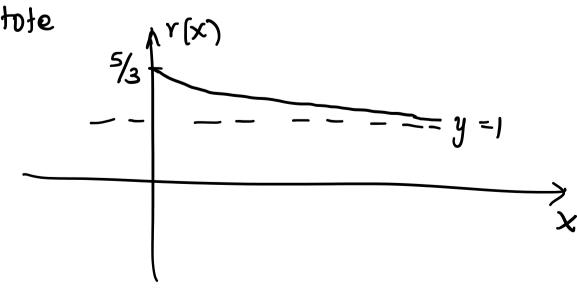
Rational functions (sec. 11.4)

Monday, December 7, 2020

6:26 PM

Definition: A rational function
$$r(x)$$
 is the ratio of two polynomial functions $p(x)$ and $q(x)$, i.e.
$$\boxed{r(x) = \frac{p(x)}{q(x)}}$$
, where $q(x) \neq 0$.

For x large enough (positive or negative) the graph behaves like a power function.


$$\lim_{x \to \pm \infty} \Upsilon(x) = \lim_{x \to \pm \infty} \frac{\rho(x)}{q(x)} = \lim_{x \to \pm \infty} \frac{\text{leading term of } \rho(x)}{\text{leading term of } q(x)}$$

Reminder, if $p(x) = a_n x^n + a_{n-1}^{n+1} + \cdots + a_1 x + a_0$, $a_n x^n$ would be the leading term.

If the limit (*) exists, it gives the horizontal asymptote of r(x).

e.g Consider
$$r(x) = \frac{x+5}{x+3}$$

 $\lim_{x\to\infty} \Upsilon(x) = \lim_{x\to\infty} \frac{x+5}{x+3} = \lim_{x\to\infty} \frac{x}{x} = 1. \text{ Here } y=1 \text{ is the horizontal}$ asymptote $\chi(x) = \lim_{x\to\infty} \frac{x+5}{x+3} = \lim_{x\to\infty} \frac{x}{x} = 1. \text{ Here } y=1 \text{ is the horizontal}$

Note Polynomial graphs cannot level off to a horizontal line as the graphs of rational functions can.