The term vector is used to describe a quantity that has both magnitude and

direction

You can subtract vectors

from parallelogram haw

$$
\xrightarrow[\vec{u}]{\vec{v}+\vec{u}} \overrightarrow{\vec{v}+\vec{u}} \vec{v}
$$

Vector-valued function It's a function whose domain is a set of real numbers and whose range
is a set of vectors. $\quad \vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \hat{\imath}+g(t) \hat{\jmath}+h(t) \hat{k}=\left(\begin{array}{l}f(t) \\ g(t) \\ h(t)\end{array}\right)$

$\hat{\jmath}$-unit vector in
the y-direction
$\hat{\imath}$-unit vector in
the x-direction

Equation of a line As in 2D space, a line in 3D is determined when we know

$$
\text { - a point } P_{0}\left(x_{0}, y_{0}, z_{0}\right) \text { on } L
$$

- the direction of L (its slope).

In $3 D$ the direction of a line is described by a vector, so we let \vec{V} be a vector parallel to L.
let $P(x, y, z)$ be a point on L and let $\overrightarrow{r_{0}}$ and \vec{r} be the position vectors of P_{0} and P.

If \vec{a} is the vector for $\overrightarrow{P_{0} P}$ then $\vec{r}=\vec{r}_{0}+\vec{a}$

But \vec{a} and \vec{v} are parallel and $50 \vec{a}=t \vec{v}$
(\vec{a} is a scalar
Use $\vec{r}=\overrightarrow{r_{0}}+\vec{a}$ and $\vec{a}=t \vec{v}$ to write $\vec{r}=\vec{r}_{0}+t \vec{v}$ vector equation for a line
If $\vec{r}=\langle x, y, z\rangle, \overrightarrow{r_{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\vec{v}=\langle a, b, c\rangle$ then $\left.\begin{array}{l}x=x_{0}+a t \\ y=y_{0}+b t \\ z=z_{0}+c t\end{array}\right] \begin{aligned} & \text { parametric equations for } a \text { line through } \\ & \text { the print } \quad\left(x_{0}, y_{0}, z_{0}\right) \text { and parallet } \\ & \text { to the direction vector }(a, b, c) .\end{aligned}$

EXAMPLE 1

(a) Find a vector equation and parametric equations for the line that passes through the
point $(5,1,3)$ and is parallel to the vector $\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$.
(b) Find two other points on the line.
a) $\vec{r}=\vec{r}_{0}+t \vec{v}$ where $\vec{r}_{0}=\langle 5,1,3\rangle$ and $\vec{v}=\langle 1,4,-2\rangle$

$$
\begin{aligned}
\vec{r} & =\langle 5,1,3\rangle+t\langle 1,4,-2\rangle \\
& =\langle 5+t, 1+4 t, 3-2 t\rangle
\end{aligned}
$$

b) Choose a parameter $t=1 \quad x=6, y=5, z=1$ so $(6,5,1)$ is a point on L and similarly $t=-1 \quad x=4, y=-3, z=5$ so $(4,-3,5)$ is another point on L.

Showing if two lines intersect

$$
\begin{aligned}
& \text { Equate the } x \text { and } y \text {-components ? } \\
& \begin{array}{l}
3+2 t=7+2 s \rightarrow \begin{array}{l}
3+2 t=7+25 \\
8-t=4+s \rightarrow
\end{array}+ \\
16-2 t=8+2 s
\end{array}+ \\
& \text { Check that the } z \text {-components are } \\
& \text { also equal } \\
& \begin{array}{rlr}
-2+3 t & =-2+9=7 & 8-t=4+1 \\
3+4 s & =3+4=7 & t=3
\end{array} \\
& \text { If the a -coordinate } \\
& \text { does not agree } \\
& \text { then the lines do not } \\
& \text { intersect! }
\end{aligned}
$$

Intersection point has position vector $\left(\begin{array}{c}3+2 t \\ 8-t \\ -2+3 t\end{array}\right)$ with $t=3 \Rightarrow \vec{r}=\left(\begin{array}{l}9 \\ 5 \\ 7\end{array}\right)$

