Tuesday, November 17, 2020 12:35 AM

Sine and cosine vsing right-angled triangles


$$
\begin{aligned}
& \sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{y}{h} \\
& \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{x}{h}
\end{aligned}
$$

The tangent function


$$
\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}=\frac{y}{x}
$$

If two side lengths are given and you aretrying to find the third side, use Pythagoras' theovem

$$
x^{2}+y^{2}=h^{2}
$$

7. $[8$ points Kiki is designing a sail for her new sailboat using two right triangles arranged as
pictured in the figure below. The shared side between the triangles has length. .
(3) $=\frac{c}{l} \Rightarrow l=\frac{c}{c}$ )
$\cos \left(35^{\circ}\right)=\frac{c}{l} \Rightarrow l=\frac{c}{\cos \left(35^{\circ}\right)}$

$\cos \left(40^{\circ}\right)=\frac{7}{C}$
$c=\frac{7}{\cos \left(40^{\circ}\right)}$

Help Kiki by finding the lengths of $b, c$, and $\ell$ in exact form. None of your answers should
a. $\left[2\right.$ points $b=7 \tan \left(40^{\circ}\right)$ $\tan \left(40^{\circ}\right)=\frac{b}{7} \Rightarrow b=7 \tan \left(40^{\circ}\right)$
do not evaluate (exact form)
b. $[3$ points $] c=\frac{7 \sqrt{1+\tan ^{2}\left(40^{\circ}\right)}}{=}=\frac{7}{\cos \left(40^{\circ}\right)}$

Pythagoras' theorem:

$$
\begin{aligned}
c^{2} & =7^{2}+b^{2} \\
= & 49+\left(7 \tan \left(40^{\circ}\right)\right)^{2} \\
c^{2} & =49+49 \tan ^{2}\left(40^{\circ}\right) \\
\rightarrow c & =\sqrt{49+49 \tan ^{2}\left(40^{\circ}\right)} \\
=\frac{1}{3} \text {. Find } & =\sqrt{49\left(1+\tan ^{2}\left(40^{\circ}\right)\right)} \\
& =7 \sqrt{1+\tan ^{2}\left(40^{\circ}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. }\left[5 \text { points] Suppose } \theta \text { is an angle given in radians with } 0<\theta<\frac{\pi}{2} \text { and with cos }(\theta)=\frac{1}{3} \text {. Find }=\right. \\
& \text { the following in exact form (none of your answers should include the letter } \theta \text { : }
\end{aligned} \begin{aligned}
& \sqrt{49\left(1+\tan ^{2}\left(40^{\circ}\right)\right)} \\
& =7 \sqrt{1+\tan ^{2}\left(40^{\circ}\right)}
\end{aligned}
$$

(i) $\sin (\theta)=$ $\qquad$
(ii) $\cos (\pi-\theta)=$ $\qquad$
7. [10 points] Let $C$ be a circle lying entirely in the first quadrant with radius 4 meterf) and

horizontal line passing through the point $O$.

$\sin \left(\frac{\pi}{4}\right)=\frac{h}{4}$
$h=4 \sin \left(\frac{\pi}{4}\right)$
a. $[$ 2 points $]$ Find the length of the vertical distance
line passing through the center $O$ of the circle.


$$
\begin{gathered}
k \\
h=4 \sin \left(\frac{\pi}{4}\right)=4\left(\frac{1}{\sqrt{2}}\right)
\end{gathered}
$$

b. $[3$ points] The spider walks 7 meters around the circle, in the counterclockwise direction,
radians). $a r c l e n g t h=r \theta$ where $\theta$ is in radians

$$
\begin{aligned}
& \text { גclength }=r \theta \\
& 7=4 \theta \\
& \theta=\frac{7}{4} \text { radians }
\end{aligned}
$$

$\qquad$
ع. [5 points] Find the lorizontal distance $d$, in meters, between the point $Q$ and the $y$-axis.
$\varphi=\pi-\left(\frac{7}{4}+\frac{\pi}{4}\right)=\frac{3 \pi}{4}-\frac{7}{4} \quad \cos \varphi=\frac{x}{4}$
Finally to find $d, d=a-x \Rightarrow d=a-4 \cos \left(\frac{3 \pi}{4}-\frac{7}{4}\right) \quad \begin{aligned} & x=4 \cos \varphi \\ & x=4 \cos \left(\frac{3 \pi}{4}-\frac{7}{4}\right.\end{aligned}$

