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Abstract

We formulate a system of equations that describes the motion of four vortices made up
of two interacting vortex pairs, where the absolute strengths of the pairs are different. Each
vortex pair moves along the same axis in the same sense. In much of the literature, the
vortex pairs have equal strength. The vortex pairs can either escape to infinite separation
or undergo a periodic leapfrogging motion. We determine an explicit criterion in terms of
the initial horizontal separation of the vortex pairs given as a function of the ratio of their
strengths, to describe a periodic leapfrogging motion when interacting along the line of
symmetry. In an appendix we also contrast a special case of interaction of a vortex pair
with a single vortex of the same strength in which a vortex exchange occurs.

1 Introduction

Vortex rings as coherent fluid structures that appear in numerous application fields have fre-
quently been the subject of interest in vortex dynamics. These structures are well-studied using
a variety of analytic, numerical, and experimental techniques — see Shariff and Leonard [29]
for a review. Smoke rings are a familiar example and a concise description of the experiments
devised by Tait [31, p. 291–293], using smoke rings in air, can be found in the review by
Meleshko [24, p. 413–414]. The interaction of multiple vortex rings results in complex dynam-
ical behaviour, such as the leapfrogging motion of a pair of vortex rings, which is the main
motivation for the current paper.

In this paper we consider a simplified model of the leapfrogging of two vortex rings with a
common axis. When the rings have the same strength, width, and sense of rotation they travel
in the same direction. The rear ring shrinks and accelerates due to their mutual interaction
and the leading ring widens and decelerates. The rear ring then passes through the leading
ring, with this process of ‘leapfrogging’ then repeating again and again [23]. We note that
interactions of such vortex rings — primarily with filament cores — have been considered in
Hicks [20] and more recently in Borisov, Kilin, and Mamaev [13], in Caplan, Talley, Carretero-
González, and Kevrekidis [14], in Cheng, Lou, and Lim [15] and in Aiki [4].

Of course in ‘real’ flows the filament cores have finite sizes and the effect of viscosity and
three dimensionality is to induce diffusion of vorticity within the flow. At high Reynolds

∗chrismav@umich.edu
†f.berkshire@imperial.ac.uk (Corresponding author)

1

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
34

99
1



number and in a two-dimensional model of the interaction of N line vortices we have an
idealised dynamical system, treatment of which has had a notable history — summarised for
example in the book by Newton [27] and the paper by Aref [7].

The simplification considered here is to two line vortex pairs and a generalisation then
to pairs of different strengths but with the same sense(s) of rotation. The behaviours then
recorded should inform those to be expected for the generalised classical three-dimensional
ring problem.

Of course the N -line vortex problem is well-known in fluid mechanics, with consideration
there of the mutual motions of their intersection points with a transverse plane — see [6] for
an earlier review. The cases of N = 1, N = 2, N = 3 are integrable, leading to regular
dynamics. The N = 3 case was considered extensively by Gröbli in his doctoral thesis [18] —
he showed explicitly the reduction of the problem to quadratures, and detailed various specific
and non-trivial examples.

The interactions of N = 4 vortices without any imposed symmetry are generally chaotic,
exhibiting the classic property of sensitivity to initial conditions. While the interactions of
N = 3 vortices are not chaotic, they may still exhibit regimes of bounded (capture) and
unbounded (scattering) motions.

The particular case we consider here does have symmetry in that we have two pairs —
each consisting of equal and opposite strengths and the same axis. In any event, the N = 4
case with zero total circulation overall and zero impulse is known to be integrable — see e.g.
Eckhardt [16], Aref and Stremler [9]. In contrast to various other treatments in the literature
concerning two such vortex pairs — e.g. Love [23], Péntek, Tel, and Toroczkai [28], Newton
[27], where the four vortices have equal absolute strengths — we allow the absolute strengths
of the two pairs to be different. So, we consider a system of four point vortices with strengths
±K1,±K2, that move in the same direction along a common symmetry axis perpendicular to
the extension of both pairs. In this work we specify the conditions determining when two given
vortex pairs leapfrog, and when they do not. The overall impulse is not zero in this case, but
the imposed symmetry does restrict the motion strongly.

In a paper by Eckhardt and Aref [17] there is extensive treatment of the general collision
dynamics of line vortex pairs, with the aim of quantifying scattering regimes, as well as those
where there can be (maybe prolonged) periods of vortex partner exchange — with parallels in
the theory of solitons and in chemical physics. In appendix B of that paper there is a treatment
of coaxial vortex pairs (i) moving towards one another (‘opposite polarity’) and (ii) moving in
the same direction (‘same polarity’), as part of a more general dynamical systems approach to
vortex scattering.

In later papers by Meleshko, Konstantinov, Gurzhi, and Konovaljuk [25], Meleshko and
Van Heijst [26], the interaction between equal strength vortex pairs, without a common axis,
is considered with the aim of addressing advection and stirring of the fluid initially confined
within the atmospheres of the vortex pairs.

Published work on this specific asymmetric problem before [17] is (as they state) ‘rather in-
complete’ and a search indicates that later work concentrates on matters of equal pair strength
stability and on chaotic advection in a field of vortices. In [17] there is specific reference to
Acton [3], which, in developing a treatment of large current eddies, refers in passing to the
interaction of line vortex pairs with a criterion for the existence of bound-state motions which
Eckhardt and Aref [17] find to be incorrect.

Our aims in this paper are to develop the following new results:

(I) To extend in particular some results of Péntek, Tel, and Toroczkai [28] and Eckhardt and
Aref [17] for the ‘same polarity’ vortex pair interaction with pairs of different strengths;
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(II) To give explicit criteria detailing when two given such vortex pairs and initial separation
experience leapfrogging or move off to infinite relative separation;

(III) To illustrate the relative motion of the vortex pairs for a range of positive ratios of vortex
strengths.

We also highlight a particular case of interaction of a vortex pair with a single vortex of
the same strength that is not fixed. This example is mentioned in Gröbli [18], although not
illustrated there, and in Aref, Rott, and Thomann [8], with only a brief sketch. In contrast to
the interaction of vortex pairs, where the integrity of the pairs is maintained throughout, this
case involves an exchange of vortices with some similarity to a perfectly elastic collision.

