cot (\theta)=\frac{1}{\tan (\theta)}
\end{aligned}
$$

A function is periodic If there is a positive number p such that

$$
f(t+p)=f(t)
$$

for every value of t.
The smallest positive number p is coaled the period
Periodic properties of sine and cosine.

$$
\left.\begin{array}{l}
\sin (t+2 \pi)=\sin (t) \\
\cos (t+2 \pi)=\cos (t)
\end{array}\right]
$$

sine and cosine $\cos (t+2 \pi)=\cos (t) \quad$ have a period of 2π.

Domain: $(-\infty, \infty)$
Range: $[-1,1]$

Transformations of cosine and sine
The most general transformation is

$$
y=-a \sin (k(x-b))+h, \quad y=-a \cos (k(x-b))+h
$$

Vertical transformations: 1. Reflection along x-axis
2. If $a>1$ then there is a vertical stretch by a factor of a
If $0<a<1$ then there is a vertical compression by a factor of a.
3. If $h>0$ there is a shift up by h.

Horizontal transformations: 1. If $k>1$ this is a horizontal compression by a factor of $\frac{1}{k}$
2. If $b>0$ this is a shift to the right by b.

$$
y=-a \sin (k(x-b))+h
$$

then the period is found by using period $=\frac{2 \pi}{k}$ the amplitude is now $|a|$.

Examples 1. $y=5+\cos (x)$.

amplitude $=\frac{\max -\min }{2}$

Domain: $(-\infty, \infty)$ Range: $[4,6]$
2. Sketch $y=-4 \sin (x)$

$$
y=-4 \sin (x)
$$

$$
\begin{aligned}
\text { amplitude } & =\frac{\max -\min }{2} \\
& =\frac{4-(-4)}{2} \\
& =4
\end{aligned}
$$

Domain: $(-\infty, \infty)$
Range: $[-4,4]$
\rightarrow HW IO posted on Gradescope
Office hours at $4: 30 \mathrm{pm}$ in Room 412 of WWH (251 Mercer Street)
... continuing from transformations of trigonometnc graphs.
Example (1) Sketch $y=\cos (3 x)$. Horizontal compression
 by a factor of $\frac{1}{3}$.

$$
\begin{aligned}
\text { new } \left.\begin{array}{rl}
\text { period } & =\frac{2 \pi}{k} \\
& =\frac{2 \pi}{3}
\end{array}\right) .
\end{aligned}
$$

(2) Sketch $y=\sin \left(\frac{1}{4}(x-\pi)\right)$ in factored

- Hor. stretch by a factor of 4
- Hor. shift to the right π.

$$
y=\sin \left(\frac{1}{4} x-\frac{\pi}{4}\right)
$$

$(0,0) \rightarrow(\pi, 0)$

$$
\max \left(\frac{\pi}{2}, 1\right) \rightarrow(3 \pi, 1)
$$

$$
\text { O) }(\pi, 0) \rightarrow(5 \pi, 0)
$$

$$
\left(\frac{3 \pi}{2},-1\right) \rightarrow(7 \pi,-1)
$$

$$
\mathrm{new}_{\text {period }}^{\text {Tangent function }}=\frac{2 \pi}{k}=\frac{2 \pi}{\left(\frac{1}{4}\right)}=8 \pi
$$

$$
(2 \pi, 0) \rightarrow(9 \pi, 0)
$$

$$
(2 \pi, 0) \rightarrow(9 \pi, 0)
$$

Tangent function

Range: $(-\infty, \infty)$
period $=\pi$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$

$$
1
$$

$$
\underbrace{(2 n+1)} \frac{\pi}{2}
$$

Domain: All real numbers excluding

$$
\sin \theta=\frac{4}{8}
$$ odd integer multiples of $\frac{\pi}{2}$.

$$
\rightarrow \sin \frac{\pi}{2}=1
$$

$$
\cos \theta=\frac{x}{r}
$$

$$
\rightarrow \cos \frac{\pi}{2}=0
$$

$$
\tan \theta=\frac{y}{x}
$$

 undefined

Inverse trigonometric functions

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=x \\
& f^{-1}(f(x))=x
\end{aligned}
$$

To check if a function is invertible use the horizontal line test.
 eng

$$
\begin{aligned}
& y=x^{2} \\
& \sqrt{y}=x \\
& \sqrt{x}=y \\
& f^{-1}(x)=\sqrt{x}
\end{aligned}
$$

There is no inverse if you do not restrict the domain of $\sin (x)$.
interval notation inequality notation
Restricted domain of $\sin (x):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)
$$

Looking at $\cos x$

Domain: $[-1,1]$
Range: $[0, \pi]$
Now, consider $\tan (x)$

Restricted domain: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Range: $(-\infty, \infty)$
Restricted domain should be $[0, \pi]$ Range: $[-1,1]$ $f^{-1}(x)$ inverse

$$
\begin{aligned}
\cot (x) & =\frac{1}{\tan x} \\
& =(\tan x)^{-1}
\end{aligned}
$$

Domain: $(-\infty, \infty)$
Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Aside:

$$
f(x)=x^{2}, \quad x>0
$$

Write down: $(f(x))^{-1}=\frac{1}{f(x)}=\frac{1}{x^{2}}$
W rite down $f^{-1}(x)=\sqrt{x}$

$$
(f(x))^{-1} \neq f^{-1}(x)
$$

$$
f(x)=\sin x
$$

Write down $(f(x))^{-1}=\frac{1}{f(x)}=\frac{1}{\sin x}=\operatorname{cosec}(x)$

$$
\begin{aligned}
& f^{-1}(x)=\sin ^{-1}(x) \\
& (f(x))^{-1} \neq f^{-1}(x) \Rightarrow \operatorname{cosec}(x) \neq \sin ^{-1}(x)
\end{aligned}
$$

Example. (1) find the exact values of
(a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$

$$
\left[\begin{array}{l}
\sin (x)=\frac{\sqrt{3}}{2} \\
x=\frac{\pi}{3}
\end{array}\right.
$$

If you see $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ you ask:
What x value would give $\sin (x)=\frac{\sqrt{3}}{2}$?
Q. What is

$$
\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
$$

$$
\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
$$

If you see $\sin ^{-1}(a)$ you ask What x value would give $\sin (x)=a$?
(b) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$
(c) $\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$

$$
\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

$$
\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

$$
\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

$$
\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

(d) $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
(e) $\tan ^{-1}(1)=\frac{\pi}{4}$

