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it. This belongs to the second class of (Weihs-type) models that we described in the Introduction section, where
the swimming/flying formation is fixed and the benefits of the group are determined in terms of energetics [3,
9, 10, 30, 35].

Instead, the setups considered in figures 2(b)–(d) make use of an important idea from the first class of (Vicsek-
type) models, where the flying formation is allowed to spontaneously emerge and the bodies self-organize either
by “attracting” or “repelling” each other. The specific setup investigated in [23] is labeled Emergent Spacing
in figure 2(b) and it corresponds to a two-flyer system where the flapping motions of the two flyers are the same
but the spacing between them is now emergent from the flow interactions. In figure 2(c) the two flyers can have
kinematic variability, i.e. di↵erent flapping amplitudes and flapping frequencies between them. This scenario
was considered experimentally in [24] and is labeled Kinematic Individuality here. Finally, in figure 2(d)
we present a schematic diagram for the setup used in [25] for a Few-Flyer System with the flyers having
identical flapping motions.

Sinusoidal up-and-down oscillations with flapping amplitude An and frequency fn impart flapping motions
to the N foils (equal to 2, 2, 2, and 5 respectively). To mimic the closed system used in experiments we use
cyclic boundary conditions as in figure 2. These cyclic boundary conditions are indicated by the dashed lines
at the start and end of the domain and the “flow” arrows leaving the last member and reaching the leader.
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FIG. 2. Schematic diagrams of the setups in each of the past experiments (a) Enforced Spatial Periodicity [22],
(b) Emergent Spacing [23], (c) Kinematic Individuality [24], (d) Few-Flyer System [25] used in validating our
model in §III A–III D. Sinusoidal up-and-down oscillations with flapping amplitude An and frequency fn impart flapping
motions to the N foils that fan out around a water tank in the experiments in [22–25], represented by cyclic boundary
conditions in our numerical simulations.

A. Enforced Spatial Periodicity: Flyer system with enforced spacing

We first consider the system studied experimentally in [22], where a pair of flyers is swimming in orbits around
a cylindrical water tank with circumference C. Our system involves fixed separations between the flyers, which
are rigidly connected in an angle of 180� and have an arclength separation L between them (in our simulations
L = C/2). The flyer pair undergoes prescribed heaving motions with flapping frequency f and peak-to-peak
amplitude A, and they interact with one another via the fluid. By symmetry, this problem can be viewed as a
single flyer that is moving forward, heaving and interacting with itself in a domain of length L (hence named
Enforced Spatial Periodicity in figure 2(a)). The forward motion and swimming speed of the flyer pair is
dynamically determined by the interaction with the fluid.

To systematically characterize the motion of the flyer pair, we vary the flapping frequency f and measure the
resulting swimming speed around the circular domain. We fix the flapping amplitude as 3 cm but other values of
A yield qualitatively similar results. For a given frequency f we allow the system to reach a terminal swimming
speed and then we increase f by a small amount, repeating this process for other small increments of f . This
upward sweep (or, upsweep) is followed by a similar downward sweep (or, downsweep) to low flapping frequency
values. The numerical results illustrated in figure 3(a) show that faster flapping (i.e. larger flapping frequency)
leads to faster swimming, but the change in the swimming speed U is not always continuous. For example, U
increases relatively smoothly until a critical frequency ⇡ 7 Hz, at which point it increases abruptly; the flyer
pair speed increases by ⇠1.5 times. As f is increased further, U again increases continuously, until another
abrupt increase in U (by a factor of ⇠1.5) is observed at f ⇡ 10 Hz. For decreasing f , the swimming speed
remains high before suddenly decreasing at f ⇡ 16 Hz. Similar to the upsweep process, further decreasing f

Timescale of instability

To characterize the motion of the flyer pair we vary the 
flapping frequency (while keeping the amplitude fixed) and 
measure the resulting swimming speed around the circular 
domain. An upward sweep followed by a downward sweep 
reveals hysteresis loops that show that both fast and slow 
modes exist for the same flapping dynamics.
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Dimensionless version of the model

Each flyer has a prescribed flapping and this dictates the flyer’s self-propulsion as well as the wake flow 
signal left behind in its trail. The flyer experiences a propulsive force that depends on how the 
instantaneous oscillator signal interferes with the ambient wake signal left by others. This addresses the 
fact that flying formations involve interactions through long-lived flows that have memory of the earlier 
conditions under which they were generated.