In [21] Koshel, Reinaud, Riccardi, and Ryzhov study the more general problem of a pair of
point vortices impinging on a fixed point vortex with arbitrary strengths.

We do not consider here any conditions of stability of the solutions presented, although
we note that there is some computational consideration of this matter contained in Ache-
son [2]. The dynamical systems approach and stability issues are also pursued analytically in
Berger [12], in Behring and Goodman [11], and in a numerical investigation in Whitchurch,
Kevrekidis, and Koukouloyannis [33].

The paper is organised as follows. In section 2 we detail the translational motion of a
single vortex pair (N = 2) with equal and opposite circulations. In section 3 we discuss the
leapfrogging mechanism for two pairs of equal and opposite vortices, together with criteria for
its occurrence. The analysis is to some extent a generalisation of that presented for the case of
equal pair strengths in [28]. In section 4, we illustrate various specific cases of leapfrogging for
a range of different relative strengths of vortex pairs, incidentally showing how the behaviours
relate to their different widths, and initial separations. Section 5 details a summary and con-
clusion, indicating when two such vortex pairs can experience zero, one, or an infinite number
of passes, as indicated in section 4. In appendix A, we give an explicit analysis for the very
special case of the three vortex problem referred to above.

Nomenclature

xr, yr relative horizontal and vertical coordi-
nates of the vortex pairs

xr, yr scaled relative coordinates
xr0 , yr0 initial relative horizontal and vertical

coordinates of the vortex pairs
xr0 , yr0 scaled initial relative coordinates
x0, y0 centre-of-vorticity coordinates
xrm maximal scaled relative horizontal sepa-

ration for leapfrogging to occur
K vortex strength

H Hamiltonian of the system
µ ratio of vortex pair strengths, µ =

K2/K1

D pair width, D = 2a, where a is the half-
width of a vortex pair

d initial separation between vortex pairs
1

CCRIT
critical parameter separating leapfrog-
ging and non-leapfrogging evolution

`ij distance between vortices i and j

2 A vortex pair

Suppose that two vortices have strengths K and −K and that they are a distance D apart.
The vortex pair moves together in a straight line and the relative position of the two vortices is
maintained. These two vortices sit in an infinite region of fluid and move uniformly with speed
u = K/(2πD). Figure 1 depicts a schematic diagram of this situation, where we think of the
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frame of reference in which the two vortices are fixed as being equivalent to introducing a fluid
flow of speed u = K/(2πD) in the opposite direction to which the vortices are translated.
This keeps the vortices at rest in this translating frame [1, p. 177–178].

Figure 1: A vortex pair in a uniform flow. Here D denotes the distance between two vortices
with opposite strength, K and −K, and u is the speed at which the vortices move.

The complex potential is given by w(z) = φ+ iψ, where z is the complex number given by
x+ iy. Therefore, if we consider both the complex potential due to the fluid flowing through
and due to the vortices, we obtain

w = − iK
2π

ln

∣∣∣∣z − iD

2

∣∣∣∣− i(−K)

2π
ln

∣∣∣∣z +
iD

2

∣∣∣∣− K

2πD
z

= − iK
2π

ln

∣∣∣∣x+ i

(
y − D

2

)∣∣∣∣+
iK

2π
ln

∣∣∣∣x+ i

(
y +

D

2

)∣∣∣∣− K

2πD
(x+ iy). (1)

We want to study the streamline topologies that arise from the two counter-rotating vortices
that form the vortex pair. Streamlines are, by definition, lines with a constant value of the
stream function, ψ. Thus, comparing the imaginary part of (1) gives the total stream function
for the flow moving in a frame of reference with the vortex pair as follows:

ψ = −K
2π

ln

[
x2 +

(
y − D

2

)2
]1/2

+
K

2π
ln

[
x2 +

(
y +

D

2

)2
]1/2

− K

2πD
y

=
K

4π
ln

[
x2 + (y +D/2)

2

x2 + (y −D/2)
2

]
− K

2πD
y. (2)

Then each streamline is defined through ψ = constant. The streamlines produced from the
interaction of the two counter-rotating vortices with equal absolute strength K are depicted
in figure 2.
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Figure 2: Flow of two vortices with equal and opposite circulations. The parameters used in
this example are K = ±1. The color bar on the right has colors that correspond to values of ψ
in (2).

Here we view a translating vortex pair in a frame that is moving with the two counter-
rotating vortices. We note that a different choice for K would produce the same qualitative
result, as long as the vortex strengths are equal and opposite. Now, it is useful to concentrate
our attention on how to determine the separating streamline for the vortex pair. The result is a
closed oval streamline surrounding the two vortices. The flow outside the oval is the same as it
would be if the oval were replaced by a solid body, and the flow inside the oval is a circulation
about the vortex lines that moves with the vortex.

First, the position of the relative stagnation points as shown in figure 2 (and schematically
in figure 3) is found using the zero horizontal velocity component in this frame:

2
Ka

2π
(
a2 + x2S1

) − K

2π(2a)
= 0, (3)

where a = D/2 (i.e., half the distance between the two vortices). After a little algebra, we find
that the relative stagnation points are

(xS1
, yS1

) =
(
±
√

3a, 0
)
. (4)

Finally, to determine the separating streamline, we evaluate the stream function (2) at (xS1
, yS1

),
resulting in ψ = 0. Notice that the position of the two vortices and the stagnation points form
an equilateral triangle, since tan γ = xS1

/a =
√

3, which implies that γ = 60◦.
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Figure 3: Schematic details of figure 2. Not drawn to scale.