(f) $\tan ^{-1}(0)=0$, the range of
(g) $\sin ^{-1}(-1)=-\frac{\pi}{2}, \frac{3 \pi}{2}-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \sin ^{-1}(x)$ is

* Office hours today on Zoom at $3: 30 \mathrm{pm}-4: 30 \mathrm{pm}$

Inverse trigonometric functions

Inverse function	Domain	Range
$\sin ^{-1}(x)$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1}(x)$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1}(x)$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Examples

$$
\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
$$

(1) $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$

Reminder:
$\cos ^{-1}(x)$ Range: $[0, \pi]$ $\sin ^{-1}(x)$ Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\tan ^{-1}(x)$ Range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(2) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}$ lies in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(3) $\tan ^{-1}(-1)=-\frac{\pi}{4}$
(Recall: $\left.\tan (x)=\frac{\sin (x)}{\cos (x)}\right)$.
(4) $\cos ^{-1}(-1)=\theta$ unknown

$$
\cos (\theta)=-1
$$

What is θ such that

$$
\begin{gathered}
\cos (\theta)=-1 \\
\cos ^{-1}(-1)=\pi
\end{gathered}
$$

$\cos ^{-1}(x)$:

$$
\text { Range }:[0, \pi]
$$

Composition of trigonometric functions with their inverses.

1. Find $\cos \left(\sin ^{-1}\left(\frac{3}{5}\right)\right) \stackrel{d}{=} \cos (\theta)$

$$
=\frac{x}{r}=\frac{4}{5}
$$

Find $x: \quad x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& x \\
& \sin (\theta)=\frac{y}{r}=\frac{3}{5}
\end{aligned}
$$

Note

$$
\begin{aligned}
x^{2}+3^{2} & =5^{2} \\
x^{2}+9 & =25 \\
x^{2} & =16 \\
x & =4
\end{aligned}
$$

2. Find $\tan \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)=\tan (\theta)$

$$
=\frac{12}{5}
$$

$$
\theta=\sin ^{-1}\left(\frac{12}{13}\right)
$$

$$
\sin (\theta)=\frac{12}{13}
$$

Find x :

$$
\begin{aligned}
& x^{2}+12^{2}=13^{2} \\
& x^{2}+144=169
\end{aligned}
$$

3. Find $\tan \left(\cos ^{-1}\left(\frac{5}{13}\right)\right)=\frac{12}{5}$

$$
\begin{gathered}
x^{2}=25 \\
x=5
\end{gathered}
$$

4. Find $\operatorname{cosec}\left(\cos ^{-1}\left(\frac{7}{25}\right)\right)=\frac{1}{\sin \left(\cos ^{-1}\left(\frac{7}{25}\right)\right)}=\frac{1}{\sin (\theta)}=\frac{1}{\left(\frac{24}{25}\right)}=\frac{25}{24}$

Recall
$\operatorname{cosec} x=\frac{1}{\sin x}$

$$
\begin{aligned}
\cos ^{-1}\left(\frac{7}{25}\right) & =\theta \\
\cos (\theta) & =\frac{7}{25}
\end{aligned}
$$

$$
\begin{aligned}
& 25 x \\
& \frac{25}{125} \\
& \frac{50}{625}
\end{aligned}
$$

Find $7^{2}+y^{2}=25^{2}$ $49+y^{2}=625$

$$
y^{2}=576
$$

$$
y=\sqrt{576}
$$

$$
y=24
$$

- Draw the triangle
- Use Pythagoras' theorem

$$
\begin{aligned}
2^{2}+x^{2} & =3^{2} \\
4+x^{2} & =9 \\
x & =\sqrt{5}
\end{aligned}
$$

6. Find

$$
\begin{aligned}
& \cos ^{-1}\left(\cos \left(\frac{4 \pi}{3}\right)\right) . \\
& =\cos ^{-1}\left(-\cos \left(\frac{\pi}{3}\right)\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Range of $\cos ^{-1}(x):[0, \pi]$

Do not use triangles

T
C
Equivalent to checking
7. Find $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{4}\right)\right)=-\frac{\pi}{4}$

Range of $\sin ^{-1}(x):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Trigonometric Identities (5)

$$
y_{1}=y_{2}
$$

PROVING TRIGONOMETRIC IDENTITIES
GUIDELINES

1. Start with one side. Pick one side of the equation, and write it down. Your goal is to transform it into the other side. It's usually easier to start with the more complicated side.
2. Use known identities. Use algebra and the identities you know to change the side you started with. Bring fractional expressions to a common denominator, factor, and use the fundamental identities to simplify expressions.
3. Convert to sines and cosines. If you are stuck, you may find it helpful to rewrite all functions in terms of sines and cosines.

Very important
Note

$$
\sin ^{2} x=(\sin x)^{2}
$$

Identity:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

Show that $\tan ^{2} x+1=\sec ^{2} x$.
left hand side

$$
\begin{aligned}
& \text { HS }=\tan ^{2} x+1=\left(\frac{\sin x}{\cos x}\right)^{2}+1 \\
& \text { and side }
\end{aligned}
$$

Use $\tan x=\frac{\sin x}{\cos x}$

$$
=\frac{\sin ^{2} x}{\cos ^{2} x}+1
$$

$$
\frac{1}{\cos x}=\sec x
$$

$$
=\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}
$$

$$
=\frac{\left(\sin ^{2} x+\cos ^{2} x\right)}{\cos ^{2} x}=1 \text { from the } \text { identity }
$$

$$
=\frac{1}{\cos ^{2} x}
$$

$$
=\frac{1}{(\cos x)^{2}}
$$

$$
=\sec ^{2} x
$$

$$
=\text { RUS }
$$

$$
\tan ^{2} x+1=\sec ^{2} x \mid \leftarrow
$$

HF: $\quad 1+\cot ^{2} x=\operatorname{cosec}^{2} x$

Example Simplify $\cos (t)+\tan (t) \sin (t) \Rightarrow$

$$
\text { use : } \begin{aligned}
\tan (t)=\frac{\sin (t)}{\cos (t)} & =\cos (t)+\frac{\sin (t)}{\cos (t)} \cdot \sin (t) \\
& =\cos (t)+\frac{\sin ^{2}(t)}{\cos (t)} \\
& =\frac{\cos ^{2}(t)}{\cos (t)}+\frac{\sin ^{2}(t)}{\cos (t)} \\
& =\frac{\cos ^{2}(t)+\sin ^{2}(t)}{\cos (t)} \\
& =\frac{1}{\cos (t)}
\end{aligned}
$$

$$
=\sec (t)
$$

2. Simplify

$$
\begin{aligned}
\frac{\cos (x) \cdot \sec (x)}{\cot (x)} & =\frac{\cos (x) \cdot \frac{1}{\cos (x)}}{\left(\frac{1}{\tan (x)}\right)} \\
& =\frac{1}{\frac{1}{\left(\frac{\sin (x)}{\cos (x)}\right)}}=\frac{\sin (x)}{\cos (x)} . \\
& =1 \cdot \tan (x)
\end{aligned}
$$

Verify that the identity holds.

