Separation of variables

Saturday, July 25, 2020

 $\frac{dy}{dx} = -\frac{x}{x}.$ Consider the same example

How do you obtain that $x^2+y^2=C$ is the solution?

The method of separation of variables works by putting all the x-values on one side of the equation and all the y-values on the other

Steps Separate the x's with the y's.

Integrate each side separately Step 2

$$\int y \, dy = \int -x \, dx$$
the

$$\frac{y^2}{2} = -\frac{x^2}{2} + C$$

$$y^2 = -x^2 + aC$$
Let $k = aC$.

 $x^2 + y^2 = k$ \leftarrow circles.

If you are given an initial condition of the form y(A)=B you can use it to find the constant of integration.

NB

A differential equation is called separable, if it can be written in the form

$$\frac{dy}{dx} = f(x)g(y)$$

1. Determine which of the following differential equations Y=yes, N=n0 are separable. Do not solve the equations.

(a)
$$y' = y$$

(b)
$$v' = x + v \wedge$$

(c)
$$v' = xv$$

(d)
$$v' = \sin(x + v)$$

(e)
$$v' - xv = 0$$

$$\mathbf{(u)} \quad y = \sin(x + y) \quad \mathbf{(u)}$$

$$(\sigma)$$
 $y' = \ln(yy)$

$$(g) \quad y = m(xy) \quad N$$

(h)
$$y' = (\sin x)(\cos y) \Upsilon$$

$$(1) \quad y = (\sin x)$$

(k)
$$y' = 2x$$
 (l) $y' = (x + y)/(x + 2y)$

$$\frac{dy}{dx} - y = x$$

$$dy - y dx = x dx$$

 $\frac{dx}{dy} = x + y$

 $\frac{dy}{dx} = xy$

Example

$$B^{2} + 2B \frac{dB}{dt} = 2500$$
, $B(0) = 0$
 $2B \frac{dB}{dt} = 2500 - B^{2}$
 $\frac{dB}{dt} = 2500 - B^{2}$
 $\frac{2B}{2500 - B^{2}} \frac{dB}{dt} = 1$
 $\frac{2B}{2500 - B^{2}} \frac{dB}{dt} = 1$