Substituting ψ = 0 and x = 0 in (2) and solving for the position yS2 yields

yS2

a
= coth

(yS2

4a

)
. (5)

More precisely, the root of equation (5) is yS2
≈ 2.087a. This is expected since yS2

/a =
coth (yS2

/(4a)) > 1, and we know that yS2
> a. Note that in figure 2 we have a = 1/2, and

therefore (xS1 , yS1) =
(√

3/2, 0
)

and (xS2 , yS2) ≈ (0, 1.044).
We also remark that the doublet is at rest in the translational frame. To show this, we

consider the complex potential function w(z), and we calculate dw/dz, evaluating the derivative
at z = iD/2 but not taking into account the contribution of the vortex at z = iD/2. Therefore,

dw(z)

dz

∣∣∣∣
z=iD/2

=
d

dz

{
iK

2π
ln

∣∣∣∣z +
iD

2

∣∣∣∣− K

2πD
z

}∣∣∣∣
z=iD/2

= 0. (6)

Since the translational velocity, u, of the vortex is shown to be u = u+ iv = dw?/dz = 0, the
vortex remains at rest. Similarly, repeating the above, we find that dw?/dz = 0 at z = −iD/2.
Thus, we conclude that the relative positions of the vortices are maintained.

3 Leapfrogging of vortex pairs

Having studied the behaviour of a single vortex pair in the previous section, we investigate the
possibility of two vortex pairs with a common axis to leapfrog. This was mentioned initially for
vortex rings by Helmholtz in his paper on vortex dynamics [19]. We consider, here, a model
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of the so-called leapfrogging motion of two vortex pairs. In particular, we study the two-
dimensional analogue of this process in an inviscid flow. In other words, the advection in the
field of two pairs of ideal point vortices that have differing strengths, exhibiting leapfrogging
motion.

In his paper [23], Love wrote that we are ignorant of the condition that determines whether
the motion is periodic, and we can only guess the length of the period if the unknown condition
is satisfied. In this paper, we provide a generalisation of the model first presented in [23] and
then in [28], in each of which the vortex pairs are identical. In particular, we consider a special
case of the four-vortex problem, still with zero overall circulation. The general case of four
vortices is typically chaotic, but the special case with zero total circulation is integrable [9].

3.1 Governing equations

We consider a configuration of four vortices made up of two vortex pairs. The vortex pairs
are arranged so that the x-axis is the perpendicular bisector of the line joining each vortex
with the corresponding vortex having equal but opposite circulation [27, p. 89–90]. Instead
of considering only the case where all the vortices have the same absolute strength, we let
the strengths of the vortices be different (i.e., not necessarily equal in strength), but assume
that K1 and K2 are both positive.

The leapfrogging motion of two vortex rings is modelled here using two vortex pairs. When
corresponding vortices within the pairs have the same sense of rotation, so that K1 and K2

have the same sign, they travel in the same direction. Each vortex induces a transverse motion
component in each of the other three vortices. The symmetry of the configuration is maintained
thereby as the vortex pair widths and positions evolve. As we remarked in the Introduction
there is here no consideration of the stability of this arrangement. The vortex pair that is
behind will attempt to pass through the vortex pair in the front. The vertical separation
between the point vortices of the pair that is originally in the front widens and the pair slows
down. At the same time, the vertical separation between the point vortices of the pair that is
initially at the back shrinks and the pair moves faster. It may then pass through the first one.
This process may then be repeated exactly over and over again, and is conditional in that the
vortex pair horizontal separation |x2 − x1| can alternatively increase without limit.

In figure 4, we present a configuration of the system. It shows the motion of two vortex
pairs with strengths K1 and K2 that move in the same direction along a common symmetry
axis perpendicular to the extension of both pairs. In figure 4, the lower plane is a mirror image
of the upper plane. This is the so-called symmetry-reduced problem. In the analysis below we
take K1,K2 > 0 and K2/K1 ≤ 1.
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Figure 4: Configuration of the two vortex pairs.

The coordinates of the vortices at time t are (x1, y1), (x1,−y1), (x2, y2), and (x2,−y2). The
two with suffix 1 form a pair and the two with suffix 2 form another pair. We assume initially
that x2 > x1 and y2 > y1. Thus the wider pair is ahead of the narrower one. However, the
case where the wider pair is behind the narrower pair is equivalent and gives rise to the same
result.

Now, let us introduce the relative coordinates

xr = x2 − x1, yr = y2 − y1, (7)

as well as the centre-of-vorticity coordinates in the upper half plane y ≥ 0, given by

x0 =
K1x1 +K2x2
K1 +K2

, y0 =
K1y1 +K2y2
K1 +K2

. (8)

We introduce A =
[
(x2 − x1)2 + (y2 − y1)2

]1/2
and B =

[
(x2 − x1)2 + (y2 + y1)2

]1/2
, to sim-

plify the notation. It is clear from figure 4 that we have:

cosα =
x2 − x1
A

, sinα =
y2 − y1
A

,

cosβ =
x2 − x1
B

, sinβ =
y2 + y1
B

. (9)

If we consider the vortex with strength K1, then we find that the velocities induced by the
other three vortices are

ẋ1 =
K1

2π(2y1)
+
K2 sinα

2πA
+
K2 sinβ

2πB
, (10)

ẏ1 = − K2 cosα

2πA
+
K2 cosβ

2πB
, (11)
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where the overdot represents differentiation with respect to time t. Now, let us consider the
vortex with strength K2. The velocity components of this vortex are

ẋ2 =
K2

2π(2y2)
− K1 sinα

2πA
+
K1 sinβ

2πB
, (12)

ẏ2 =
K1 cosα

2πA
− K1 cosβ

2πB
. (13)

After substituting the equations for A and B and equations (9), the preceding equations become

ẋ1 =
K1

4πy1
+

K2(y2 − y1)

2π [(x2 − x1)2 + (y2 − y1)2]
+

K2(y2 + y1)

2π [(x2 − x1)2 + (y2 + y1)2]
, (14)

ẏ1 = − K2(x2 − x1)

2π [(x2 − x1)2 + (y2 − y1)2]
+

K2(x2 − x1)

2π [(x2 − x1)2 + (y2 + y1)2]
, (15)

and similarly,

ẋ2 =
K2

4πy2
+

K1(y1 − y2)

2π [(x1 − x2)2 + (y1 − y2)2]
+

K1(y1 + y2)

2π [(x1 − x2)2 + (y1 + y2)2]
, (16)

ẏ2 = − K1(x1 − x2)

2π [(x1 − x2)2 + (y1 − y2)2]
+

K1(x1 − x2)

2π [(x1 − x2)2 + (y1 + y2)2]
. (17)

Note that K1ẏ1 +K2ẏ2 = 0 implies that ẏ0 = 0, with y0 as defined in (8).
The equations for (ẋ1, ẏ1, ẋ2, ẏ2) given by (14)–(17) actually become Hamiltonian in struc-

ture if we take as canonical conjugate coordinate/momentum pairs:

(K1x1, y1) ≡ (q1, p1) and (K2x2, y2) ≡ (q2, p2).

