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1 Introduction

The objective of this article is to present glacier sliding laws and the effect that cav-

itation has on these. The results investigated here largely follow Schoof’s papers [11]

and [10].

Glaciers are blocks of ice that can occupy the surfaces of mountains. When they

move over a flat surface, heat produced due to friction can maintain a water film

which lubricates the ice and bedrock interface. The moving ice moves like ordinary

slow viscous flow around an obstacle.

Cavitation occurs either when the pressure of the water film becomes equal to

the pressure at which all three states (ice, water and vapour) co-exist or when the

normal pressure reaches the drainage pressure. Since the pressure drops to a critical

separation pressure pc that is not sufficiently high to keep the ice in contact with the

bedrock, the two separate and cavities form. This is analogous to cavitation in fluid

flow. In this context, cavitation is defined as the process of formation of vapour or

liquid water as a consequence of reduced pressure in some region of the flow.

Cavity formation depends on the size of the variations in normal stress and the

effective pressure, N ,

N = pi − pc, (1.1)

which is the difference between mean hydrostatic pressure pi at the bed and the

separation pressure pc. The smaller the value of N , the more likely variations in

normal stress are to cause cavitation, and the more extensive this will be. The glacier

will thus experience reduced resistance to flow since cavities cause the base of the

glacier to lose contact with the bed. It follows that both the basal stress τb and the

effective pressure N determine the sliding velocity of a glacier. Therefore, the sliding

law should be expressed as

τb = f(ub, N). (1.2)

If cavity formation is taken into account, then the sliding law can be written as

τb = CupbN
q (1.3)

where C, p, q > 0. This law shows that for a given sliding velocity ub, the basal shear

stress τb decreases when effective pressure N decreases and cavitation becomes more

widespread. As we will see later in this article, Iken in [5] derived a bound for the

basal shear stress, of the form τb ≤ N tan β, which is solely determined by the bed

geometry. However, Iken’s bound and the sliding law (1.3) are contradictory, since

the latter implies that τb can grow arbitrarily big despite the size of N . Iken’s bound
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was derived using the unrealistic bed geometry of rectangular steps. In an attempt

to explain this contradiction, Fowler describes a model in [2] that takes into account

a single cavity over a bedrock period. This allows the computation of sliding laws for

more realistic bed surfaces. In [11], Schoof generalises this model to account for any

finite number of cavities per period.

This article is organised as follows: In Section 2, we show how to derive bounds

for τb
N

for various bed geometries. In Section 3, we introduce different sliding laws

and in Section 4, we discuss extensively how to determine the sliding law by taking

into consideration cavitation. Finally, for the sake of self-containment, we include

appendices at the end.

2 Bounds for τb
N for different bed shapes

Using a simple force balance of glacier sliding on a bed consisting of rectangular steps,

Iken concluded that the quantity τb
N

satisfies an upper bound which is determined only

by the up-slope of the bed, τb
N
≤ tan β. Schoof showed the bound for a general bed

geometry which is only restricted to bounded slopes. We will investigate these in the

subsections that follow.

2.1 Iken’s proof for bed consisting of rectangular steps [5]

In this subsection, we show that the basal shear stress bound is τb ≤ N tan β, as

presented in [5]. Iken suggested that if the subglacial water pressure rises more than

some value then a critical pressure pcrit will be reached above which the glacier will

accelerate without bound.

bed

glacier surface

ice flow

b
c

λ

d

β

β

β

β

β

α

Figure 1: Bed consisting of rectangular steps to derive Iken’s bound for τb.
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Let us consider a glacier block on an inclined plane with slope α. Assume that

the bed consists of rectangular steps for simplicity. For more irregular shapes like a

sinusoidal bed, see § 2.2. Here we assume that the column of glacier has unit width,

length λ and rests on faces b and c of these steps. Furthermore, the glacier block has

weight equal to Fweight = ρgdλ. In Figure 2, we split the weight of the glacier into

the components perpendicular to face b and face c with angle β − α.

glacier surfaceβ − α

α

ρgdλ

ρgdλ sin(β − α)

ρgdλ cos(β − α)

ρgdpi = ρgd cosα

τb = ρgd sinα

Figure 2: Force components resolved in different directions.

The component perpendicular to face b is

Fb = ρgdλ cos(β − α) (2.1)

and the component perpendicular to face c is

Fc = ρgdλ sin(β − α), (2.2)

where ρ is the density of the block of glacier, d is its thickness, g is the acceleration

due to gravity and finally β is the angle that the stoss surface makes with the inclined

plane.

Having determined the forces acting on faces b and c we can find the corresponding

pressures acting on them. The pressure on each face can be calculated as the force

divided by the length of the face

pb =
Fb
b

= ρgd
cos(β − α)

cos β
and pc =

Fc
c

= ρgd
sin(β − α)

sin β
(2.3)

where we use that b = λ cos β and c = λ sin β.

