The logarithmic function and its application (sec 5.3)
Definition: $y=\log x$ means $\underbrace{10^{y}}_{\substack{\text { this is always } \\ \text { postive }}}=x>0 \longrightarrow \longrightarrow$
Domain: $x>0$ (domain of $\log x$ is all positive numbers)
Range: $-\infty<y<\infty$ (range of $\log x$ is all real numbers)
Relall that 10^{x} is the inverse of $\log x$

To plot the graph of $\log (x)$ you can reflect the graph of 10^{x} along the line $y=x$ since they are inverses of each other.

harizontal asymptote for 10^{x} is $y=0$

a) What is the domain? $\begin{aligned} 2-x & >0 \\ x & <2\end{aligned} \quad(-\infty, 2)$
b) Determine whether its graph has a horizontal casymptote or a vertical asymptote
$\xrightarrow[2-e]{\text { (2-in(2) }}$
x-intercept : $y=0$
$1-\ln (2-x)=0$
$-\ln (2-x)=-1$

$$
\ln (2-x)=1
$$

$$
e^{\ln (2-x)}=e^{1}
$$

$$
2-x=e
$$

$$
x=2-e
$$

$$
\begin{aligned}
& y \text {-intercept: } x=0 \\
& y=1-\ln (2-0) \\
& =1-\ln (2)
\end{aligned}
$$

For horizontal and vertical asymptotes you do the following:
\rightarrow Let $y=f(x)$ be a function and a be a finite number
The graph of $f(x)$ has a horizontal asymptote of $y=a$ if
as X

or as $x \rightarrow-\infty \quad f(x) \rightarrow a$
\square
\rightarrow The graph of $f(x)$ has a vertical asymptote of $x=a$ if

$$
\begin{aligned}
& \text { as } \quad x \rightarrow a^{+}, f(x) \rightarrow \infty \text { or as } x \rightarrow a^{+}, f(x) \rightarrow-\infty \\
& \text { (approach a } \\
& \text { from the right) } \\
& \text { as } x \rightarrow a^{-}, f(x) \rightarrow \infty \text { or } x \rightarrow a^{-}, f(x) \rightarrow-\infty \\
& \text { (approach a } \\
& \text { from the le ft) }
\end{aligned}
$$

Example $y=1-\ln (2-x)$

$$
\left.\begin{array}{l}
\lim _{x \rightarrow \infty} 1-\ln (\underbrace{2-x)} \text { not possible } \\
\lim _{x \rightarrow-\infty} \sqrt{1-\underbrace{\ln (2-x)}_{\rightarrow \infty})}=-\infty \text { infinite }
\end{array}\right\} \text { no horizontal asymptote }
$$

domain $x<2 \quad-\infty<x<2$

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{-}} & 1-\ln (\underbrace{2-x}_{\rightarrow 0})=1-(-\infty) \rightarrow \infty \\
& \text { vertical asymptote } x=2
\end{array}
$$