1. $\frac{1}{1-\sin ^{2} z}=1+\tan ^{2} z$

$$
\begin{aligned}
L H S & =\frac{1}{\underbrace{1-\sin ^{2} z}} \\
& =\frac{1}{\cos ^{2} z} \\
& =\sec ^{2} z \\
& =1+\tan ^{2} z
\end{aligned}
$$

$\frac{\cos x}{\sin x}$

$$
=\frac{1}{\tan x} \quad=\text { RUS } \quad J
$$

$$
=\cot x
$$

Show that the LHS is equal to the RHS.

Reminder:

$$
\begin{aligned}
& 1=\cos ^{2} x+\sin ^{2} x \\
& 1-\sin ^{2} x=\cos ^{2} x
\end{aligned}
$$

1. $\cos ^{2} x+\sin ^{2} x=1$
2. $\rightarrow 1+\tan ^{2} x=\sec ^{2} x$
3. $\rightarrow 1+\cot ^{2} x=\operatorname{cosec}^{2} x$

Get 3. $\frac{\cos ^{2} x}{\sin ^{2} x}+\frac{\sin ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x}$

$$
\cot ^{2} x+1=\operatorname{cosec}^{2} x
$$

Get 2. $\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}$

$$
1+\tan ^{2} x=\sec ^{2} x
$$

2. Verify that $\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=2 \tan x \sec x$

$$
\text { HS }=\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=\frac{1+\sin x-(1-\sin x)}{(1-\sin x)(1+\sin x)} \text { difference of two }
$$ squares

Use identity

$$
\cos ^{2} x+\sin ^{2} x=1
$$

$$
\begin{aligned}
& \operatorname{s}^{2} x+\sin ^{2} x=\cos ^{2} x \\
& 1-\sin ^{2} x=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \sin x}{1-\sin ^{2} x} \\
& =\frac{2 \sin x}{\cos ^{2} x} \\
& =\underbrace{2 \sin x} \cdot \underbrace{\frac{1}{\cos x}} \\
& =2 \tan x \sec x \\
& =\text { RUS }
\end{aligned}
$$

3. Verify $\frac{\sec t-\cos t}{\sec t}=\sin ^{2} t$

$$
\begin{aligned}
H H S=\frac{\sec t-\cos t}{\sec t} & =\frac{\frac{1}{\cos t}-\cos t}{\left(\frac{1}{\cos t}\right)} \\
& =\left(\frac{1}{\cos t}-\cos t\right) \cdot \cos t
\end{aligned}
$$

use $\sin ^{2} t+\cos ^{2} t=1$

$$
1-\cos ^{2} t=\sin ^{2} t
$$

$$
=\left(\frac{1-\cos ^{2} t}{\cos t}\right) \cos t
$$

$$
=\sin ^{2} t
$$

$$
=\text { RHS }
$$

- Office hours today in WWH Room 412 4:30 pm.
- Review session at WWH Room 101 at 4:30-6 pm . tomorrow (DeC 15).

Trigonometric identities
(1) Verify $(\tan x+\cot x)^{2}=\sec ^{2} x+\overbrace{\csc ^{2} x}^{\operatorname{cosec}^{2}}$

$$
(x+y)^{2}
$$

Identity

$$
\sin ^{2} x+\cos ^{2} x=1 \quad=x^{2}+2 x y+y^{2}
$$

$$
\begin{align*}
& \frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \Rightarrow \ddot{1+\cot ^{2} x=\operatorname{cosec}^{2} x} \\
& \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} \Rightarrow \tan ^{2} x+1=\sec ^{2} x
\end{align*}
$$

$$
\begin{aligned}
\text { LAS } & =(\tan x+\cot x)^{2}=(\tan x+\cot x)(\tan x+\cot x) \\
& =\tan ^{2} x+2 \underbrace{\tan x \cot x}+\cot ^{2} x \\
& =\tan ^{2} x+2 \tan x \cdot \frac{1}{\tan x}+\cot ^{2} x \\
& =\tan ^{2} x+2+\cot ^{2} x \\
& =(\underbrace{\tan ^{2} x+1}_{\sec ^{2} x})+\underbrace{\left(1+\cot ^{2} x\right.}_{\operatorname{cosec}^{2} x}) \\
& =\sec ^{2} x+\operatorname{cosec}^{2} x \\
& =\text { RUS }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { Verify } \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}=2 \sec \theta \\
& \begin{aligned}
\text { LHS } & =\frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta} \\
& =\frac{(1+\sin \theta)(1+\sin \theta)+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\
& =\frac{1+2 \sin \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\cos \theta(1+\sin \theta)} \\
& =\frac{2+2 \sin \theta}{\cos \theta(1+\sin \theta)} \\
& =\frac{2(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\
& =\frac{2}{\cos \theta}=2 \cdot\left(\frac{1}{\cos \theta}=\sec \theta\right. \\
& =2 \sec \theta \\
& =\text { RHS. }
\end{aligned}
\end{aligned}
$$

Algebra and Calculus
 New York University
 FINAL EXAM, Summer 2014
 VERSION A

Name: \qquad ID: \qquad

Read all of the following information before starting the exam:

- For multiple choice questions, only the answer is required. No work is required and no partial credit will be awarded. You must clearly circle your answer.
- For free response questions, you must show all work, clearly and in order, if you want to get full credit. We reserve the right to take off points if we cannot see how you arrived at your answer (even if your final answer is correct).
- The exam is closed book. You are not allowed to use a calculator or consult any notes while taking the exam.
- The exam time limit is 2 hours. Good luck!