The basal water pressure, pc, should remain below the critical pressure, or other-

wise, if pc > pcrit there will be a net force on the ice which will move it upward along

faces b and it will cause the glacier to accelerate without bound.
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Next, using the overburden pressure pi = ρgd cosα and the basal shear stress

τb = ρgd sinα, we obtain the critical pressure

pcrit = ρgd
sin(β − α)

sin β
= pi

sin(β − α)

sin β cosα
= pi

(sin β cosα− cos β sinα)

sin β cosα

= pi

(
1− tanα

tan β

)
= pi −

τb
tan β

. (2.4)

The basal water pressure, pc, should remain below pcrit such that Iken’s bound

always holds. Recall that the effective pressure is N = pi−pc and pc ≤ pcrit such that

τb
N

=
τb

pi − pc
≤ τb

pi −
(
pi − τb

tanβ

) = tan β. (2.5)

To conclude, we see that for as τb increases, or equivalently, as the sliding speed, ub,

increases, pcrit decreases. If the water pressure, pc, exceeds this critical value for the

pressure, separation between the ice and the bedrock will occur and then cavities will

form and will grow to a size which will be proportional to the amount by which pc

exceeds pcrit.

2.2 Schoof’s proof for more irregular beds [11]

We consider a two-dimensional bedrock surface S as shown in Figure 3.

t
n

cavities

S

bed h(x)

y

ice

a

Figure 3: Geometry of bed under consideration taken from [11].

We focus on a section of the bedrock that lies in 0 ≤ x ≤ a and assume that the

ice flow is parallel to the x-axis. The height of the bedrock depends upon the position

along x and can thus be written as y = h(x). The bed exerts a force on the glacier

block lying above it and this force is denoted by f . It can be calculated as

f =

(
fx

fy

)
= −

∫
S

σn ds = −
∫
S

(n · σn)n ds−
∫
S
�����
(t · σn)t ds = −

∫
S

σnnn ds,

(2.6)
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where we evaluate the stress tensor σ at the bed surface, σnn = (n · σn)|y=h(x) and

we assume that due to the water film, the tangential shear stress is zero at the base.

The unit normal to the bedrock surface is n = 1√
1+h′(x)2

(
−h′(x)

1

)
and an element

of the arc S is ds =
√

1 + h′(x)2 dx. Substituting these into Equation (2.6), yields

fx =

∫ a

0

σnnh
′(x) dx, fy = −

∫ a

0

σnn dx. (2.7)

If a is regarded as the bedrock period then we can use it as the averaging distance.

With this we can calculate the basal drag, τb, and the hydrostatic overburden pressure,

pi, in the following way

τb = −fx
a

= −1

a

∫ a

0

σnnh
′(x) dx, pi =

fy
a

= −1

a

∫ a

0

σnn dx. (2.8)

If the compressive normal stress −σnn decreases below the critical pressure then cav-

ities form. We define a local effective pressure as Nloc(x) = −σnn − pc and since

we want the compressive normal stress to not drop below this critical pressure, we

require

−σnn ≥ pc ⇒ Nloc(x) ≥ 0. (2.9)

Reconsider the basal drag force τb, this time as a function of the local effective pressure

τb = −1

a

∫ a

0

σnnh
′(x) dx =

1

a

∫ a

0

(Nloc(x) + pc)h
′(x) dx

=
1

a

∫ a

0

Nloc(x)h′(x) dx+
1

a

∫ a

0

pch
′(x) dx. (2.10)

Since Nloc(x) ≥ 0, we can write Nloc(x)h′(x) ≤ Nloc(x)sup(h′(x)), and also evaluate

the second integral in Equation (2.10) as

1

a

∫ a

0

pch
′(x) dx =

pc
a

∫ a

0

h′(x) dx =
pc
a

[h(a)− h(0)].

Therefore, Equation (2.10) becomes

τb ≤
sup(h′(x))

a

∫ a

0

Nloc(x) dx+
pc
a

[h(a)− h(0)], (2.11)

and we will see that the integral equation turns from a local effective pressure to a

global effective pressure

sup(h′(x))

a

∫ a

0

Nloc(x) dx =
sup(h′(x))

a

∫ a

0

(−σnn − pc) dx

= sup(h′(x))

[
−1

a

∫ a

0

σnn dx− 1

a

∫ a

0

pc dx

]
= sup(h′(x))[pi − pc]

= sup(h′(x))N, (2.12)
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where we use in the third equality Equation (2.8) and the fact that the water pressure

pc is a constant, so 1
a

∫ a
0
pc dx = pc.

At this point, let us consider what happens to the term pc
a

[h(a) − h(0)] if the

period a is large. Schoof assumes that h(a) is bounded as a → ∞ and therefore
pc
a

[h(a)− h(0)] → 0.