System of delay differential equations

Open boundary 
conditions
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The first setup we investigate is a pair of flyers that are 
rigidly connected and that are swimming in rotational 
orbits. This mimics an infinite array of flyers in which the 
inter-flyer spacing is fixed. This setup bears similarities to  
Weihs-type models, where the individuals have fixed 
arrangements and they interact with vortices to save 
energy and reduce drag.

The Lighthill 
conjecture

We fix the flapping kinematics (   and  ) 
and find that the two flyers reach a stable 
configuration with a separation distance 
that is a near-integer multiple of the 
wavelength traced out by each flyer (     ). 
This suggests an analogy with a crystal 
that has regularly ordered atoms with a 
lattice spacing.
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knocks members out of these positions and may lead to collisions among members. The root cause of this is a
new form of collective excitations termed “flonons” which manifest as self-amplifying waves.

Constraints related to the experimental apparatus, such as limited lab space, restricted these studies to smaller
flocks. The analysis of the aerodynamic model considered in the current work suggests that long line formations
are not possible due to the aerodynamic instabilities. We employ state-dependent time delay equations to model
the fluid-structure interaction between the wings of flyers and the fluid flow generated by their flapping motion.
We perform a stability analysis and obtain numerical results based on simulations of our model. This minimal
model reproduces these past experiments and also suggests analogies with material systems.

II. FOLLOWER-WAKE INTERACTION MODEL

We develop a model to describe the propulsion of flyers, labeled n = 1, 2, . . . N with the leader denoted with
n = 1. We treat each of them as an inertial body free to move in the horizontal direction due to hydrodynamic
interactions. The flyers have instantaneous, horizontal positions Xn(t) and forward flight speeds Un(t) = Ẋn(t).
Each flyer has a prescribed heaving signal with the vertical speed of a flyer flapping with frequency fn and peak-
to-peak amplitude An given by Vn(t) = 2⇡fn(An/2) cos(2⇡fnt) = ⇡fnAn cos(2⇡fnt), as shown schematically in
figure 1.
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FIG. 1. Schematic diagram of a model of nonreciprocal interactions with memory and simulated group dynamics. (a) A
model of wake generation and interaction, where each flyer emits a wake whose speed directly reflects its flapping speed,
the flow thereafter decaying in time. (b) The next flyer experiences thrust that depends on its flapping speed relative to
the ambient wake. (c) Idealized problem of a linear formation of flapping flyers indexed by n and each with prescribed
vertical oscillations and free forward flight motions.

The horizontal dynamics of each individual are given by Newton’s second law of motion:

MU̇n(t) = Tn �Dn, n = 1, 2, . . . , N, (1)

where we assume that all flyers have equal mass M , Tn is the hydrodynamic thrust and Dn is the drag. In
the absence of any interactions, these aerodynamic forces take the conventional forms ⇢CT cs(V rel

n )2/2 and

K⇢csU
2
n/(2

p
Re) = Ks

p
⇢µcU

3/2
n /2, respectively, with the latter resulting from skin friction along the upper

and lower flyer surfaces, modeled using Blasius laminar boundary layer theory [23]. In appendix A we show the
derivation of the skin friction constant, taken as K = 10. Here ⇢ is the fluid density, c is the flyer’s chord length,
s is the flyer’s span, CT is the dimensionless thrust coe�cient, and Re = ⇢Unc/µ is the Reynolds number,
with µ the dynamic viscosity and Un the mean flight speed of the nth flyer [24–26]. Hence, the thrust varies
quadratically with V

rel
n (the relative vertical flow speed against the heaving wing) and the drag varies as the

3/2 power of the propulsion (horizontal) speed.
The flyers located at Xn�1(tn(t)) generate a signal in the form of a wake with flow velocity given by

Vn�1(tn(t))e�(t�tn(t))/⌧ . These terms involve the earlier time tn(t) when the upstream neighbor n � 1 was
at the current position of flyer n, as defined through the implicit relation Xn(t) = Xn�1(tn(t)). Thus, tn(t)
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it. This belongs to the second class of (Weihs-type) models that we described in the Introduction section, where
the swimming/flying formation is fixed and the benefits of the group are determined in terms of energetics [3,
9, 10, 30, 35].