SCORES

MC (45 points)	
$1(14 \mathrm{pts})$	
$2(8 \mathrm{pts})$	
$3(8 \mathrm{pts})$	
$4(18 \mathrm{pts})$	
$5(7 \mathrm{pts})$	
TOTAL	

(45 points) This parts consists of 15 multiple choice problems. Nothing more than the answer is required; consequently no partial credit will be awarded.

1. If $f(x)=\frac{4}{4-x}$, find $f^{-1}(2)$
(a) $1 / 2$
(b) 1
(c) 2
(d) undefined
\star Inverses.

$$
\begin{aligned}
f(x)=\frac{4}{4-x} & \Rightarrow y=\frac{4}{4-x} \\
& \Rightarrow(4-x) y=4
\end{aligned}
$$

(e) none of the above

$$
\ln (x)=\log _{e}(x)=y \quad 4 y-x y=4
$$

$$
\begin{array}{ll}
\ln (1) \Rightarrow e^{y}=1 \quad \log _{e}(x)=y & 4 y-4=x y \\
\geq 0 ;
\end{array}
$$

2. Let $f(x)=\left\{\begin{array}{l}x \\ \text { Find } f(g(-1))\end{array}\right.$
(a) -1
(b) 0
(c) 1
(d) e

$$
\begin{aligned}
g(-1) & =\ln (-1+2) \\
& =\ln (1) \\
& =0
\end{aligned}
$$

(e) Undefined

$$
\begin{aligned}
f(g(-1)) & =f(0) \\
0 & =0-1 \\
& =-1
\end{aligned}
$$

$$
x^{\prime}=0
$$

$$
\begin{gathered}
\text { Domain of } \ln (x):(0, \infty) \\
\text { or } x>0
\end{gathered}
$$

$$
=2
$$

3. The solution of the equation $=\mathbf{-} \mathbf{|}$

$$
2 \sin ^{2} x+\sin x-1=0 \text { on }\left[0, \frac{\pi}{2}\right)
$$ is:

(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{2}$
(c) π
$(2 \sin x-1)(\sin x+1)=0$
$\sin x=\frac{1}{2}$ or $\sin x=-1$
Injected since lists not going to be in $\left(0, \frac{\pi}{2}\right)$
(d) $\frac{\pi}{3}$
(e) -1

$$
x=\sin ^{-1}\left(\frac{1}{2}\right)
$$

$$
x=\frac{\pi}{6}
$$

4. The domain of the function

$$
\begin{aligned}
& f(x)=\frac{\sqrt{x-3}}{x^{2}-5 x-6} \\
& x \neq 1=6,6 \\
& \sqrt{\cdots} \Rightarrow x-3 \geqslant 0 \Rightarrow x \geqslant 3
\end{aligned}
$$

is:
(a) $[0,3)$
(b) $[3, \infty)$
(c) $(-1,6)$
(d) $[3,6) \cup(6, \infty)$
(e) $(-\infty,-1) \cup(-1,6)$
5. Consider the following statements. In each case, P is a polynomial.
I. The domain for $P(X)$ is $(-\infty, \infty)$.
\times II. If the degree of P is odd, then we must have $P(x) \rightarrow-\infty$ as $x \rightarrow-\infty$.
\int III. If $P(4)=0$, then $x-4$ is a factor of P.
Which of the above statements are true?
(a) I and II
(b) I and III
(c) II and III
(d) I, II, and III
(e) III only

$$
\begin{aligned}
P(x)= & a_{n} x^{n}+a_{n-1} x^{n-1} \\
& +\cdots+a_{1} x+a_{0}
\end{aligned}
$$

the exponents are non-negative integers.
6. Find the domain of $f(x)=\sqrt{x^{2}+3 x-10} .=\sqrt{(x+5)(x-2)}$
(a) $[0, \infty)$
(b) $(-\infty,-5] \cup[2, \infty)$
(c) $(-\infty,-5) \cup(2, \infty)$
(d) $(-5,2)$
(e) $[-5,2]$

$$
(x+5)(x-2) \geqslant 0
$$

$$
y=x^{2}+3 x-10 \geqslant 0
$$

$$
\left.\begin{array}{l}
x \geqslant 2 \\
x \leq-5
\end{array}\right\}(-\infty,-5] \cup[2, \infty)
$$

7. If $\log _{2}\left(2 \log _{3}(x)\right)=1$, find x.
(a) $x=0$
(b) $x=2$
(c) $x=3$
(d) $x=4$
(e) none of the above

$$
\log _{2}\left(2 \log _{3}(x)=1\right.
$$

$$
2^{\prime}=2 \log _{3}(x)
$$

$$
1=\log _{3}(x)
$$

8. If $f(x)=\log _{2}(x-2)$, find f

$$
3^{\prime}=x \Rightarrow x=3
$$

(a) 10
(b) 0
(c) 1
(d) 8
(e) none of the above

$$
\begin{aligned}
f(3)=\log _{2}(3-2)= & \log _{2}(1)=0 \\
f^{-1}(3)=? \quad f(x) & =\log _{2}(x-2) \\
y & =\log _{2}(x-2)
\end{aligned}
$$

9. The amplitude, period and vertical shift of the trigonometric curve

$$
2^{y}=x-2
$$

$$
x=2^{y}+2
$$

$$
\begin{array}{|lr}
y=3 \cos (2 x-\pi) \underbrace{2}-\frac{\pi}{1}))-1 & x=2^{y}+2 \\
\text { amplitude } \begin{array}{c}
\text { shift } \\
\text { vertically }
\end{array} & f^{-1}(x)=2^{x}+2 \\
\frac{2 \pi}{k}=\frac{2 \pi}{2}=\pi & f^{-1}(3)=2^{3}+2= \\
& 8+2=10
\end{array}
$$

(d) $3, \pi$ and -1
(火) $2, \pi$ and $\pi / 2$
10. Let $f(x)= \begin{cases}\ln x & \text { if } x \geq 1 ; \\ -x+1 & \text { if } 0<x<1, \\ e^{-x} & \text { if } x \leq 0 .\end{cases}$