The Hamiltonian of the system in terms of x1, x2, y1, and y2 becomes

H =
1

4π
ln

(
(2y1)K

2
1 (2y2)K

2
2

[
(x2 − x1)2 + (y2 + y1)2

(x2 − x1)2 + (y2 − y1)2

]K1K2
)

=: E. (18)

This is an autonomous system and H is conserved. Using (7) and (18), we find that(
x2r + y2r + 4y1y2

x2r + y2r

)K1K2

y
K2

1
1 y

K2
2

2 ≡ constant. (19)

To arrive at the explicit form of the trajectories in relative coordinates, we first need to write
the reciprocal of (19) and use the properties that follow. At this point, note that the centre-
of-vorticity coordinate x0 is ignorable since it does not appear in the Hamiltonian. Hamilton’s
equation gives ẏ0 = −∂H/∂x0 = 0, and therefore, the centre-of-vorticity coordinate y0 is a
conserved quantity as can be found explicitly above via (15), (17) and it appears as a constant
in the Hamiltonian function

2y0 = 2
K1y1 +K2y2
K1 +K2

= constant, (20)

where 2y0 can be considered as the mean width of the vortex pairs. We can scale the problem
according to

(xr, yr) ≡
1

2y0
(xr, yr) and (xi, yi) ≡

1

2y0
(xi, yi) for i = 1, 2. (21)
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Also note that y1 and y2 can be written in terms of the centre-of-vorticity and relative coordi-
nates as

y1 = y0 −
K2

K1 +K2
yr and y2 = y0 +

K1

K1 +K2
yr. (22)

The energy conservation (18) provides us with the explicit form of the trajectories in the
relative coordinates as

(1− 2k2yr)
−k1/k2 (1 + 2k1yr)

−k2/k1

1− (1− 2k2yr) (1 + 2k1yr)(
x2r + [1 + (k1 − k2) yr]

2
)
 = C, (23)

where we define k1 = K1/(K1 +K2), and similarly, k2 = K2/(K1 +K2).
As a check for our result, we may use k1 = k2 = 1/2, equivalent to K1 = K2 in the general

form (23), which corresponds to

1

1− y2r
− 1

1 + x2r
= C,

the more specific form of the trajectories obtained in [28, p. 2194, Eq. 9]. Note that, C in our
case and E in [28] are related through

C = exp

(
− 4πE

K1K2
+ ln(2)

(
K1

K2
+
K2

K1

))
. (24)

Furthermore, if we let yr = 0 then x2r/(x
2
r + 1) = C, where C is a constant. Therefore, for

real xr we must have that 0 ≤ C ≤ 1. We can draw the phase plane (xr, yr) given the range
of C values (see figures 8–11 in section 4). We note that our equations (14)–(17) are in accord
with those displayed in the paper by Acton [3] which we cited in our Introduction section 1.

3.2 Leapfrogging criterion

Since vortex pairs do not always leapfrog, we need a criterion that determines when leapfrogging
of vortex pairs occurs. The key point is to find the bounds on C that ensure the leapfrogging
of vortex pairs. In other words, we must find CCRIT. It is clear from (23) and the special case
following, that C = 1/C = 1 is the bound for µ = K2/K1 = 1, as in [28]. The interesting
question to ask concerns how this bound changes with µ, when µ ∈ (0, 1]. Therefore, given
the vortex strengths K1, K2 and the initial positions of (x1, y1) and (x2, y2), we need to find
CCRIT. In figure 5, we illustrate the initial configuration of two vortex pairs.
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Figure 5: Two vortex pairs with different strengths K1 and K2. Here d denotes the horizon-
tal distance between the two vortex pairs, and (x1,±y1), (x2,±y2) correspond to the vortex
locations for pair 1 and 2, respectively.

The initial values xr0 = d and yr0 = y2 − y1 are scaled by y0 in (8) to give

xr0 =
d(K1 +K2)

2(K1y1 +K2y2)
, yr0 =

(y2 − y1)(K1 +K2)

2(K1y1 +K2y2)
. (25)

When yr has initial value yr0 we can calculate the maximal scaled relative horizontal separa-
tion xrm for leapfrogging to occur as:

x2rm =

(
1− 2µ

1 + µ
yr0

)(
1 +

2

1 + µ
yr0

)
[

1− CCRIT

(
1− 2µ

1 + µ
yr0

)1/µ(
1 +

2

1 + µ
yr0

)µ] − (1 +

(
1− µ
1 + µ

)
yr0

)2

. (26)

After y1, y2 are scaled suitably, we obtain

y1 =
1

2
− K2

K1 +K2
yr, y2 =

1

2
+

K1

K1 +K2
yr. (27)

We need y1, y2 and hence y1 and y2 to be non-negative, and we also know that µ > 0 (recall
the assumption that K1,K2 > 0). We find that there is an upper and a lower bound for yr,
given by

yr ≤
(

1 + µ

2µ

)
for y1 ≥ 0, (28)

and similarly,

yr ≥ −
(

1 + µ

2

)
for y2 ≥ 0. (29)

Note that the existence of the upper and lower bound for yr agrees with figures 8–11 in section 4.
The yr bounds are natural in that either y1 → 0, or y2 → 0 there. These conditions can be

11

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
34

99
1



associated with unlimited speed of the respective vortex pair, as one or the other vortex pair
approaches zero width about the x-axis.

