Measuring position on a circe using angles

- The cirdes lies on a coordinate plane with its center at the origin (weill cover shifted circles later)
- Angles are measured with respect to the positive $x$-axis
- Positive angles are measured counterdockwise (negative angles are measured clockwise)



The unit circe
Identity $\quad \cos ^{2} x+\sin ^{2} x=1$


$$
\left[\begin{array}{l}
x=\cos \theta \\
y=\sin \theta
\end{array}\right] \text { where } r=1 \quad \text { (unit circe) }
$$

$\begin{aligned} & \mathrm{SOH} \\ \rightarrow & \mathrm{CAH}\end{aligned}$

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\sin \theta=\frac{y}{1}
$$

$$
\Rightarrow y=\sin \theta
$$

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{x}{1}
$$

$$
\Rightarrow x=\cos \theta
$$

(1 point) Michigan/precalc/5e/Chap7Secz/Q23.pg
(a) Find another angle $\phi$ between $\left(0^{\circ}\right.$ and $3600^{\circ}$ that has the same cosine as $61^{\circ}$. (That is, find $\phi$ satisfying $\cos (\phi)=\cos \left(61^{\circ}\right)$. $\phi=299^{\circ}$ degrees. help (numbers) $x$-value
(b) Find another angle $\phi$ between $0^{\circ}$ and $360^{\circ}$ that has the same sine as $61^{\circ}$. (That is, find $\phi$ satisfying $\sin (\phi)=\sin \left(61^{\circ}\right)$.). $\phi=119^{\circ}$ degrees. help (numbers)


|  |  |
| :--- | :--- |
| $S$ | $A$ |
| $T$ | $C$ |

$$
\begin{array}{ll}
Q: & x=3 \cos \left(15^{\circ}\right)=2.898 \\
& y=3 \sin \left(15^{\circ}\right)=0.776 \\
P: \quad & x=3 \cos \left(110^{\circ}\right)=-1.026 \\
& y=3 \sin \left(110^{\circ}\right)=2.819
\end{array}
$$

For a circle of radius $r$ we can find the coordinates as $\begin{aligned} & x=r \cos \theta \\ & y=r \sin \theta\end{aligned}$
example