Taking everything into consideration, Equation (2.11) shows that

τb ≤ Nsup(h′(x)). (2.13)

The bound is therefore determined by the bed topography. For instance, consider a

bed with a sinusoidal shape that is given by h(x) = a sin
(

2πx
λ

)
. Then the theoretical

bound for τb
N

is max(h′(x)) = 2πa
λ

max(cos
(

2πx
λ

)
) = 2πa

λ
= (tan β)max. Moreover, note

that the bound (2.13) is equivalent to Iken’s bound τb ≤ N tan β for rectangular steps.

3 Sliding Laws

Weertman in his paper [12] examined the theory of glacier sliding by considering

a quite unrealistic bed consisting of uniformly spaced ice cubes on a flat surface

as shown in Figure 4a. The simplified method he used is sometimes referred to as

the tombstone model. Weertman concluded that the sliding law should be of the

approximate form

τb = Cu
2

n+1

b , (3.1)

where τb is the basal shear stress, ub is the sliding velocity and n is the exponent as it

appears in Glen’s flow law (ε = Aτn for ε – shear stress, A and n constants, τ – basal

shear stress). A glacier sliding over its bedrock may move past obstacles by either

regelation1 or plastic deformation.

Lliboutry was the first to introduce and examine the effects of cavitation on the

sliding law and he presented his results in [6]. The sliding law suggested by Lliboutry is

as illustrated in Figure 4b and we can observe that cavitation has the effect of reducing

the effective roughness of the bed, or in other words, the friction for increasing sliding

velocity.

1Regelation is the process that results in melting of the ice on the upstream faces and freezing

on the downstream faces. The flow of water through the lubricating film, through this process of

melting and freezing, allows the ice to move through the obstacles.
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(a) Weertman’s idealised bed [12].

τb

ub
cavitation onset

(b) Lliboutry’s sliding law based on [1] for a

sinusoidal bedrock.

Figure 4: Sliding laws.

Fowler found an analogy between glacier sliding problems and the lubrication

theory2 of shallow ice problems. He introduced a boundary layer approach based on

the assumption that the wavelengths of the basal obstacles are much smaller than

the thickness of the ice lying above. Moreover, he determined the sliding law using

matched asymptotic expansions and he presented the solution for the case of a periodic

bedrock with one cavity per period. For details, see [2].

The model is restricted to the case of glaciers whose width is much greater than

their depth and so the flow can be considered as two-dimensional. It is found that the

basal stress decreases towards zero as the velocity tends to infinity, i.e. τb
N

decreases

as ub
N

increases.

Since the glacier is modelled as an incompressible Newtonian fluid with low

Reynolds number, the dimensionless Stokes flow equations take the form

∇2u−∇p = 0

∇ · u = 0 (3.2)

where u =

(
u

v

)
is the velocity of the glacier and ∇p is the pressure gradient.

After suitable non-dimensionalisation at leading order the following boundary

2Thin layers of fluid can prevent solid bodies from contact and the analysis of the fluids flow in

thin layers is called lubrication theory.
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conditions are obtained

uy + vx = 0, v = ubh
′(x) on y = 0, x ∈ C ′

uy + vx = 0, p− 2vy = −N, v = ubh
′
C(x) on y = 0, x ∈ C

u, v, p→ 0 as y →∞ (3.3)

where we require that u, v must have a period a in x. C ′ denotes the contact areas

and C the regions that correspond to cavities. Furthermore, h(x) is the height of the

bedrock as shown in Figure 3 and hC(x) is the height of the cavity roof.

At the bedrock, zero shear stress is prescribed and this corresponds to uy +vx = 0

in Equation (3.3). This is the τxy component of the stress tensor as it appears in [9].

For an illustration of the components of the stress tensor, see Figure [3]. A vanishing

normal velocity, v = ubh
′(x) is also required. The condition p − 2vy = −N stems

from the component of the stress tensor, τyy.

Equivalently, using the stream function, u = ψy and v = −ψx, we have

ψyy − ψxx = 0, ψ = −ubh(x) on y = 0, x ∈ C ′

ψyy − ψxx = 0, p+ 2ψxy = −N, ψ = −ubhC(x) on y = 0, x ∈ C

ψ → 0 as y →∞. (3.4)

4 Method of Solution using Complex Variables

A nice way of solving this problem is using the theory of complex variables and this

is what we will do in this section.

4.1 Boundary conditions

Recall that we defined the velocity vector in terms of a stream function, ψ, as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (4.1)

From the problem in (3.2) we use ∇2u−∇p = 0 and Equations (4.1) to write

∇p = ∇2u = ∇2

(
∂ψ

∂y
,−∂ψ

∂x

)
(4.2)

and thus
∂p

∂x
=

∂

∂y
∇2ψ and

∂p

∂y
= − ∂

∂x
∇2ψ (4.3)
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which are the Cauchy-Riemann equations for the function p+ i∇2ψ.

Thus, ψ satisfies the biharmonic equation

∇4ψ =
∂4ψ

∂z2∂z2 = 0. (4.4)

The solution of the biharmonic equation has the Goursat representation [4]

ψ = <{zf(z) + g(z)} = zθ(z) + θ(z) + zφ(z) + φ(z) (4.5)

where θ and φ are both holomorphic functions in the upper half plane, S+ and ψ is

a real function as required.