In order to determine CCRIT we must investigate what happens to the curves C = constant
as xr → ±∞. Evidently from (23), at xr → ±∞ we have

F ≡
(

1− 2µ

1 + µ
yr

)1/µ(
1 +

2

1 + µ
yr

)µ
=

1

C
. (30)

Considering µ ∈ (0, 1], we concentrate our attention at F when−(1+µ)/2 ≤ yr ≤ (1 + µ) /(2µ).
The next step is to find the maximum of this function, and so we find yr for which dF/dyr = 0.
We obtain then that

− 2

1 + µ

(
1− 2µ

1 + µ
yr

)−1
+

2µ

1 + µ

(
1 +

2

1 + µ
yr

)−1
= 0,

which yields the separating yr as yr = −(1− µ2)/[2(1 + µ2)] ≤ 0, and thus (30) becomes

F (yr;µ) =

(
1 + µ

1 + µ2

)1/µ(
µ(1 + µ)

1 + µ2

)µ
≡ µµ

(
1 + µ

1 + µ2

)µ+1/µ

=: Fmax. (31)

Note that this is actually a maximum since the derivative of F (yr;µ) at yr = 0 satisfies
dF (0;µ)/dyr = −2(1 − µ)/(1 + µ) ≤ 0. A diagram of F (yr;µ) as given by (30) is shown in
figure 6 for µ = 0.4, 0.7, 1.

Figure 6: F vs. yr graph for µ = 0.4 (solid line), µ = 0.7 (dashed line) and µ = 1 (dotted
line). Note that particular values are given for µ ∈ (0, 1] in Table 1 in section 4.

The three possible cases to be considered are given below:

• 1

C
< Fmax that gives two distinct yr values,

12

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
34

99
1



• 1

C
= Fmax that gives two equal yr values,

• 1

C
> Fmax that gives no yr values.

The curves C = constant are evidently closed, and with xr bounded in (23), only when
1/C > Fmax. Hence, leapfrogging occurs only in this last case, when

1

C
≥ µµ

(
1 + µ

1 + µ2

)µ+1/µ

=
1

CCRIT
, (32)

or, equivalently, when

C ≤ CCRIT ≡
(
K2

1 +K2
2

K1 +K2

)K2
K1

+
K1
K2

K
−K1
K2

1 K
−K2
K1

2 . (33)

In the case of equality, the period of the leapfrogging is infinite.
We claim that there is an upper bound for the distance, d, between two given vortex pairs

for which leapfrogging occurs. Given yr0 , the xrm for leapfrogging must satisfy x2r0 < x2rm .
That is, there exists a d such that

d2 <
4y1y2

1−
(

K2
1 +K2

2

K1y1 +K2y2

)K1
K2

+
K2
K1
(
y1
K1

)K1
K2
(
y2
K2

)K2
K1

− (y1 + y2)2. (34)

By putting d = 0 in (34) we may compute the critical size ratio at collinearity of all four
vortices at x = 0, in agreement with figure B5 of [17].

We note that each vortex pair alone would translate with velocity K1/(4πy1), K2/(4πy2),
respectively. Intuitively, (34) means that if the vortices start at a distance greater than d
apart, then no leapfrogging takes place and the separation of vortices increases to infinity with
or without a pass by.

Bounded trajectories (i.e., closed curves) are present for C ≤ CCRIT and there is a symmetry
about the yr-axis. The CCRIT curves correspond to the separatrix lying on the boundary
between regions of open and closed trajectories. (See figures 8–11 in section 4.) The closed
trajectories correspond to the leapfrogging motion of the vortex pairs.

For each value of C there exist four states with the same |xr|. Investigating the case
µ ∈ (0, 1], we choose for instance µ = 0.7 as illustrated in figure 7.
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Figure 7: Vortex trajectories in (xr, yr) for different C curves with µ = 0.7 and lower bound
limit yr = − (1 + µ) /2. Note that the motion is counterclockwise. There is successive leapfrog-
ging when C < CCRIT (F) and the period goes to infinity as C tends to C−CRIT. The dashed
line represents the separatrix, and that corresponds to C = CCRIT. When C > CCRIT there
is no leapfrogging and |xr| → ∞; for (N) there is one pass (|xr| = 0); for (�) there is no such
pass.

Different types of motion are possible depending on the value of C. We may distinguish
some cases for different values of µ — see section 4.

Note that for the case µ = 1, the motions are symmetric about the xr-axis as well. It is
straightforward to find in the µ = 1 case that the separatrix is E = 0, or equivalently, that
CCRIT = 1. This is true as, from (30), 1− C(1− y2r) = 0, which implies that y2r = 1− 1/C →
CCRIT = 1.

Tophøj and Aref in [32] have studied the case where two coaxial vortex pairs leapfrog one
another, when the pairs have the same absolute circulation. Both Gröbli and Love discovered
that leapfrogging was possible only if the size ratio of the two pairs at the moment one slips
through the other is not too large. In particular, Love [23] said “... the motion is periodic, if at
the instant when one pair passes through the other, the ratio of the breadths of the pairs is less
than 3+2

√
2. When the ratio has this precise value the smaller pair shoots ahead of the larger

and widens, while the larger contracts, so that each is ultimately of the same breadth..., and
the distance between them is ultimately infinite. When the ratio in question is greater than
3+2
√

2, the smaller shoots ahead and widens, and the latter falls behind and contracts... When
the ratio is less than 3 + 2

√
2, the motion is similar to the motion described by Helmholtz for

two rings on the same axis, and it is probable that there is for this case also a critical condition
in which the rings, after one has passed through the other, ultimately separate to an infinite
distance, and attain equal diameters.” We note that 3 + 2

√
2 ≈ 5.828 and that its reciprocal

is (3 + 2
√

2)−1 = 3 − 2
√

2 ≈ 0.172. Here 3 − 2
√

2 = σ2 where σ =
√

2 − 1 is called the silver
ratio. In our case we have a direct counterpart of this, in that our σ is

[√
Fmax + 1−

√
Fmax

]
,

where Cmin = 1/Fmax. We observe again that for the special case where the vortex pairs have
the same absolute strength, we have Fmax = 1, and so we recover the silver ratio σ =

√
2− 1.

The centre of the closed leapfrogging curves in the gallery in section 4 is at (0, 0) with
C → 0. Around this point, we do have in each case leapfrogging of two pairs that almost
coincide even though they have different K1 and K2 strengths. Naturally this happens rapidly.

