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Motivation

Collective locomotion of swimming and flying animals is
fascinating in terms of individual-level fluid mechanics and
group-level structure and dynamics. We bridge and relate
these scales through a model of formation flight that views
the collective as a material whose properties arise from
flow-mediated interactions among its members. We
formulate an aerodynamic model that describes how
flapping flyers produce wake signals and how the are

influenced by the wakes of others. This model faithfully
reproduces a series of experiments of increasing
sophistication carried out over the last decade and
it also predicts important phenomena for longer
In-line arrays of flyers. Mechanical analogues

help us interpret behavioral aspects by
establishing what flow effects animals

must cope with and what they can

utilize to their benefit. This can be

generally useful in the analysis

of animal groups and can

show how exotic

properties of

collectives can

emerge from the

physics of

locomaotion.
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The first setup we investigate is a pair of flyers that are
rigidly connected and that are swimming in rotational
orbits. This mimics an infinite array of flyers in which the
inter-flyer spacing is fixed. This setup bears similarities to
Weihs-type models, where the individuals have fixed
arrangements and they interact with vortices to save
energy and reduce drag.
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To characterize the motion of the flyer pair we vary the
flapping frequency (while keeping the amplitude fixed) and

measure the resulting swimming speed around the circular

domain. An upward sweep followed by a downward sweep
reveals hysteresis loops that show that both fast and slow
modes exist for the same flapping dynamics.
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In Vicsek-type models each individual tries % " -7 - ﬁ;}:g’:f,',,g;;,;
to align with its neighbors plus some noise, &% 2 2% ;f?*" %%”
where this noise is essentially the “mistakes” 2 sl N e
a flyer can make in evaluating their direction
of motion. When the noise is decreased,
phase transitions from disordered to ordered
states can be triggered. We use elements
from this type of models in the second setup
we consider, where now the spacing

between the two flyers is emergent.
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We fix the flapping kinematics (A and f)
and find that the two flyers reach a stable
configuration with a separation distance
that is a near-integer multiple of the
wavelength traced out by each flyer (U/ f).
This suggests an analogy with a crystal
that has reqgularly ordered atoms with a
lattice spacing.
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When a steady force is applied on
the follower, multiple stable positions
exist for the follower. The degree of
stability depends on the strength of
the hydrodynamic force that tends to
restore the follower's position if
perturbed. Therefore, the fluid force
resembles a Hookean spring, with
the spring constant associated to the
dimensionless spacing, S = g/A slope of the force vs spacing plot.
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@ Implications for larger groups
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What group sizes are “safe”?

In the few-flyer system we have seen that even in the absence of
external perturbations, small disturbances in the group can excite
flonons. These excitations are sufficient to trigger instabilities that can
cause collisions of failure of the group structure as in the example below.
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This tendency of disturbances to resonantly amplify severely limit the
group size. The figure below shows the maximum group size that
survives an initial transient perturbation in the absence of any imposed
perturbations in the parameter space of dimensionless mass and
flapping Reynolds number. For this choice of dimensionless parameters,
the maximum group size that maintains the crystalline structure is
between 4 and 9. Therefore, the crystal is extremely brittle.
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(s) Kinematic individuality

The system becomes more realistic when the two flyers are allowed to
have synchronized or asynchronous flapping and dissimilar kinematics.
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Our findings show that even
when there is a phase lag
between the flapping motions
of the leader and the follower,
the follower can still fall into
specific positions behind the
leader due to the wake
interactions and the pair can
move together cohesively.
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.| Mapping out the dynamics in the

amplitude- vs frequency-ratio space,
reveals that the follower falls into stable

| positions behind the leader even when it

is underdriven. This occurs when f1 = fo.

| Stable cycles are also found in the

vicinity of fi = f» when the follower is
overdriven. The flow interactions act as
a “bond” that maintains the cohesion of
the pair even when the follower is only
weakly flapping or when it is flapping
faster than the leader.
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Timescale of instability