The Laplacian is ∇2ψ = 4 ∂2ψ
∂z∂z

. Therefore, if we differentiate the general solu-

tion (4.5) with respect to z and with respect to z, we obtain ∂2ψ
∂z∂z

= θ′(z) + θ′(z),

which gives ∇2ψ = 4(θ′(z) + θ′(z)). Therefore, we can write

p+ i∇2ψ = p+ 4i(θ′(z) + θ′(z)). (4.6)

Schoof in [10] defines a new holomorphic function ρ(z) as

ρ(z) = (p+ i∇2ψ)− 8iθ′(z) (4.7)

yielding

ρ(z) = p− 4i(θ′(z)− θ′(z)). (4.8)

The difference between θ′(z) and its complex conjugate is 2i=(θ′(z)) and thus when

multiplied by i gives a real number. Since p is also real we can rearrange (4.8) and

write p as

p = κ+ 4i(θ′(z)− θ′(z)) (4.9)

where ρ(z) = κ is a constant. For a proof of this, see Appendix A. This constant has

to be zero since at infinity the velocity field components should vanish. In stream

function notation this is equivalent to

ψ → 0 as =(z)→∞. (4.10)

Equation (4.5) implies that this is equivalent to

θ → 0 and φ→ 0 as =(z)→∞, (4.11)

and since p must be zero at infinity as well, we choose κ = 0. This yields

p = 4i(θ′(z)− θ′(z)). (4.12)
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Now let us consider what happens at the base of the bedrock. We look separately at

the boundary conditions prescribed at y = 0 for the contact areas (C ′) and for cavity

regions (C).

The vertical velocity at y = 0 and x ∈ C ′ is v = −ψx = ubh
′(x). Therefore

vx = −ψxx = ubh
′′(x). (4.13)

Using Equation (A.1) and Equation (4.5) we get

vx = −ψxx = −∂
2ψ

∂z2
− 2

∂2ψ

∂z∂z
− ∂2ψ

∂z2

= −zθ′′(z)− φ′′(z)− 2θ′(z)− 2θ′(z)− zθ′′(z)− φ′′(z)

= −[xθ′′(x) + φ′′(x) + 2θ′(x) + 2θ′(x) + xθ′′(x) + φ′′(x)]+

= ubh
′′(x), (4.14)

where in the third equality we use the fact that at the bed, y = 0, we have z =

x + i0 = x and thus z = x. Note that + indicates that we approach the boundary

from S+.

However, on the cavity roof we have that the normal stress is given by

p− 2vy = −N on y = 0, x ∈ C. (4.15)

Therefore, from Equations (4.1) and (A.1), (A.2) and (4.5) we obtain

vy = −i
(
∂2

∂z2
− ∂2

∂z2

)
[zθ(z) + θ(z) + zφ(z) + φ(z)]

= −i[zθ′′(z) + φ′′(z)− zθ′′(z)− φ′′(z)]. (4.16)

Using Equations (4.12) and (4.15) we have on x ∈ C and y = 0, z = x = z that

p− 2vy = 4i(θ′(x)− θ′(x)) + 2i[xθ′′(x) + φ′′(x)− xθ′′(x)− φ′′(x)]+ = −N

2i[xθ′′(x) + 2θ′(x)− 2θ′(x) + φ′′(x)− xθ′′(x)− φ′′(x)]+ = −N. (4.17)

In a similar way, the compressive normal stress in x ∈ C ′ is found by

2i[xθ′′(x) + 2θ′(x)− 2θ′(x) + φ′′(x)− xθ′′(x)− φ′′(x)]+ = Nloc −N. (4.18)

The last condition is that the shear stress vanishes everywhere at the bed, so uy + vx = 0

at y = 0. Using Equations (4.1), (A.2) and (4.5) we get

uy = −
(
∂

∂z
− ∂

∂z

)2

[zθ(z) + θ(z) + zφ(z) + φ(z)]
∣∣∣
y=0

= −zθ′′(z)− φ′′(z) + 2θ′(z) + 2θ′(z)− zθ′′(z)− φ′′(z)
∣∣∣
y=0

= [−xθ′′(x)− φ′′(x) + 2θ′(x) + 2θ′(x)− xθ′′(x)− φ′′(x)]+ (4.19)
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and so, on y = 0 and x ∈ C ∪ C ′, the boundary condition uy + vx = 0 becomes

[xθ′′(x) + xθ′′(x) + φ′′(x) + φ′′(x)]+ = 0. (4.20)

4.2 Hilbert problem

We will now formulate the problem into a Hilbert problem as shown in [11]. This

enables the sliding law to be reduced to the solution of a boundary value problem of

a single holomorphic function.