The criterion developed explicitly in (33) and (34) appears to be in general accord with the
results obtained by a different analysis and given in Eckhardt and Aref appendix B [17].

14

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
34

99
1



4 A gallery of vortex leapfrogging

Here, we show the evolution of the leapfrogging motion for a small number of increasing µ
values. Similar plots can be produced for any µ ∈ (0, 1]. Different types of motion arise from
different initial conditions.

In figures 8–11 the dashed curves represent the critical curve, CCRIT. In other words, a
dashed curve represents the separatrix between the open and closed trajectories. All the closed
curves inside this dashed curve correspond to leapfrogging motion. In figures 8–11, the closed
trajectories evolve in the anticlockwise sense, and these cases complement that for µ = 0.7 in
figure 7.

Figure 8: Vortex trajectories in (xr, yr) for different C curves with µ = 0.1 and lower bound
limit yr = −(1 + µ)/2 = −0.55. Note that the motion is counterclockwise. Here, C = 1/2n,
with n = 0.8, 0.911599, 0.95, 1, 1.5, 2.

Figure 9: Vortex trajectories in (xr, yr) for µ = 0.3 and lower bound limit yr = −0.65. The
different C curves are given by C = 1/2n, with n = 0, 0.402438, 0.5, 1, 1.5, 2.
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Figure 10: Vortex trajectories in (xr, yr) for µ = 0.5 and lower bound limit yr = −0.75. The
different C curves are given by C = 1/2n, with n = 0, 0.157587, 0.5, 1, 1.5, 2.

Figure 11: Vortex trajectories in (xr, yr) for µ = 1 and lower bound limit yr = −1. The dif-
ferent C curves are given by C = 1/2n, with n = −0.5, 0, 0.5, 1, 1.5, 2. (This is the counterpart
of figure 2 in [28].)

Figures 8–11 illustrate the relative motion of the vortex pairs leading to leapfrogging or
overtaking motions. In figure 12 we plot CCRIT as a function of vortex strength ratio µ and
some specific values are given in Table 1.
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Figure 12: For a prescribed ratio of vortex strengths µ = K2/K1, we plot the corresponding
CCRIT = (1/µµ)[(1 + µ2)/(1 + µ)]µ+1/µ value.

µ = K2/K1 CCRIT = 1/CCRIT separating

1
µµ

(
1+µ2

1+µ

)µ+1/µ

yr = − (1−µ2)
2(1+µ2)

0.1 0.53159 1.88114 −0.490099
0.2 0.65558 1.52537 −0.461538
0.3 0.75658 1.32174 −0.417431
0.4 0.83624 1.19582 −0.362069
0.5 0.89652 1.11542 −0.3
0.6 0.93999 1.06384 −0.235294
0.7 0.96949 1.03147 −0.171141
0.8 0.98776 1.01240 −0.109756
0.9 0.99724 1.00277 −0.052486
1.0 1.0 1.0 0.0

Table 1: Numerical results for the various µ values.

We may also look at the consequential motions of the vortex pairs in the (x, y) plane, by
integrating our governing equations (14)–(17) using a fourth-order Runge-Kutta scheme.

Here we choose to illustrate as an example the case K1 = 2, K2 = 1, so that µ = 0.5, for
comparison with figure 10. Other cases may of course be treated similarly.
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(a)
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Figure 13: Vortices +K1, −K1 initially at (0, 1), (0,−1) respectively [red line with crosses],
and +K2, −K2 initially at (2, 2), (2,−2) respectively [black line with circles], leading to a
periodic (leapfrogging) motion.

The corresponding temporal plot in figure 14 shows the moment when the passing occurs.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

Figure 14: The leapfrogging motion on the t-x plane. The red line with crosses shows the time
evolution of the x-coordinate for the vortex with strength +K1, initially at x = 0, and the
black line with circles shows the time evolution of the x-coordinate for the vortex with strength
+K2, initially at x = 2. The points of intersection of the x1 and x2 lines show the moment in
time when the passing occurs.
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(b)
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Figure 15: Vortices +K1, −K1 initially at (0, 1), (0,−1) respectively [red line with crosses], and
+K2, −K2 initially at (3, 2), (3,−2) respectively [black line with circles]. The greater initial
horizontal separation leads to a periodic (leapfrogging) motion with a longer period than in
the case shown in (a) above.

(c) Our criterion for leapfrogging (34) gives the critical initial separation d to be 3.459. So
we have:

(i) for separation just less than the critical value — d = 3.43 in figure 16 — leading to
leapfrogging;

0 500 1000 1500 2000 2500 3000
-3

-2

-1

0

1

2

3

Figure 16: Vortices +K1, −K1 initially at (0, 1), (0,−1) respectively [red line with crosses],
and +K2, −K2 initially at (3.43, 2), (3.43,−2) respectively [black line with circles]. The initial
separation is just below the critical value, so there is periodic (leapfrogging) motion, but the
period is now very large.
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(ii) for separation just greater than the critical value — d = 3.46 in figures 17, 18 —
leading to separation.

0 500 1000 1500 2000 2500 3000 3500
-3

-2

-1

0

1

2

3

Figure 17: Vortices +K1, −K1 initially at (0, 1), (0,−1) respectively [red line with crosses],
and +K2, −K2 initially at (3.46, 2), (3.46,−2) respectively [black line with circles]. The initial
separation is now just above the critical value; there is now no periodic (leapfrogging) motion,
but there is a single overtake by the first vortex pair (which then expands in width) as the
second vortex pair then falls further and further behind (decreasing in width). The widths of
the pairs asymptote to constant values as their separation →∞.

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

d > 3.459

Figure 18: Zoomed-in version of figure 17 that focuses on the single overtake by the first vortex
pair as the second pair falls further behind.
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5 Summary and conclusion

In sections 3 and 4 we have considered the motion of two line vortex pairs, with a common axis,
but with, in general, different strengths K1 and K2. From their relative strengths we derived a
criterion (34) for leapfrogging to occur. The gallery of pictures in section 4 and the qualitative
sketch (figure 7) lead to a set of criteria that we observe when we are given strengths, widths,
and separation, i.e., K1,K2, y1, y2, d.