Instead, the setups considered in figures 2(b)–(d) make use of an important idea from the first class of (Vicsek-
type) models, where the flying formation is allowed to spontaneously emerge and the bodies self-organize either
by “attracting” or “repelling” each other. The specific setup investigated in [23] is labeled Emergent Spacing
in figure 2(b) and it corresponds to a two-flyer system where the flapping motions of the two flyers are the same
but the spacing between them is now emergent from the flow interactions. In figure 2(c) the two flyers can have
kinematic variability, i.e. di↵erent flapping amplitudes and flapping frequencies between them. This scenario
was considered experimentally in [24] and is labeled Kinematic Individuality here. Finally, in figure 2(d)
we present a schematic diagram for the setup used in [25] for a Few-Flyer System with the flyers having
identical flapping motions.

Sinusoidal up-and-down oscillations with flapping amplitude An and frequency fn impart flapping motions
to the N foils (equal to 2, 2, 2, and 5 respectively). To mimic the closed system used in experiments we use
cyclic boundary conditions as in figure 2. These cyclic boundary conditions are indicated by the dashed lines
at the start and end of the domain and the “flow” arrows leaving the last member and reaching the leader.

A, f

Enforced Spatial Periodicity

A, f A, f

Emergent Spacing

A1, f1

A2, f2

Kinematic Individuality
A, f A, f A, f A, f A, f

Few-Flyer System

FIG. 2. Schematic diagrams of the setups in each of the past experiments (a) Enforced Spatial Periodicity [22],
(b) Emergent Spacing [23], (c) Kinematic Individuality [24], (d) Few-Flyer System [25] used in validating our
model in §III A–III D. Sinusoidal up-and-down oscillations with flapping amplitude An and frequency fn impart flapping
motions to the N foils that fan out around a water tank in the experiments in [22–25], represented by cyclic boundary
conditions in our numerical simulations.

A. Enforced Spatial Periodicity: Flyer system with enforced spacing

We first consider the system studied experimentally in [22], where a pair of flyers is swimming in orbits around
a cylindrical water tank with circumference C. Our system involves fixed separations between the flyers, which
are rigidly connected in an angle of 180� and have an arclength separation L between them (in our simulations
L = C/2). The flyer pair undergoes prescribed heaving motions with flapping frequency f and peak-to-peak
amplitude A, and they interact with one another via the fluid. By symmetry, this problem can be viewed as a
single flyer that is moving forward, heaving and interacting with itself in a domain of length L (hence named
Enforced Spatial Periodicity in figure 2(a)). The forward motion and swimming speed of the flyer pair is
dynamically determined by the interaction with the fluid.

To systematically characterize the motion of the flyer pair, we vary the flapping frequency f and measure the
resulting swimming speed around the circular domain. We fix the flapping amplitude as 3 cm but other values of
A yield qualitatively similar results. For a given frequency f we allow the system to reach a terminal swimming
speed and then we increase f by a small amount, repeating this process for other small increments of f . This
upward sweep (or, upsweep) is followed by a similar downward sweep (or, downsweep) to low flapping frequency
values. The numerical results illustrated in figure 3(a) show that faster flapping (i.e. larger flapping frequency)
leads to faster swimming, but the change in the swimming speed U is not always continuous. For example, U
increases relatively smoothly until a critical frequency ⇡ 7 Hz, at which point it increases abruptly; the flyer
pair speed increases by ⇠1.5 times. As f is increased further, U again increases continuously, until another
abrupt increase in U (by a factor of ⇠1.5) is observed at f ⇡ 10 Hz. For decreasing f , the swimming speed
remains high before suddenly decreasing at f ⇡ 16 Hz. Similar to the upsweep process, further decreasing f
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These predicted equilibria are plotted in figure 7(a) as black solid and dashed lines for stable and unstable S⇤,
respectively. Each of the intervals enclosing solutions dependent on the decay rate, is shifted by � (as a whole)
but the (S⇤

|�=0, S⇤
|� 6=0) correspondence is not necessarily a linear shift by �/(2⇡) for non-extreme values of ⌧ .

For the stability criterion near the equilibrium spacing S⇤, we consider (as in §IV A) a small perturbation about
the equilibrium S⇤ + �S and find that the stability criterion is now given by

2(2
A � 1)

f⌧
+ 4⇡Ae�S⇤/(f⌧) sin(2⇡S⇤

� �) �
2A

f⌧
e�S⇤/(f⌧) cos(2⇡S⇤

� �) > 0. (35)

This is the generalization of (26) for any A1 and A2 combination and for an arbitrary phase lag �.