Consider the following statements.
I. $f(1)-f(0)=-1$
$\boldsymbol{V}_{\text {II. } . f(x) \rightarrow \infty}$ as $x \rightarrow-\infty \mathbf{X}_{\text {III. } f \text { has horizontal asymptote } y=1 .}$
Which of the above statements are true?
(a) I only

$$
\text { I. } \quad f(1)-f(0)=\log _{0}(1)-e^{-6}
$$

(c) I and II

$$
y=a \cos (\underbrace{k(x-h))+b}_{\text {factored form }}
$$

(b) II only
(d) I and III
(e) II and III

$$
\begin{aligned}
& =0-1 \\
& =-1
\end{aligned}
$$

$$
e^{-x} \rightarrow \infty
$$

\square

Range of the outer function
11. Find $\cos ^{-1}\left(\cos \frac{9 \pi}{4}\right)$. $=\boldsymbol{x}$ COS^{-1} is $[0, \pi]$
(a) $\pi / 4$
(b) $3 \pi / 4$

$$
\underbrace{\cos \left(\frac{9 \pi}{4}\right)})=\cos (x)
$$

(c) $-\pi / 4$
(d) $9 \pi / 4$
(e) $5 \pi / 4$
12. Find $\underbrace{\sin ^{-1}}\left(\frac{-\sqrt{3}}{2}\right)+\underbrace{\tan ^{-1}(1)}$.
(a) $\frac{\sqrt{3}}{2}-1$

$$
\frac{\pi}{4} \Leftrightarrow \tan \left(\frac{\pi}{4}\right)=1
$$

(b) $\pi / 6$
(c) $\pi / 12$

Range of $\sin ^{-1}$:
(d) $\pi / 4$
(e) $-\pi / 12$

13. One solution for the equation
(a) $5 / 2$
(b) $5 / 3$

$$
\begin{aligned}
& 2+3 x^{2}-6 x=3\left(x^{2}-4 x+4\right) \\
& 2+3 x^{2}-6 x=3 x^{2}-12 x+12
\end{aligned}
$$

(d) $5 / 4$
(e) no real solution

$$
6 x=10 \Rightarrow x=\frac{10}{6} .
$$

relates to y
$\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=-\frac{\pi}{3}$

$$
=-\frac{\pi}{3}+\frac{\pi}{4}
$$

14. A point in the 1 st quadrant satisfies $\cos (2 t)=\frac{1}{2}$. Find $\sin (t)$.

$$
2+3 x(x-2)=3(x-2)(x-2)
$$

$\begin{aligned} & \text { (c) } 2 \\ & \text { (d) } 5 / 4\end{aligned} \quad 2+3 x^{2}-6 x=3 x^{2}-12 x+12$

$$
=\stackrel{6}{5} / 3.3=-\frac{4 \pi}{12}+\frac{3 \pi}{12}=-\frac{\pi}{12}
$$

(b) 1
(c) $\sqrt{3} / 2$
(d) $\pi / 6$

$$
t=\frac{\pi}{6}
$$

(e) $\pi / 3$

$$
2 t=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

$$
\begin{aligned}
\frac{2}{x-2} & =3 x-6-3 x x \\
2 & =-6(x-2) \\
2 & =-6 x+12
\end{aligned}
$$

15. Define $f(x)$ for $x \geq 1$ by $f(x)=x^{2}+4$. What is the range of f^{-1} ?

$$
6 x=10 \Rightarrow x=\frac{5}{3}
$$

(a) $[0, \infty)$
(b) $[1,4]$
(c) $1, \infty)$
(d) $(-\infty, \infty)$
(e) $[5, \infty)$

Range of $f^{-1}(x)$

$$
=\text { Doman of } f(x)=[1, \infty)
$$

(55 points) Problems 1-5 are free response problems. Put your work/explanations in the space below the problem.

- Read and follow the instructions of every problem.
- Show all your work for purposes of partial credit. Full credit may not be given for an answer alone.
- Justify your answers.

1. (a) (6 pts) Let $f(x)=\frac{3 x}{x-2}$. Find $f^{-1}(x)$.

$$
\begin{aligned}
& y=\frac{3 x}{x-2} \\
& (x-2) y=3 x \\
& x y-2 y=3 x
\end{aligned}
$$

$$
x y-3 x=2 y \quad \Rightarrow x(y-3)=2 y \Rightarrow x=\frac{2 y}{y-3}
$$

(b) What is the domain and range of both f and f^{-1} in part (a)?

$$
f^{-1}(x)=\frac{2 x}{x-3}
$$

$$
\begin{aligned}
& \text { Domain of } f: x \neq 2 \text { or }(-\infty, 2) \cup(2, \infty) \\
& =\text { Range of } f^{-1} \\
& \text { Domain of } f^{-1}: x \neq 3 \text { or }(-\infty, 3) \cup(3, \infty) \\
& =\text { Range of } f
\end{aligned}
$$

(c) (8 pts) Find the difference quotient

$$
\begin{aligned}
& \text { for } \begin{aligned}
f(x)=x^{2}+3 x-1 \\
\begin{aligned}
& f(x+h)= \\
&=(x+h)^{2}+3(x+h)-1 \\
& x^{2}+2 x h+h^{2}+3 x+3 h-1
\end{aligned} \\
\left.\begin{array}{rl}
f(x+h)-f(x) & = \\
& =\frac{x^{2}+2 x h+h^{2}+3 k+3 h-h-\left(x^{2}+3 x-1\right)}{h} \\
& =\frac{2 x h+h^{2}+3 h}{h}
\end{array}\right) \frac{h(2 x+h+3)}{h}=2 x+h+3
\end{aligned}
\end{aligned}
$$

2. The function $f(x)=2 x^{2}-12 x+14$ represents the number of mosqutios (in thousands) that are flying about in Texas in June where x is the number of days past May 31.
(a) $(4 \mathrm{pts})$ In context to this problem, what does the point $(5,4)$ mean?

Input $=$ \# of days past may 31 input
Output $=\#$ of mosquito in 1000 s
\rightarrow On June 5 there are 4000 mosquitos flying about in Texas
(b) Write $f(x)$ in vertex form.