Define the following holomorphic functions in the upper half plane, S+

Ω(z) = zθ′′(z) + 2θ′(z) + φ′′(z) and ω(z) = zθ′′(z) + φ′′(z). (4.21)

Note that if we have a point z in S+ then its reflection in S− will be z. The functions

Ω(z) and ω(z) are defined in S+ and the corresponding functions in S− are Ω(z) =:

Ω?(z) and ω(z) =: ω?(z). For a more detailed description of some basic complex

variable techniques see Appendix A.

At the boundary Ω satisfies

Ω(x)
+

= lim
y→0+

Ω(x+ iy) = lim
y→0−

Ω(x− iy) = Ω−? (x). (4.22)

and ω satisfies

ω(x)
+

= lim
y→0+

ω(x+ iy) = lim
y→0−

ω(x− iy) = ω−? (x). (4.23)

Using these results, the boundary condition (4.14) in x ∈ C ′ becomes

−[Ω+(x) + Ω−? (x)] = ubh
′′(x) x ∈ C ′ (4.24)

where we have used [xθ′′(x)+2θ′(x)+φ′′(x)]+ = Ω+(x) and [xθ′′(x) + 2θ′(x) + φ′′(x)]+ =

Ω+(x) = Ω−? (x).

Similarly, the boundary condition (4.17) in x ∈ C can be written as

2i[Ω+(x)− Ω−? (x)] = −N x ∈ C. (4.25)

Following the same procedure, the rest of the boundary conditions become

2i[Ω+(x)− Ω−? (x)] = Nloc(x)−N x ∈ C ′ (4.26)

and finally we can write Equation (4.20) as

ω+(x) + ω−? (x) = 0 x ∈ C ∪ C ′. (4.27)
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Recall that as =(z) → ∞ we have θ, φ → 0 and from the definitions (4.21), this

boundary condition becomes

Ω(z), ω(z)→ 0 as =(z)→∞ (4.28)

Assuming that ω has no singularities at the endpoints of C and C ′, we conclude that

ω+(x) + ω−? (x) = 0 x ∈ C ∪ C ′

ω(z)→ 0 as =(z)→ ±∞ (4.29)

and this implies that ω(z) ≡ 0.

To determine the function Ω we need to define the following function

F (z) =

{ −Ω(z)+ 1
4
iN

ub
, z ∈ S+

−Ω−? (z)− 1
4
iN

ub
, z ∈ S−.

(4.30)

So F (z) is holomorphic in S+ ∪ S− and satisfies F (z) = F?(z) := F (z) (recall that

Ω(z) =: Ω?(z)).

Using the definition (4.30) and after rearrangement we obtain

Ω+(x) = −F+(x)ub +
1

4
iN,

Ω−? (x) = −F−(x)ub −
1

4
iN. (4.31)

Thus −[Ω+(x) + Ω−? (x)] = ubh
′′(x) becomes

F+(x) + F−(x) = h′′(x) x ∈ C ′. (4.32)

In addition, we have 2i[Ω+−Ω−? ] = −N in the cavities, x ∈ C such that on substituting

Equations (4.31) we obtain

F+(x)− F−(x) = 0 x ∈ C. (4.33)

And lastly, we have Ω(z)→ 0 as =(z)→ ±∞ which together with (4.30) imply that

F (z)→ ± iN
4ub

=(z)→ ±∞. (4.34)

In the same way as in Equation (4.24) we have for the cavity roof shape

−[Ω+(x) + Ω−? (x)] = ubh
′′
C(x) x ∈ C (4.35)

and on dividing by ub and using Equations (4.31) we get

F+(x) + F−(x) = h′′C(x) x ∈ C. (4.36)
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Since in the cavities we have shown that F+(x) − F−(x) = 0, it follows that F is

continuous across C. Therefore we have F+(x) = F−(x) = F (x) and we can rewrite

Equation (4.36) as

F (x) =
h′′C(x)

2
x ∈ C. (4.37)

Moreover, we can derive the sliding law using the normal stress boundary condition

on the cavity roof (4.15). Since the shear stress on the base is zero we have ∂u
∂y

+ ∂v
∂x

= 0

on y = 0. Using the method of asymptotic expansions, as it appears in [11], the

effective basal shear stress τb at leading order becomes

τb =
1

a

∫ a

0

(p− 2vy)|y=0 h
′(x)dx. (4.38)

Note that the effective pressure, N , is a constant and h(x) has a period a, thus we

can write

τb =
1

a

∫ a

0

(p− 2vy +N)|y=0 h
′(x)dx =

1

a

∫ a

0

Nloc(x)h′(x)dx (4.39)

Using Equation (4.26) for x ∈ C ′ and (4.31) we have

−2iub[F
+(x)− F−(x)] = Nloc(x). (4.40)

But we have shown that F+(x) − F−(x) = 0 for x ∈ C and so the local effective

pressure in x ∈ C is Nloc(x) = 0.