V. IMPLICATIONS FOR LARGER GROUPS

The simulations for the group of five flyers in §IIID displayed crystalline-like ordering into an array with
a characteristic lattice spacing of about one wavelength. The ensemble (like the experiments [25]) exhibited
flow-induced oscillatory modes (flonons), or displacement waves that are amplified during transmission down the
group. By channeling such small groups that are nonetheless mesoscale (few members) and that are susceptible
to collisions and fracture of the group structure we retrieve important timescales and other characterizations.
There is an underlying crystallinity in the group but the crystal is “brittle”. The self-excitable instabilities that
occur from flapping are su�cient to trigger fracturing of the group structure. Even in the absence of external
perturbations it turns out that large groups are still fragile. However the use of external perturbations is helpful
in characterizing the timescale of instability and propagation speeds of the perturbations.

A, f A, f A, f A, f A, f A, f

FIG. 11. Open boundary conditions mimic real line formations in which the last member of the group does not influence
the leader. Here all N members have identical kinematics A and f .

For our simulations we use an open geometry, as shown schematically in figure 11, instead of the cyclic
boundary conditions used in the previous sections to validate our numerical results with previous robo-physical
experiments. We also use the dimensionless version of our governing equations (12)–(14), described in §II B
where the wake decay constant ⌧ is assumed to be infinity. This physically corresponds to a very slow wake
decay and thus strong interactions between flyers. We seek to establish dimensionless groups of variables with
which to describe the general problem of the collective motion of a group of N flyers. In this section we focus
on three of the dimnesionless groups derived in (15): M⇤ = M/(⇢c2s), Ref = ⇢Afc/µ, and A⇤ = A/c. These
are the quantities that vary the most among di↵erent bird species flying in line formations [40–50].

The larger groups in [25] displayed flonons that were growing in amplitude down the group and could cause
collisions, even in the absence of external perturbations. In figure 12(a) we demonstrate an example of a fragile
group: a collision results from members being initialized somewhat away from their equilibrium positions and
speeds. To determine when a collision occurs we define a gap threshold between adjacent flyers that is close to
zero but positive. The initial flight speed of each flyer is set equal to the steady flight speed of the leader but it
does not exactly match the equilibrium speed which is not a constant in time (figure 12(b)). The small initial
transient perturbation away from equilibrium can sometimes lead to a collision. If the conditional statement
for the gap threshold is satisfied then the numerical integration terminates (figures 12(a)–(b)).

Our detailed analysis of the two-flyer system revealed that the tendency of disturbances to resonantly amplify
severely limits the group size. Using data such as those in panels (a) and (b), we plot in figure 12(c) the maximum
group size Nmax that survives this initial transient perturbation in the absence of any imposed perturbations
in M⇤-Ref space (for fixed A⇤ = 0.25). We find that the maximum group size that maintains the crystalline
structure for these values of the dimensionless parameters is between 4 and 9 members, with larger groups
surviving in the lower left corner, where both M⇤ and Ref are small. For small to moderate values of M⇤,
Nmax decreases monotonically with Ref but at M⇤ > 1 only groups of 4 members survive. This shows that
the crystal is extremely brittle and even small perturbations can grow unstably, leading to collisions between
members.

Mapping out the dynamics in the 
amplitude- vs frequency-ratio space, 
reveals that the follower falls into stable 
positions behind the leader even when it 
is underdriven. This occurs when          . 
Stable cycles are also found in the 
vicinity of    when the follower is 
overdriven. The flow interactions act as 
a “bond” that maintains the cohesion of 
the pair even when the follower is only 
weakly flapping or when it is flapping 
faster than the leader.

The system becomes more realistic when the two flyers are allowed to 
have synchronized or asynchronous flapping and dissimilar kinematics.
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To understand the mechanism behind the 
amplified fluctuations we consider each pair 
of flyers as isolated from the rest of the 
group given the one-way interactions.  Then 
the leader in a pair can be thought of 
playing the role of the driving source that 
forces the follower to oscillate.

From systems with two flyers we now move 
to few flyers (up to five). Each individual 
emits a wake signal that influences its 
nearest downstream neighbor, which then 
erases it and replaces it with its own. This 
situation can be viewed as a system of a 
linear chain of masses linked to nearest 
neighbors by linear springs that are diodic 
and that have the same spring constant.