COMPLETING THE sqUARE

$$
\begin{aligned}
f(x) & =2 x^{2}-12 x+14 \\
& =2\left(x^{2}-6 x\right)+14 \\
& =2\left[(x-3)^{2}-3^{2}\right]+14 \\
& =2\left[(x-3)^{2}-9\right]+14 \\
& =2(x-3)^{2}-18+14 \\
& =2(x-3)^{2}-4
\end{aligned}
$$

$$
\begin{aligned}
& a x^{2}+b x+c \\
= & a\left[x^{2}+\frac{b}{a} x\right]+c \\
= & a\left[\left(x+\frac{b}{2 a}\right)-\left(\frac{b}{2 a}\right)^{2}\right]+c
\end{aligned}
$$

(c) (2 pts) What is the smallest number of mosquito in June flying about Texas?

Vertex $(3,-4)$
but we cannot have negative $\#$ of mosquitos \Rightarrow zero mosquitos
3. (a) (12 points) Let $f(x)=-1+2 \cos (2 x)$.
i. $(2 \mathrm{pt})$ Find the y-intercept of f.

$$
x=0 \Rightarrow f(0)=-1+2 \cos (2 \cdot 0)=-1+2 \cos (0)=-1+2(1)
$$

$$
\text { Xi. }(4 \mathrm{pts}) \text { Find all } x \text {-intercepts of } f \text { on }[0,2 \pi] \text {. }
$$

$=1$
y-int. (0,1)

iii. (6 pts) Graph one period of f. Clearly label the points at the beginning and end of the period, and label all intercepts. Clearly indicate the range of f.

$$
\begin{aligned}
f(x) & =2 \cos (2 x)-1 \\
\text { period } & =\frac{2 \pi}{k} \\
& =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

(Free-response problem 4, continued)
(b) (6 pts) Sketch the graph of $g(x)=2 \log _{3}(x+3)$ below, not by merely plotting points, but instead by applying transformations to the graph of $y=\log _{3}(x)$.

Clearly label all asymptotes and the x and y intercepts.

$$
x=-3
$$

y-intercept: $x=0$

$$
x \text {-intercept : } y=0 \Rightarrow 2 \log _{3}(x+3)=0
$$

$$
\begin{aligned}
g(0) & =2 \log _{3}(3) \\
& =2(1) \\
& =2
\end{aligned}
$$

$$
(0,2)
$$

4. (7 pts) On the same set of axes, sketch the graphs of $f(x)=x, g(x)=e^{x}, h(x)=x^{2}$ and $k(x)=\log x$

MATH-UA 009: Algebra and Calculus Final Exam

Wednesday, December 20, 2017

Name: \qquad

This exam is scheduled for 110 minutes, to be done individually, without calculators, notes, textbooks, and other outside materials. You can detach the last sheet for scratch work; do not detach any other sheets from this exam.

Show all work to receive full credit, except in multiple choice probelms.

Mark an " X " next to your lecture section

X	Section	Instructor	Lecture Time \& Location
	001	Ruojun Huang	MW, 9:30-10:45AM, GCASL C95
	006	Mutiara Sondjaja	TTh, 12:30-1:45PM, 5WP 101
	011	Madhura Joglekar	TTh, 2:00-3:15PM, CANT 101

Problem	Points
MC	$/ 36$
FR 1	$/ 10$
FR 2	$/ 14$
FR 3	$/ 10$
FR 4	$/ 10$
Total	

Multiple Choice

(2 points each) Please clearly write your answer in the box next to the question. You need not explain your answer. No partial credit will be given.

1. Find the equation of a line passing through point $(7,7)$ and perpendicular to the line $7 x+3 y=-1$.
(A) $y=\frac{3}{7} x+7$
(B) $y=\frac{7}{3} x+7$
(C) $y=\frac{3}{7} x+4$
(D) $y=-\frac{7}{3} x+4$
(E) None of the above

$$
\begin{aligned}
7 x+3 y & =-1 \\
3 y & =-7 x-1 \\
y & =-\frac{7}{3} x-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
(7,7) \\
\text { with } \\
\text { slope } \frac{3}{7}
\end{aligned} \Rightarrow y-7 & =\frac{3}{7}(x-7) \\
y & =\frac{3}{7} x-3+7 \\
y & =\frac{3}{7} x+4
\end{aligned}
$$

2. Solve the inequality for x

$$
|3 x+2|<4
$$

(A) $\left[-2, \frac{2}{3}\right]$
(B) $x=-2, x=\frac{2}{3}$
$3 x+2<4 \quad(3 x+2)>-4$
(C) $(-\infty,-2) \cup\left(\frac{2}{3}, \infty\right)$
$3 x<2$
$x<\frac{2}{3}$
$\xrightarrow[3]{\substack{0 \\-2}}$
(D) $\left(-2, \frac{2}{3}\right)$
(E) None of the above

3. Which of the following is true about the rational function

$$
q(x)=\frac{2 x^{3}+2 x}{x^{2}-1} ?=\frac{2 x\left(x^{2}+1\right)}{x^{2}-1}=\frac{2 x\left(x^{2}+1\right)}{(x-1)(x+1)}
$$

(A) The graph of $q(x)$ has vertical asymptotes at $x=1, x=-1$ and no horizontal asymptote.
(B) The graph of $q(x)$ has one vertical asymptote given by $x=-1$ and no horizontal asymptote.
(C) The graph of $q(x)$ has vertical asymptotes at $x=1, x=-1$ and horizontal asymptotes given by $y=2$ and $y=-2$.
(D) The graph of $q(x)$ has vertical asymptotes at $x=1, x=-1$ and a horizontal asymptote given by $y=2$.
(E) None of the above

Problem 3
4. Solve for x.
(A) $x=\frac{6}{e^{2}+1}$
(B) $x=\ln (3)$
(C) $x=\ln (3), \ln (-2)$
(D) $x=\log _{2}(3), \log _{2}(-2)$
(E) None of the above

\square

5. Find $\cos ^{-1}\left(\cos \left(\frac{7 \pi}{6}\right)\right)=y \quad \Rightarrow \quad \cos (y)=\cos \left(\frac{7 \pi}{6}\right)$
(A) $\frac{7 \pi}{6}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{\pi}{6}$
(D) $\frac{\cos \left(\frac{7 \pi}{6}\right)}{\cos (1)}$
(E) None of the above

Range of $\cos ^{-1}$ is $[0, \pi]$ so y should ben $[0, \pi]$

$$
\begin{aligned}
& \text { so actually } \\
& -\frac{\pi}{6}=\frac{5 \pi}{6}
\end{aligned}
$$