Then, with xr0 , yr0 given by (25) with the choice K2 ≤ K1 we may distinguish some cases
of the motion of two vortex pairs and briefly describe each of them:

(a) Leapfrogging.

As described in section 3 this type of motion exists when the criterion in subsection 3.2
is satisfied. Recall that leapfrogging motion corresponds to a periodic motion in which
the vortex pairs alternately pass through each other. More specifically, for the case
0 < µ = K1/K2 ≤ 1, leapfrogging occurs when 1/C ≥ Fmax, and there are no solutions
for yr at |xr| → ∞. Leapfrogging occurs anticlockwise for the K2 pair.

(b) Single overtake of one vortex pair by the other.

This type of motion occurs in two instances. Referring to figures 8–11, consider the case
in which initially xr > 0 and yr > 0. Vortex pair 2 (as labelled in figure 4) is ahead of
vortex pair 1 and it is wider. It will pass over vortex pair 1 and then go relatively to
negative infinity. An equivalent kind of motion occurs when the initial configuration of
the vortex pairs satisfies xr < 0 and yr < 0. The curve must satisfy C > CCRIT and
yr > −(1+µ)/2. This implies that the two vortices in vortex pair 2 are very close together.
The speed acquired by vortex pair 2 is large. Thus, vortex pair 2 will pass through the
wider vortex pair ahead and go relatively to plus infinity. In the single overtake case, we
can validate our description by analysing figures 8–11. There is a transition stage where
xr changes from positive to negative and vice versa — the xr = 0 stage is when the single
overtake of one vortex pair actually takes place. So, if 1/C < Fmax, the two situations
that can arise are:

1.

yr0 > −
K2

1 −K2
2

2(K2
1 +K2

2 )
and xr0 > 0, (35)

with xr0 and yr0 as defined in (25). In this situation, vortex pair 1 passes through
vortex pair 2 and xr → −∞.

2.

yr0 < −
K2

1 −K2
2

2(K2
1 +K2

2 )
and xr0 < 0. (36)

Now vortex pair 2 passes through vortex pair 1 and xr → +∞.

(c) No overtake of vortex pairs.

Again, this type of motion is characteristic to two initial conditions. Consider figures 8–
11, and in particular the case in which initially xr > 0 and yr < 0. Vortex pair 2 is
ahead at this instant and it will just move off to plus infinity. The influence of vortex
pair 1 on it is insufficient to lead to periodic leapfrogging motion. Similarly, if the initial
configuration of the vortex pairs is xr < 0 and yr > 0, then the narrower vortex pair 2
behind will just move to negative infinity. In both cases there is no stage at which the
xr changes sign and therefore there is no overtake of vortex pairs at all. To summarise,
if 1/C < Fmax then the two situations that can arise are:
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1.

yr0 > −
K2

1 −K2
2

2(K2
1 +K2

2 )
and xr0 < 0. (37)

This case implies that vortex pair 2 never catches vortex pair 1 and xr → −∞.

2.

yr0 < −
K2

1 −K2
2

2(K2
1 +K2

2 )
and xr0 > 0. (38)

If these conditions hold, then vortex pair 1 never catches vortex pair 2 and xr →
+∞.

We note that in Eckhardt and Aref appendix B [17] results are developed in terms of di-
mensionless impulse, rather than our dimensionless vertical vortex separation yr0 – we contend
that our approach is much easier to interpret physically and is therefore advantageous.

The criteria we have presented can be expected to be in only qualitative accord with those
presented in Borisov, Kilin, and Mamaev [13] and in Aiki [4].

We indicated in the Introduction (section 1) our aims in this paper. These have been
addressed and achieved as follows:

(I) To extend and enhance results by Péntek, Tel, and Toroczkai [28] and Eckhardt and Aref
appendix B [17] explicitly in terms of physical variables for the relative motion of two
given vortex pairs (of the ‘same polarity’) with specific initial separation — to address
the question ‘How does the system evolve?’;

(II) To develop specific criteria — summarised in (a), (b), (c) above for when leapfrogging
occurs. In particular (b) and (c) give details of the relative strength, separation, and
initial conditions that lead to a non-periodic motion of the pairs — with eventual infinite
separation, and either one or no occurrence of all four vortices being instantaneously in
a straight line;

(III) To illustrate the motions with a gallery of vortex leapfrogging (section 4) for a range of
relative pair strengths.
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Appendix A A Pythagorean configuration of three vor-
tices of equal absolute strength

We have considered in the main body of this paper a particular interaction of vortex pairs
where the integrity of each pair is maintained throughout. As we indicated in the Introduction,
such an interaction is special, and that quite typically periodic and/or non-periodic motion
can occur. In contrast to this situation we now give an analysis of another special case —
that of the N = 3 vortex problem mentioned in Gröbli [18] and referred to in Aref, Rott,
and Thomann [8]. The result for this case is an exchange of partners between a vortex pair

and a single vortex of the same strength. The three vortices 1 +K, 2 +K, 3 −K are
in Pythagorean configuration at the vertices of a right angled triangle (see figure 19). This
property of the triangle formed by the vortices is maintained and the vortices travel on straight
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line paths along and parallel to the x-axis. When the separation `12 is very large then so is

`23 also and the configuration then models the approach of a vortex pair 1 3 from afar to

interact with vortex 2 .

Figure 19: Schematic diagram of a vortex pair approaching a single vortex. Here D is the
vertical distance between the vortex pair and the single vortex, `12, `23, `31 are corresponding
distances between the point vortices.

We specialise the analysis from the general three vortex results contained in e.g. Aref [5],
Newton [27].

It follows from similarity of triangles that the vertical distance between the vortex pair and
the point vortex is given by D = `31`23/`12 and it is a constant. For the remainder of this
section we will also use that K1 = K2 = K, K3 = −K.