Motivation

A two-flyer system interacting through the wake emanated 
from the leader is analogous to a driven, damped harmonic 
oscillator and this can explain the amplified fluctuations in a 
resonance cascade.

flyer-wake model interaction model
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The instability grows exponentially. 
This means that we can estimate 
the growth rate using the slope of                     
the curve                 . The instability 
timescale is then computed as the 
reciprocal of the growth rate. We 
plot the instability time in flaps vs 
mass and find that the flyers must 
react very quickly. Without any 
active control they will collide with 
their neighbors.
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We non-dimensionalize the system above using the flapping amplitude    , characteristic timescale       
and the typical flapping speed      : 

In the small-mass limit, the 
delay effect dominates and the 
wave speed is set by the flight 
speed.
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Our findings show that even 
when there is a phase lag 
between the flapping motions 
of the leader and the follower, 
the follower can still fall into 
specific positions behind the 
leader due to the wake 
interactions and the pair can 
move together cohesively.

Collective locomotion of swimming and flying animals is 
fascinating in terms of individual-level fluid mechanics and 
group-level structure and dynamics. We bridge and relate 
these scales through a model of formation flight that views 
the collective as a material whose properties arise from 
flow-mediated interactions among its members. We 
formulate an aerodynamic model that describes how 
flapping flyers produce wake signals and how the are 
influenced by the wakes of others. This model faithfully 
reproduces a series of experiments of increasing 
sophistication carried out over the last decade and 
it also predicts important phenomena for longer  
in-line arrays of flyers. Mechanical analogues  
help us interpret behavioral aspects by 
establishing what flow effects animals 
must cope with and what they can 
utilize to their benefit. This can be
generally useful in the analysis
of animal groups and can
show how exotic 
properties of 
collectives can
emerge from the
physics of
locomotion.

Motivation

What group sizes are “safe”?
In the few-flyer system we have seen that even in the absence of 
external perturbations, small disturbances in the group can excite 
flonons. These excitations are sufficient to trigger instabilities that can 
cause collisions of failure of the group structure as in the example below.

Therefore, the group behaves as an excitable “crystal” with regularly ordered member “atoms” whose positioning is susceptible to deformations and 
dynamic instabilities. 
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This tendency of disturbances to resonantly amplify severely limit the 
group size. The figure below shows the maximum group size that 
survives an initial transient perturbation in the absence of any imposed 
perturbations in the parameter space of dimensionless mass and 
flapping Reynolds number. For this choice of dimensionless parameters, 
the maximum group size that maintains the crystalline structure is 
between 4 and 9. Therefore, the crystal is extremely brittle.
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When a steady force is applied on 
the follower, multiple stable positions 
exist for the follower. The degree of 
stability depends on the strength of 
the hydrodynamic force that tends to 
restore the follower's position if 
perturbed. Therefore, the fluid force 
resembles a Hookean spring, with 
the spring constant associated to the 
slope of the force vs spacing plot.

In Vicsek-type models each individual tries 
to align with its neighbors plus some noise, 
where this noise is essentially the “mistakes” 
a flyer can make in evaluating their direction 
of motion. When the noise is decreased, 
phase transitions from disordered to ordered 
states can be triggered. We use elements 
from this type of models in the second setup 
we consider, where now the spacing 
between the two flyers is emergent.
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f1 = f2
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The simulations confirm that the flying formation with 
multiple flyers is remarkably well-ordered. Since              ,     
the wavelength  traced out by each flyer serves as the 
appropriate lattice parameter for the crystalline formation.
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We observe positional fluctuations that are correlated in 
time, propagate down the group like traveling waves, and 
grow in amplitude down the group. As collective excitations 
that propagate in a lattice, the emergent dynamics share 
some general features with conventional longitudinal 
displacement waves, e.g. phonons in atomic and molecular 
crystals. We call these positional fluctuations “flonons”, for 
flow-mediated fluctuations among flapping, flocking flyers.
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Another intriguing analogy with the spring-mass system is the propagation 
speed of a disturbance as it passes down the group. This disturbance 
propagation speed is determined by two competing effects: the delay 
between disturbances left by one member and picked up by the 
downstream member, and the material properties of the flow interactions 
such as their springiness. 

In the large-mass limit, the 
usual spring-mass wave speed 
(without delay) limits how fast 
disturbances travel. 