6. Simplify the following expression using trigonometric identities:

$$
\text { (A) } \frac{1+2 \sin (x) \cos (x)}{\cos (x)(1+\sin (x))}
$$

$$
\text { (B) } 2 \cos (x)
$$

$$
\text { (C) } \frac{2}{\cos (x)}
$$

$$
\text { (D) } 2 \tan (x)
$$

$$
\begin{aligned}
\frac{1+\sin (x)}{\cos (x)}+\frac{\cos (x)}{1+\sin (x)} & =\frac{(1+\sin x)(1+\sin x)+\cos x \cdot \cos x}{\cos x(1+\sin x)}=1 \\
& =\frac{1+2 \sin x+\sin ^{2} x+\cos ^{2} x}{\cos x(1+\sin x)} \\
& =\frac{1+2 \sin x+1}{\cos x(1+\sin x)} \\
& =\frac{2+2 \sin x}{\cos x(1+\sin x)} \\
& =\frac{2(1+\sin x)}{\cos x(1+\sin x)} \\
& =\frac{2}{\cos x}
\end{aligned}
$$

(E) None of the above
7. Let $f(x)=\frac{1}{\sqrt{x}}$ and $g(x)=\ln (x-1)$. Find the domain of $f \circ g$.
(A) $[0, \infty)$
$(\mathrm{B})\left[\begin{array}{l}\text { (B) } \\ {[2, \infty)}\end{array}\right]$
(D) $(2, \infty)$
(E) None of the above

$$
\begin{aligned}
f(g(x)) & =f(\ln (x-1)) \\
& =\frac{1}{\sqrt{\ln (x-1)}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Domain of } \ln (x-1) \\
& \text { is } x>1)
\end{aligned}
$$

Under the radical we must have >0
8. Which of the following is the solution of the inequality

$$
2 x^{2}-5 x+2<0 ?
$$

(A)
$(1,1.5)$
(B) $(0.5,2)$
(D) $(-\infty, 1) \cup(1.5, \infty)$
(C) $(-\infty, 0.5) \cup(2, \infty)$
(E) None of the above

Problem 7

Problem 8
\square
9. Which of the following is the inverse function of

$$
f(x)=2^{x}-1 ?
$$

(A) $g(x)=\log _{2}(1+x)$
(D) $g(x)=e^{x+1}$
(B) $g(x)=\log _{2}(1-x)$
(C) $g(x)=\log _{2}(x)+1$
(E) None of the above

Problem 9

$$
\begin{aligned}
& y=2^{x}-1 \\
& y+1=2^{x} \\
& \log _{2}(y+1)=x \\
& f^{-1}(x)=\log _{2}(x+1)
\end{aligned}
$$

10. Simplify the following expressions using trigonometric identities.

$$
f(x)=-3 \sin (\pi+x)
$$

(A) $\begin{aligned} & f(x)=3 \cos (x) \\ & \text { (B) } f(x)=3 \sin (x) \\ & f(x)=-3 \sin (x)\end{aligned}$
(D) $f(x)=-3 \cos (x)$
(E) None of the above

Problem 10

11. Which one of the following functions does NOT go to ∞ as $x \rightarrow \infty$?
(A) $f(x)=10+\log _{2}(x) \rightarrow \infty$
(B) $f(x)=x^{3}+x^{2} \rightarrow \infty$
(D) $f(x)=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}$
(C) $f(x)=x e^{x} \longrightarrow \infty$
(E) None of the above

Problem 11

12. Which of the following is a factor of the polynomial

$$
P(x)=x^{4}+3 x^{3}-2 x^{2}-8 x-4 ?
$$

Hint: Use the remainder theorem or long division.
(A) $x+1$ is $\mathbf{P (- 1)}=\mathbf{0}$?
(D) $x^{2}-4=(x-2)(x+2)$ are both $P(2)=0$
(B) $x-1$ is $\mathrm{P}(1)=0$?
(E) None of the above \& $P(-2)=0$?
(C) $x-2$ is $\mathbf{P (2)}=\mathbf{0}$?
Problem 12

$$
\begin{aligned}
P(-1) & =(-1)^{4}+3(-1)^{3}-2(-1)^{2}-8(-1)-4 \\
& =1-3-2+8-4 \\
& =0
\end{aligned}
$$

\square
13. Which of the following is equal to

$$
\left(\frac{8 a^{-3} b^{2}}{a^{6} b^{-1}}\right)^{1 / 3} ?
$$

(A) $\frac{a^{3}}{2 b}$
(C) $\frac{a^{9}}{8 b}$
(D) $\frac{2 b^{1 / 3}}{a}$
(B) $\frac{2 b}{a^{3}}$
(E) None of the above

$$
\begin{aligned}
& \begin{array}{l}
\left(\frac{8 a^{-3} b^{2}}{a^{6} b^{-1}}\right)^{1 / 3}= \\
\begin{aligned}
\sqrt[n]{b^{m}} & \frac{8^{1 / 3}\left(a^{-3}\right)^{1 / 3} b^{2 / 3}}{a^{6 / 3} b^{-1 / 3}} \\
= & \frac{\sqrt[3]{8} a^{-1} b^{2 / 3}}{a^{2} b^{-1 / 3}}
\end{aligned} \\
=a^{m-n} \\
=\frac{2 b^{2 / 3+1 / 3}}{a^{3}}=\frac{2 b}{a^{3}}
\end{array}
\end{aligned}
$$

Problem 13
\square
14. Rationalize the numerator of the following expression:

$$
\frac{1+\sqrt{x}}{2}
$$

(A) $\frac{1+x}{2(1-\sqrt{x})}$
(B) $\frac{1-x}{2(1+\sqrt{x})}$
(C) $\frac{1-x}{2(1-\sqrt{x})}$
(D) $\frac{1+x}{2(1+\sqrt{x})}$
(E) None of the above

$$
\begin{aligned}
\frac{1+\sqrt{x}}{2} \cdot\left(\frac{1-\sqrt{x}}{1-\sqrt{x}}\right) & \left.=\frac{(1+\sqrt{x})(1-\sqrt{x})}{2(1-\sqrt{x})} \quad \begin{array}{c}
\text { difference } \\
\text { two swo pors } \\
(a-b)(a+1)
\end{array}\right)=a^{2}-b^{2} \\
& =\frac{1^{2}-(1 \sqrt{x})^{2}}{2(1-\sqrt{x})} \\
& =\frac{1-x}{2(1-\sqrt{x})}
\end{aligned}
$$