The equations of motion of point vortices can be written in the form of Hamilton’s canonical
equations [5]. If we let Ki be the strength and (xi, yi) be the position of vortex i = 1, 2, 3, then
we have

Kiẋi =
∂H

∂yi
, Kiẏi = −∂H

∂xi
. (A1)

The Hamiltonian function for this system of 3 vortices is defined as

H = − 1

4π

3∑
i 6=j

KiKj ln(`ij)

= −2K2

4π
[ln(`12)− ln(`31)− ln(`23)]

=
K2

2π
ln

(
`31`23
`12

)
∝ ln(D), (A2)

where i, j ∈ {1, 2, 3}, `ij is the distance between vortices i and j, and the summation excludes
the case i = j [27, 5]. The Hamiltonian does not depend on time explicitly and so it is a
constant of the motion, so that of course D is constant. Additionally, the Hamiltonian is
invariant under translations and rotation of the coordinates. Via initial conditions we can
determine the rest of the constants of the motion [10, 22, 30] which are (Q,P, I,M):

23

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
34

99
1



Q =

3∑
i=1

Kixi = 0,

P =

3∑
i=1

Kiyi = KD,

I =

3∑
i=1

Ki|zi|2 = KD2,

M =

3∑
i,j=1

KiKj`
2
ij ≡ KI −Q2 − P 2 = 0 ≡ K2[`212 − `231 − `223] = 0,

where by convention we use that i < j in M . For determining that M is a constant of the
motion we use the fact that

∑3
i=1Ki = K 6= 0 and so the center of vorticity C, given by

1
3∑
i=1

Ki

(
3∑
i=1

Kixi,

3∑
i=1

Kiyi

)
, (A3)

provides a fixed point of reference in the flow. Note that
∑3
i=1Ki = K here.

In this configuration, C is stationary, whereas O moves at speed K/(4πD), and point

vortex 3 moves with speed K/(2πD). In figure 20 we show the (+K,+K,−K) configuration
of the vortex pair with the point vortex inscribed in a circle with centre O, with the induced
velocities being, as usual, perpendicular to the line connecting the point vortices. The net
induced velocities in the horizontal direction can be found using a geometrical argument (see
figure 20), and they are given by:

• Point vortex 1 :
K

2π

`23
`31`12

• Point vortex 2 :
K

2π

`31
`23`12

,

• Point vortex 3 :
K

2π

(
`23
`31`12

+
`31
`23`12

)
.
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Figure 20: Schematic diagram of a vortex pair approaching a single vortex, inscribed in a circle
with centre O. The induced velocities are labeled in the diagram, resulting in motions for each
vortex along and parallel to the x-axis.

Now, we let the position of the circle centre O be at x = s(t). Then the speed of O is given by

ds

dt
=
K

4π

(
`23
`13`12

+
`13
`23`12

)
≡ K

4π

`12
`13`23

≡ K

4πD
, (A4)

where we use that `213 + `223 = `212, from Pythagoras’ theorem. Therefore, the position s(t) is a
linear function of time, given by,

s(t) =
K

4πD
t+ s0, (A5)

where s0 is the initial position of the circle centre. Again using Pythagoras’ theorem, we obtain
that the radius of the circle can be expressed as (s2 +D2)1/2 as shown in figure 21.
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Figure 21: Schematic diagram of a vortex pair approaching a single vortex, showing the right-
angled triangle used to find the radius of the circle.

The x-coordinate of point vortex 1 can then be obtained as

x1 = s− (s2 +D2)1/2 ≡
(

K

4πD
t+ s0

)
−

[(
K

4πD
t+ s0

)2

+D2

]1/2
, (A6)

and similarly the x-coordinate of point vortex (2) is

x2 = s+ (s2 +D2)1/2 ≡
(

K

4πD
t+ s0

)
+

[(
K

4πD
t+ s0

)2

+D2

]1/2
. (A7)

From figure 21, it is evident that the x-coordinate of point vortex (3) is

x3 = 2s = 2

(
K

4πD
t+ s0

)
. (A8)

For convenience, we use the following transformation

K

4πD
t+ s0 = D sinhφ. (A9)

Now we can rewrite (A6)–(A8) as x1 = −De−φ, x2 = Deφ, and finally x3 = D(eφ − e−φ) =
2D sinhφ. So there is the following progression: we start with φ → −∞ which implies that

point vortices 1 and 3 start out at large negative x whereas point vortex 2 starts out at
small positive x. Then at an intermediate point in time, φ = 0, so x1 = −D, x2 = D, and

x3 = 0. Finally, at large time, φ→∞ and so point vortex 1 goes to small negative x and point

vortices 2 and 3 end at large positive x. The y coordinates are constant throughout. This
transformation of variables is monotonic and t : −∞ → +∞ corresponds to φ : −∞ → +∞.
The evolution of the three-vortex configuration can be seen schematically in figure 22.
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Figure 22: Schematic diagram of the evolution of the three-vortex configuration.

This special solution appears to be the only simple non-trivial explicit time-dependent
solution for a three vortex problem. The effect is one of a vortex exchange of partners in that

the vortex pair 1 3 and the single vortex 2 evolve to a pair 2 3 leaving behind the

single vortex 1 . A noteworthy feature is that the vortex 3 moves throughout at constant
velocity, so that it experiences no time delay – that is to say it is at all times at the position
it would have been if the interaction with the single vortex had not occurred.

This feature is in direct contrast with the pair-pair interactions considered in sections 3, 4, 5
of this paper, where indeed the integrity of the vortex pairs was maintained throughout.

In figure 23 we show the time evolution of the three-vortex Pythagorean configuration as a
result of a numerical integration of the governing equations:

ẋi(t) = − 1

2π

3∑
i 6=j

Kj
yi − yj

(xi − xj)2 + (yi − yj)2
, (A10)

ẏi(t) =
1

2π

3∑
i 6=j

Kj
xi − xj

(xi − xj)2 + (yi − yj)2
, (A11)

where i, j ∈ {1, 2, 3} and K1 = K2 = 1 = −K3. A fourth-order Runge-Kutta scheme is used
for time integration of the governing equations.

We note that the initial conditions need to be set in a particular way (‘Pythagorean’) since
this case is very special and certainly not stable.
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Figure 23: Time evolution of the three-vortex Pythagorean configuration with vortex strengths:
K1 = K2 = 1 and K3 = −1. The initial positions are given by (x1, y1) = (0, 0) (black cross),
(x2, y2) = (100, 0) (red circle) and (x3, y3) = (1,−9.9499) (blue triangle).
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