Given the form of the local effective pressure in the contact areas and cavities

in terms of the function F , it is apparent that we can substitute it in the sliding

law (4.39) to compute the sliding law once the function F is known.

4.3 Representing cavities in the ζ-plane

The purpose of transforming the problem into the complex plane and of using the

method of solution is to allow for solutions to be found for any finite number of

cavities per period. Since the problem we are considering is periodic in x with period

a, when we transform into the complex unit circle the complex variables are

ζ = exp

(
2πiz

a

)
and ξ = exp

(
2πix

a

)
(4.41)

where z = x+ iy with x, y ∈ R and ζ = ξ + iη with ξ, η ∈ R.
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ζ = f(z)

S+

S−

Σ+

Σ−

Figure 5: Conformal map from the upper half plane to the interior of the unit circle.

Using this transformation, if C corresponds to a section in the real x-axis then

this is mapped to an arc, Γ, in the complex ζ-plane and it represents the location of

cavities. The section C ′ which denotes the contact areas is mapped to Γ′ by (4.41).

Furthermore, let the interior of the unit circle be Σ+ and the exterior be Σ−.

We define

G(ζ) = F (z) (4.42)

and since we showed that F is continuous at x ∈ C we have that G is a single valued

function and holomorphic across the Γ.

All in all, we have the following boundary conditions under the various transfor-

mations from the (x, y)-plane to the complex plane and the ζ-plane. Note that we

define the h2(ξ) = h′′(x) and also now + is used to indicate that we take the limit as

ζ approaches the boundary from the interior of the circle, Σ+ and similarly for −.

Table 1: Summary of boundary conditions.

Real plane Complex plane ζ-plane

−[Ω+(x) + Ω−? ] = ubh
′′
C(x)

2i[Ω+(x)− Ω−? ] = −N

2i[Ω+(x)− Ω−? ] = Nloc(x)−N

ω+(x) + ω−? (x) = 0

Ω? = Ω(z)

F+(x)− F−(x) = 0

F+(x) + F−(x) = h′′(x)

F (z)→ ± iN
4ub

as =(z)→ ±∞

F (z) = F?(z) := F (z)

G+(ξ) +G−(ξ) = h2(ξ)

G(0) =
iN

4ub

G(∞) = − iN
4ub

G(ζ) = G?(ζ) = G

(
1

ζ

)

Using the Schwarz reflection principle G(ζ) can be continued analytically across

the real axis by defining G(ζ) = G
(

1
ζ

)
. Note that the complex conjugate in unit

circle comes from |ζ| = 1 which implies that ζζ = 1 and thus ζ = 1
ζ
. Moreover, the

period of the unit circle is a = 2π. Using

Nloc(ξ) = −2iub(G
+(ξ)−G−(ξ)) (4.43)
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and (4.39) and defining, as in [11], h1(ξ) = h′(x), we can write the sliding law in

terms of the function G as

τb =
1

2π

∫
Γ′
−2iub(G

+(ξ)−G−(ξ))h1(ξ)dξ = −iub
π

∫
Γ′

G+(ξ)−G−(ξ)

iξ
h1(ξ)dξ

= −ub
π

∫
Γ′

G+(ξ)−G−(ξ)

ξ
h1(ξ)dξ. (4.44)

and also determine the shape of the cavity roof using

h2C(ξ) = G+(ξ) +G−(ξ) = 2G(ξ) ξ ∈ Γ. (4.45)

4.4 Determining cavity endpoint positions

The task is to determine the endpoints of the cavities which are not known in advance.

Γ′2

Γ′j

Γ′n

Γ1
Γ′1

ζ = f(z)

C′1 C′n−1 C′n

Figure 6: The blue dots correspond to points ξbi and the red dots correspond to points

ξci . The dashed lines are the cavities and the solid lines are the contact areas. And

the union of the Γi is the union of disjoint cavities.

The method shown in [11] finds the positions of the endpoints of the cavities in

one period. Consider the j-th cavity, then the upstream endpoint of the cavity is

labelled by ξbj and the downstream endpoint by ξcj . Since the period of the bed is

a, it is possible to write ξbj+n
= ξbj+a

and similarly ξcj+n
= ξcj+a

. Assuming that the

cavities are disjoint, the endpoints of the cavities are ordered as follows

ξc0 < ξb1 < ξc1 < · · · < ξbn < ξcn , (4.46)

where the difference between the first and last endpoints is given by a and so ξc0

coincides with ξcn . Notice that the number of cavity endpoint positions is 2n since

we have n upstream and n downstream.

Muskhelishvili in [8] presents the solution to the problem

G+(ξ) +G−(ξ) = h2(ξ) ξ ∈ Γ′, G(0) =
iN

4ub
, G(∞) = − iN

4ub
(4.47)
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as

G(ζ) =
χ(ζ)

2πi

∫
Γ′

h2(ξ)

χ+(ξ)(ξ − ζ)
dξ +G(∞)χ(ζ), (4.48)

where we have χ(ζ) =
n∏
j=1

χj(ζ) such that χj(ζ) =
[

ζ−ξbj
ζ−ξcj−1

] 1
2
. It is also required that

χj(ζ) ∼ 1 as ζ →∞ so that G(ζ)→ G(∞) as ζ →∞.