15. Below is the graph of a function $f(x)$.

Find the average rate of change of $f(x)$ from $x=-1$ to $x=3$.
(A) 2
(B) -0.5
(C) 1
(D) 0.5
(E) None of the above

$$
\frac{f(3)-f(-1)}{3-(-1)}=\frac{1-3}{3+1}=-\frac{2}{4}=-\frac{1}{2}
$$

Problem 15

16. The graphs of the functions $f(x)$ and $g(x)$ are given below. Using the graph, solve the inequality

$$
f(x) \geq g(x)
$$

(A) $[-4,4]$
(B) $(-\infty,-4] \cup[4, \infty)$
(C) $[-4,0] \cup[4, \infty)$
(D) $(\infty,-4] \cup[0,4]$
(E) None of the above

Problem 16

$$
\begin{aligned}
& -4 \leqslant x \leqslant 0 \\
& \quad \text { or } x \geqslant 4
\end{aligned}
$$

17. Given the table below, determine $(g \circ f)(2)$.

x	$f(x)$	$g(x)$
0	2	3
1	1	5
2	3	1
3	4	0
4	1	3
5	0	4

(A) 0
(B) 1
(C) 3
(D) 4
(E) 5

$$
\begin{aligned}
g(f(2)) & =g(3) \\
& =0
\end{aligned}
$$

Problem 17

reflection about the x-axis

18. Which of the following is the graph of the function $f(x)=-\ln (x+2)$?
(A)

(B)

(C)
 shift to the left by
(D)

(E) None of the above

Problem 18
\square

Free Response
Please show all work and justification.

1. (10 points) Suppose that $\tan (\theta)=\frac{1}{3}$ and θ is an angle in Quadrant III. Find $\cos (\theta)$ and $\sin (\theta)$. Show all work.

$$
\tan (\theta)=\frac{1}{3}
$$

$$
\cos \theta=\frac{a d j}{h y p}=\frac{3}{\sqrt{10}}
$$

but we have to
adjust the sign given we are in Quadrant III

$$
\Rightarrow \cos \theta=-\frac{3}{\sqrt{10}}
$$

$$
\sin \theta=\frac{o p p}{\text { hyp }}=\frac{1}{\sqrt{10}}
$$

but we have to adjust the sign given we are in Quadrant III

$$
\Rightarrow \sin \theta=-\frac{1}{\sqrt{10}}
$$

$$
1
$$

$$
r^{2}=1^{2}+3^{2}=1+9=10
$$

$$
r=\sqrt{10}
$$

here cos
\& \sin are
both negative
2. (14 points) Suppose that $f(x)=7-6 x-x^{2}$.
(a) (3 points) Find the x and y intercepts of f. Show all work.

$$
x \text {-int. when } y=0: \quad \begin{aligned}
0 & =7-6 x-x^{2} \\
& =-\left(x^{2}+6 x-7\right) \\
& =-(x+7)(x-1) \\
& \Rightarrow x=-7,1
\end{aligned}
$$

Thus x-intercepts are
y-int. when $x=0 \Rightarrow f(0)=7$

$$
(-7,0) \text { and }(1,0)
$$

Thus the y-intercept is $(0,7)$
(b) (5 points) Express f in standard form. (That is, in the form $f(x)=a(x-h)^{2}+k$.) Show all work.

$$
\begin{aligned}
f(x) & =7-6 x-x^{2} \\
& =-x^{2}-6 x+7 \\
& =-\left(x^{2}+6 x\right)+7 \\
& =-\left[(x+3)^{2}-3^{2}\right]+7 \\
& =-(x+3)^{2}+9+7 \\
& =-(x+3)^{2}+16
\end{aligned}
$$

(c) (2 points) Based on your solution in part (b): (1) find the x and y coordinates of the vertex of f and (2) determine whether the vertex corresponds to the maximum or minimum value of f. Give a brief, 1 sentence, justification.

(1) vertex: $(-3,16)$

(2) max since the leading coefficient is negative
(d) (4 points) Sketch a graph of f. Clearly label the graph.

3. (10 points) Solve the following equation. Show all work.

$$
\begin{array}{ll}
\log _{9}(x+2)-\log _{9}(x)=0.5-\log _{9}(x-2) & (x) \tag{x}\\
\log _{9}(x+2)-\log _{9}(x)+\log _{9}(x-2)=0.5 \\
\log _{9}\left(\frac{(x+2)(x-2)}{x}\right)=0.5 & \\
\log _{9}\left(\frac{x^{2}-4}{x}\right)=0.5 & \text { Recall } \\
\log _{a}(x)=b \\
9^{0.5}=\frac{x^{2}-4}{x} & \Leftrightarrow a^{b}=x \\
\sqrt{9}=\frac{x^{2}-4}{x} & 9^{0.5}=9^{1 / 2}= \\
3=\frac{x^{2}-4}{x} & \\
3 x=x^{2}-4 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0 \\
x=4 \quad x=-1
\end{array}
$$

rejected. Since if we ty to substitute into the original equation ($*$) we have $\log _{9}(-1)$ which is not possible
4. Note: The two parts below are independent of one another.
(a) (6 points) Consider the piecewise defined function

$$
f(x)=\left\{\begin{array}{ll}
\frac{x}{x-1} & \text { if } x>1, \\
x+1 & \text { if } x \leq 1
\end{array} \quad \rightarrow \frac{\mathbf{x}-\mathbf{1}+1}{\mathbf{x}-1}=1+\frac{1}{\mathbf{x}-1}\right.
$$

Sketch the graph of $f(x)$. Clearly label your graph (including important features such as intercepts and asymptotes) and show all work/reasoning.

(b) (4 points) Find the inverse of the function $g(x)=\frac{x}{x-1}$. Show all work.

$$
\begin{aligned}
y=\frac{x}{x-1} \Rightarrow & y(x-1)=x \\
& x y-y=x \\
& x y-x=y \\
& x(y-1)=y \Rightarrow x=\frac{y}{y-1} \Rightarrow g^{-1}(x)=\frac{x}{x-1}
\end{aligned}
$$

VRIB GID

