These exercises involve usually finding intersection points between a horizontal line and a trigonometric (sinusoidal) function.
e.g. $\sin (x)=\frac{1}{3}$. Solve for x in the interval $0 \leq x \leq 2 \pi$.

Step 1
Find first solution by taking $\sin ^{-1}$ of the RHS.

$$
x_{1}=\sin ^{-1}\left(\frac{1}{3}\right)
$$

Step 2 Find the second solution by subtracting the $1^{\text {st }}$ solution from π.

$$
\begin{aligned}
& x_{2}=\pi-x_{1} \\
& x_{2}=\pi-\sin ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

Step 3 To find any other solutions you can add/subtract a whole period (2 2π)

Zoom-in

eng $\quad \cos (x)=\frac{1}{2}$. Solve for x in the interval $0 \leq x \leq 3 \pi$

Step $1 \quad x_{1}=\cos ^{-1}\left(\frac{1}{2}\right)$
Step 2 Ty find the second solution subtract the first firm 2π

$$
\begin{aligned}
& x_{2} 2 \pi-x_{1} \\
& x_{2}=2 \pi-\cos ^{-1}\left(\frac{1}{2}\right) . \\
& \text { add a period }(2 \pi) \text { to the } 1^{\text {st }} \text { solution } \\
& \left.x_{3}=2 \pi+x_{1}\right) \\
& x_{3}=2 \pi+\cos ^{-1}\left(\frac{1}{2}\right) .
\end{aligned}
$$

e.g. Solve $\tan (x)=5$

period $=\pi$

$$
\begin{aligned}
& x_{1}=\tan ^{-1}(5) \\
& x_{2}=\pi+x_{1} \Rightarrow x_{2}=\pi+\tan ^{-1}(5) \\
& x_{3}=x_{1}-\pi \Rightarrow x_{3}=\tan ^{-1}(5)-\pi
\end{aligned}
$$

etc.
Cad or subtract a period of π from subsequent solutions)

Examples
(1) Solve $\sin \left(\frac{2 \pi}{3}(t-5)\right)=\frac{1}{4}$ in the interval $0 \leq t \leq 2 \pi$
Step $1 \quad \frac{2 \pi}{3}(t-5)=\sin ^{-1}\left(\frac{1}{4}\right)$
Step 2 $\frac{2 \pi}{3}(t-5)=\pi-\sin ^{-1}\left(\frac{1}{4}\right)$

Step 3 Solve all equations for

$$
\text { in (}(1): \quad t-5=\frac{3}{2 \pi} \sin ^{-1}\left(\frac{1}{4}\right) \Rightarrow t_{1}=\frac{3}{2 \pi} \sin ^{-1}\left(\frac{1}{4}\right)+5
$$

$$
\text { in (ii): } \quad t-5=\frac{3}{2 \pi}\left(\frac{\pi}{1}-\sin ^{-1}\left(\frac{1}{4}\right)\right) \Rightarrow t_{2}=\frac{3}{2 \pi}\left(\pi-\sin ^{-1}\left(\frac{1}{4}\right)\right)+5
$$

II

To find any 0 other solutions. (say in the positive + -axis)

$$
\frac{2 \pi}{3}(t-5)=\sin ^{-1}\left(\frac{1}{4}\right)+2 \pi \uparrow_{\text {period }}
$$

Rearrange for t

$$
t-5=\frac{3}{2 \pi}\left(\sin ^{-1}\left(\frac{1}{4}\right)+2 \pi\right) \Rightarrow t_{3}=\frac{3}{2 \pi}\left(\sin ^{-1}\left(\frac{1}{4}\right)+2 \pi\right)+5
$$