Equation (4.48) has n integrable singularities and since we have n cavities, we

expect one singularity per cavity located at each cavity endpoint, ξbj or ξcj .

Consider the integral

I =
a

2πi

∫
Γ∪Γ′

G+(ξ) +G−(ξ)

ξ
dξ. (4.49)

Also recall that the conformal transformation ξ = exp
(

2πix
a

)
is used and so dξ

ξ
=

2πi
a

dx. In addition, for ξ ∈ Γ we have h2(ξ) = h′′(x) = G+(ξ) + G−(ξ) and the

integral becomes

I =
n∑
j=1

∫ cj

bj

h′′C(x)dx+
n∑
j=1

∫ bj+1

cj

h′′(x)dx

=
n∑
j=1

[h′C(cj)− h′C(bj)] +
n∑
j=1

[h′(bj+1)− h′(cj)]

=
n∑
j=1

[h′C(cj)− h′(cj)] +
n∑
j=1

[h′(bj)− h′C(bj)]

= 0 (4.50)

where in the third equality we use the property h′(bn+1) = h′(b1) due to the periodicity

of the bed. To show the fourth equality we argue using Cauchy’s theorem and the

boundary conditions

G(0) =
iN

4ub
and G(∞) = − iN

4ub
. (4.51)

If L is a closed contour around the origin in Figure 6, then depending on whether L

is entirely inside or outside the unit circle and after deforming L to be along the unit

circle, we obtain

1

2πi

∮
L

G(ζ)

ζ
dζ =

1

2πi

∫
Γ∪Γ′

G+(ξ)

ξ
dξ = G(0) and

1

2πi

∫
Γ∪Γ′

G−(ξ)−G(∞)

ξ
dξ = 0

(4.52)

respectively. Using the boundary conditions (4.51), Equation (4.49) becomes

I = a[G(0) +G(∞)] = 0. (4.53)
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Now let us determine what happens to the terms in Equation (4.50). At the cavity

endpoints, the cavity roof must coincide with the height of the bed so hC(x) = h(x)

for all x ∈ {bj, cj} and for all j. Also, in the cavities, the height of the cavity roof

must be greater than h(x). So at the endpoints bj we have h′C(bj) ≥ h′(bj) and at cj

we have h′C(cj) ≤ h′(cj). This shows that we require the terms in the parentheses in

(4.50) to vanish, leading to h′C(x) = h′(x) for all x ∈ {bj, cj} for all j. Therefore, the

cavity roof and the bed of the glacier meet tangentially at the cavity endpoints.

Integrating h′′C(x) = h2C(ξ) = G+(ξ)+G−(ξ) = 2G(ξ) with respect to x and using

ξ = exp
(

2πix
a

)
, yields∫ cj

bj

h′′C(x)dx =

∫ cj

bj

2G

(
exp

(
2πix

a

))
dx (4.54)

which is

h′C(cj)− h′C(bj) = h′(cj)− h′(bj) =

∫ cj

bj

2G

(
exp

(
2πix

a

))
dx (4.55)

for j = 1, . . . , n− 1. If we integrate this a second time with respect to x we get

h(cj)− h′(bj)(cj − bj)− h(bj) =

∫ cj

bj

2(cj − x)G

(
exp

(
2πix

a

))
dx (4.56)

for j = 1, . . . , n− 1. For further details on how to derive this, see Appendix C. Also,

note that G is a real function on ξ ∈ Γ and so Equations (4.55) and (4.56) represent

2n− 1 real constraints on the positions of the 2n cavity endpoints. We need an extra

real constraint to determine the position of the cavity endpoints. This comes from

the requirement that G(ζ) = G
(

1
ζ

)
. For details on this, see [10].

5 Conclusion

Glacier sliding has been studied extensively over the years and various mathemati-

cians and glaciologists have contributed to our understanding of the topic. At the

beginning, the models devised considered only simple bed geometries and neglected

many processes like cavitation and regelation. This article is meant as a summary

of the evolution of sliding laws and deals mainly with the problem of glacier sliding

with cavitation over beds, allowing for a finite number of cavities per bedrock period

as shown in [10].

Iken first used a simple staircase model to show that the basal shear stress is

bounded and her bound was determined by the bed geometry and the effective pres-

sure. This model is not only rather unrealistic, but also breaks down in the case
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of a bed obstacle having a face perpendicular to the ice flow, since then the basal

shear stress becomes unbounded ( τb
N
≤ tan β = tan

(
π
2

)
=∞). Schoof’s derivation for

more general bed geometries requires slopes which are bounded and therefore cannot

resolve the issue in Iken’s method.

