The zeros of a rational function

$$
r(x)=\frac{p(x)}{q(x)} \text { where } p(x), q(x) \text { are polynomials }
$$

- The zeros of r are the same the zeros of the numerator. Solve $p(x)=0$ for x.
- The vertical agmpptote is where the denominator has its zeros. Solve $q(x)=0$ for x.
- Note (from before), the longrun'pehacior and horizontal asymptote of r is given by the ratio of the leading terms of $p(x)$ and $q(x)$.

Find the formula of a rational function

zeros: $x=-1$
vertical asymptote: $x=-2$
$r(x)=\frac{k(x+1)}{(x+2)^{2}} \leftarrow \frac{k(0+1)}{(0+2)^{2}}=0.5$
$\lim _{x \rightarrow-2^{+}} r(x)=\lim _{x \rightarrow-2^{+}} \frac{(x+1)}{(x+2)^{2}} \rightarrow \frac{-1}{(0)^{2}} \rightarrow-\infty$
$k\left(\frac{1}{4}\right)=0.5$
$k=2$
but $\lim _{x \rightarrow-2^{+}} r(x)=\lim _{x \rightarrow-2^{+}} \frac{(x+1)}{(x+2)} \rightarrow \frac{-1}{-1.9999 \ldots+2} \rightarrow-\infty J$
$\left.\lim _{x \rightarrow-2^{-}} r(x)=\lim _{x \rightarrow-2^{-}} \frac{(x+1)}{(x+2)} \right\rvert\, \rightarrow \frac{-1}{-2.00001+2} \rightarrow \frac{-1}{-0.00001} \rightarrow+\infty$
So $(x)=\frac{2(x+1)}{(x+2)^{2}}$

Holes of a rational function
When the numerator and denominator have the same zeros.

$$
\begin{aligned}
& \text { ecg } r(x)=\frac{x^{2}+x-2}{x-1}=\frac{(x-1)(x+2)}{x-1} \quad \begin{array}{l}
\text { before you simplify you are } \\
\text { dividing by zero when } x=1 .
\end{array} \\
& \text { However if you were given } \\
& g(x)=\frac{1}{x-1}
\end{aligned}
$$