The instability grows exponentially. w0E T T T R4y
This means that we can estimate 3

the growth rate using the slope of
the curve log |AUy|. The instability
timescale is then computed as the
reciprocal of the growth rate. We
plot the instability time in flaps vs
mass and find that the flyers must
react very quickly. Without any
active control they will collide with T E—F

their neighbors.
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Disturbance propagation speed

Another intriguing analogy with the spring-mass system is the propagation
speed of a disturbance as it passes down the group. This disturbance
propagation speed is determined by two competing effects: the delay
between disturbances left by one member and picked up by the
downstream member, and the material properties of the flow interactions

such as their springiness.
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In the small-mass Ilimit, the
-—--4 delay effect dominates and the

| wave speed is set by the flight
speed.

In the large-mass Ilimit, the
usual spring-mass wave speed
1 (without delay) limits how fast
k| disturbances travel.
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Therefore, the group behaves as an excitable “crystal” with regularly ordered member “atoms” whose positioning is susceptible to deformations and

dynamic instabilities.

@ Few-flyer system We observe positional fluctuations that are correlated in
time, propagate down the group like traveling waves, and

grow in amplitude down the group. As collective excitations

f that propagate in a lattice, the emergent dynamics share

¥ + + *~ some general features with conventional longitudinal
displacement waves, e.g. phonons in atomic and molecular

A f A f A f Af Af crystals. We call these positional fluctuations “flonons”, for

: f—~—— 1t flow-mediated fluctuations among flapping, flocking flyers.
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From systems with two flyers we now move
to few flyers (up to five). Each individual
emits a wake signal that influences its
nearest downstream neighbor, which then
erases it and replaces it with its own. This
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situation can be viewed as a system of a 1.5¢ | | 1
linear chain of masses linked to nearest < wabwbwbwbiyﬁcb@
neighbors by linear springs that are diodic = Lr AV
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- - D The simulations confirm that the flying formation with

multiple flyers is remarkably well-ordered. Since S,, ~ 1.2,
the wavelength )\ traced out by each flyer serves as the
appropriate lattice parameter for the crystalline formation.

To understand the mechanism behind the - 1 _ LU_? -
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amplified fluctuations we consider each pair - —_— - s
of flyers as isolated from the rest of the
group given the one-way interactions. Then A two-flyer system interacting through the wake emanated

the leader in a pair can be thought of from the leader is analogous to a driven, damped harmonic

playing the role of the driving source that  oscillator and this can explain the amplified fluctuations in a
forces the follower to oscillate. resonance cascade.

Follower-wake interaction model

Each flyer has a prescribed flapping and this dictates the flyer’s self-propulsion as well as the wake flow
signal left behind in its trail. The flyer experiences a propulsive force that depends on how the
instantaneous oscillator signal interferes with the ambient wake signal left by others. This addresses the
fact that flying formations involve interactions through long-lived flows that have memory of the earlier
conditions under which they were generated.

flyer-wake model interaction model

System of delay differential equations

Un(t)

Xo(t) = Un(t), Un(t) = Valt) = Vit O] = ZVPEE ey (1) = U1 (tn (1))

Dimensionless version of the model

We non-dimensionalize the system above using the flapping amplitude A, characteristic timescale 1/f

and the typical flapping speed Af:
i—ft, Xp=2n g,=
- 9 n — n - Af

The system of delay differential equations simplifies in the no wake-decay limit 7 — 00

y . CT7T2A* 9 5A* 1 3 . U (t)
X, ) =U,t), U, = 27t) — cos(2mt, (£))]° — U324, {,(t) = n
(t) = Un(t) () = =g leos(@mt) — eos(amtn ()" — T —msUNA(0). ult) = = o
The dimensionless groups are M™ = ]\g , Rey = ’OAfC, A* = é, s* = f, Cr.
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