Fowler first reformulated the sliding process in terms of complex variables and

reduced this problem to a Hilbert problem. The results found, showed that the basal

shear stress decreases to zero as the velocity tends to infinity. Schoof has also verified

his results using numerical methods. His results are shown in Figure 7. A parameter

α is used to describe the irregularity of the bed geometry.

Figure 7: Sliding laws calculated for beds of different shapes and after the onset

of cavitation. More irregular shapes have smaller α and α = ∞ corresponds to a

sinusoidal bed. Results agree with Iken’s bound since τb
N

is bounded. For details of

the numerical procedures used see [10] and [11].

To conclude, Lliboutry was the first to introduce the effect of cavitation in glacier

sliding, and then Fowler and Schoof showed that the sliding law takes the form

τb
N

= f
(ub
N

)
. (5.1)

They have shown that the basal shear stress and extent of cavitation increase with

sliding velocity up to a global maximum and then begin to drop.

Acknowledgements. I would like to thank Professor Ian Hewitt for suggesting

the topic and introducing me to the field of Mathematical Geoscience.
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Appendix A

In this Appendix, we include some preliminaries for complex variables. Let us rep-

resent a complex number by z = x + iy where x and y are real numbers. Then its

complex conjugate is z = x− iy.

Using chain rule, we can write

∂

∂x
=
∂z

∂x

∂

∂z
+
∂z

∂x

∂

∂z
=

∂

∂z
+

∂

∂z
(A.1)

and similarly
∂

∂y
= i

(
∂

∂z
− ∂

∂z

)
. (A.2)

Assuming that the flow is incompressible, we have ∇ · u = 0. This is equivalent to

ux + vy = 0. This implies that there exists a stream function ψ(x, y) such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

This stream function satisfies the biharmonic equation

∇4ψ(x, y) = 0 for y ∈ (0,∞).

Lemma A.1. Let f be a holomorphic function on a connected open set U ⊂ C. If f

is real valued, then it is constant on U .

Proof. If f = u + iv is real valued then v ≡ 0 on U . By the Cauchy-Riemann

equations, we have that on U

ux = vy = 0 and uy = −vx = 0. (A.3)

Therefore, f ′(z) = ux + ivy = 0 on U and so f = constant because U is a connected

open set.

A.1 Functions given on a half-plane

In this article, we denote the upper half-plane by S+ and the lower half-plane by S−.

Let F (z) be a function of the point z in S+. If we want to relate this to a function

defined in S− then we can define a new function as

F?(z) := F (z). (A.4)

Thus, by definition we have that F (z) and F?(z) take conjugate complex values at

points z = x+ iy and z = x− iy which are the reflections of each other in the x-axis.
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We have

F (z) = u(x, y) + iv(x, y) (A.5)

and

F (z) = u(x,−y) + iv(x,−y) = u(x,−y)− iv(x,−y) (A.6)

where u, v are real functions.

F (z) is assumed to take a definite limiting value F+(t) as z → t from S+, where

t is a point on the x-axis, i.e. a real number.

Then also F−? (t) exists and

F−? (t) = F
−

(t) = F+(t) (A.7)

because for z → t from S−, z → t from S+, and hence F?(z) = F (z) tends to F+(t).

Appendix B

The functions considered in this article are all considered to satisfy the Hölder condi-

tion and here we give a definition of this as presented by Muskhelishvili in Chapter 1

of [8].

Definition B.1. Let there be given on the arc L a function of position φ(t) (which is

in general complex). Also, let t denote both the point t(x, y) and the corresponding

complex number t = x+ iy.

The function φ(t) is said to satisfy the Hölder condition on L, if for any two points

t1, t2 of L

|φ(t2)− φ(t1)| ≤ A|t2 − t1|µ, (B.1)

where A is the Hölder constants and µ is the Hölder index and are both positive

constants.

Appendix C

For the integral (4.56) we use∫ c

b

∫ x

b

f(x′)dx′dx =

∫ c

b

(c− x)f(x)dx. (C.1)

To show this, first consider Figure 8.
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0 cb

b

c
x = x′

x

x′

Figure 8: The region is given by b ≤ x ≤ c and b ≤ x′ ≤ x which is equivalent to

b ≤ x′ ≤ c and x′ ≤ x ≤ c.

Therefore we have∫ c

b

∫ x

b

f(x′)dx′dx =

∫ c

b

∫ c

x′
f(x′)dxdx′ =

∫ c

b

(c− x′)f(x′)dx′ =

∫ c

b

(c− x)f(x)dx

(C.2)

where in the second equality we use the fact that f is independent of x.

C.1 Cauchy stress tensor

The stress tensor consists of nine components tij that define the state of stress at a

point inside a material,

T =

txx txy txz

tyx tyy tyz

tzx tzy tzz

 . (C.3)

The diagonal entries are called the normal stresses. All the non-diagonal components

of the stress tensor are the tangential and shear stresses.

Figure 9: Components of the Cauchy stress tensor [3].
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