Quadratic functions
A parabola is the graph of a quadratic function defined by
$y=a x^{2}+b x+c$

You can also write it as $y=a(x-r)(x-s)$. \leftarrow factorized form / factored form
Here it's easy to find the zeros (find the x-values for which $y=0$)
$0=a(x-r)(x-s)$
zeros: $x=r$ and $x=s$
$\begin{aligned} & \text { Quadratic formula: } \\ & y=a x^{2}+b x+c\end{aligned} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$y=a x^{2}+b x+c$
Example $y=x^{2}-x-6$

- if $a>0$, the parabola is concave
is con cove down.
$y=-3 x^{2}-3 x+2 \quad$ concave down
$y=-3(-2 x+1)(x-5)$
$=-3\left(-2 x^{2}+10 x+x-5\right)$
$=6 x^{2}-33 x+15$

Vertex form (section 3.2).
Recall $y=a x^{2}+b x+c$ (standard form) $y=a(x-r)(x-s) \quad$ (factored form)
$y=a(x-h)^{2}+k$$\quad$ (vertex for) $y=a(x-h)^{2}+k$ (vertex form).
With the vertex given by the coordinate (h, k) where h and k are both constants.

Completing the sure
This is used to convert from standard form to vertex form. $y=a x^{2}+b x+c \rightarrow y=a(x-h)^{2}+k$

Grapple $1 y=x^{2}-6 x+8$

$$
\begin{aligned}
& =x^{2}-\frac{6 x+8}{(1)} \\
& =\left(x^{2}-\frac{6}{1}\right)^{2}-\left(\frac{6}{2}\right)^{2}+8 \\
& =(x-3)^{\text {always }}-3^{2} \text { minus } \\
& =(x-3)^{2}-9+8 \\
& =(x-3)^{2}-1
\end{aligned}
$$

Check: $y=(x-3)(x-3)-1=x^{2}-6 x+9-1=x^{2}-6 x+8-1$

Example $3 \quad y=-4 x^{2}-12 x-8$

$$
\begin{aligned}
& =-4 x-12 x-8 \\
& =-4\left(x^{2}+3 x+2\right) \\
& =-4\left[x^{2}+3 x+2\right] \\
& =-4\left[\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2\right] \\
& =-4\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+2\right] \\
& =-4\left[\left(x+\frac{3}{2}\right)^{2}-\frac{1}{4}\right] \\
& =-4\left(x+\frac{3}{2}\right)^{2}+1
\end{aligned}
$$

Finding a formula given the vertex and another point on the parabola. $y=a x^{2}+b x+c$

$$
\begin{aligned}
& \text { vertex form: } \begin{aligned}
& y=a(x-h)^{2}+k \\
& \text { where }(h, k) \text { is the vertex }
\end{aligned} \\
& \text { Using vertex: } y=a(x-3)^{2}-2 \\
& \text { To determine ' } a \text { ' use the other point }\binom{x}{(-3,4} \\
& 4=a(-3-3)^{2}-2 \\
& 4=a(-6)^{2}-2 \\
& 4=36 a-2 \\
& \begin{array}{l}
6=36 a \\
a=\frac{1}{6}
\end{array} \\
& \begin{aligned}
\text { Substivate } a & =\frac{1}{6} \text { into } y=a(x-3)^{2}-2 \text { to get } \\
y & =\frac{1}{6}(x-3)^{2}-2
\end{aligned}
\end{aligned}
$$

