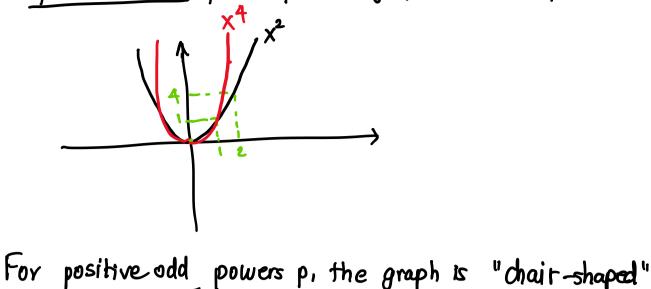
Thursday, December 3, 2020 4:41 PM

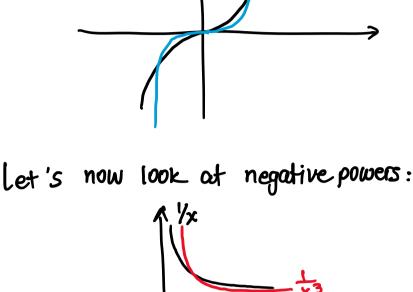
A power function is of the form $(f(x) = kx^p)$, where k and p are constants

Note In exponential functions the variable x is in the power, whereas in a power function it's in the base.

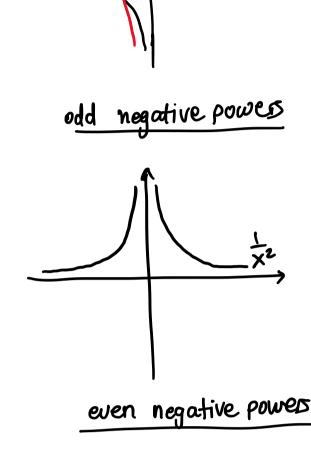
e.g $f(x) = 2^{x}$ is exponential $g(x) = 2(x)^3$ is a power function.

For positive even powers p, the graph is U-shaped.





 $\frac{1}{X} > \frac{1}{X^3}$ for large \times



Power functions are functions of the form $y=kx^P$ where k& p are constants. Consider positive fractional powers:

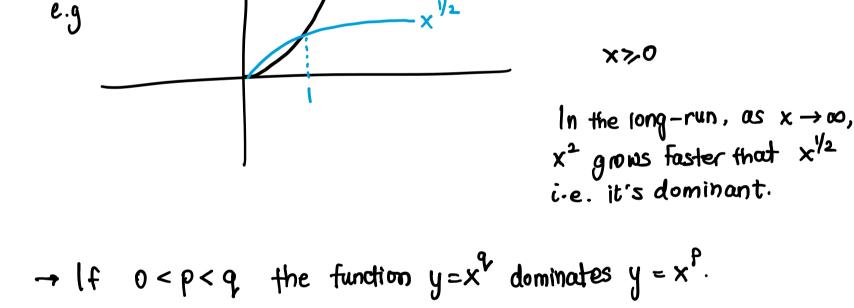
e.g. $y = x^{1/2}$

Any power function with
$$0 has a graph that is concave down.

Any power function with $p > 1$ has a graph that is concave up.$$

All power functions with [p70] have the same long-run behavior.

As $x \to \infty$ the value $x^p \to \infty$. Dominan ce



Finding the formula for a power function

You do this by using two points on its graph. Rewull y= kxp

Consider a power function with points (2, 16) and (3,54). Find its

16 = k(2)

Asymptotes

formula:

 $\begin{array}{c|c} (2,16) & \longrightarrow & 16 = k(2)^{P} \\ (3,54) & \longrightarrow & 54 = k(3)^{P} \end{array}$ We want to find the unknowns k and p:

 $\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$

As $x \to -\infty$, $\perp \to 0$ (going to 0 from below)

 $\lim_{x \to 0^{-}} \frac{1}{x^2} = \infty$

version of $4x^3$

$$\frac{54}{16} = \frac{\cancel{k}(3)^{P}}{\cancel{k}(2)^{P}}$$

$$\frac{27}{8} = \left(\frac{3}{2}\right)^{p} \longrightarrow \ln\left(\frac{27}{8}\right) = p \ln\left(\frac{3}{2}\right)$$

$$p = \frac{\ln\left(\frac{27}{8}\right)}{\ln\left(\frac{3}{2}\right)}$$

$$(k=2)$$

$$y = kx^P \Rightarrow y = 2x^2$$

Consider
$$\frac{1}{x}$$
 and $\frac{1}{x^2}$. As $x \to \infty$, $\frac{1}{x} \to 0^+$ (going to 0 from above)

(limit notation)

(3) $f(x) = 4(x-1)^3$

(limit notation:
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{1}{x} = 0^+$$

$$\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} \frac{1}{x} = 0^-$$
)

As
$$x \to 0^+$$
 (going to 0 from the right) $\downarrow \to +\infty$
As $x \to 0^-$ (going to 0 from the left) $\downarrow \to -\infty$

Determine if the following are power functions and determine also k and p if it's a power function:

(1)
$$m(x) = 22 (7^{x})^{2}$$
 No (exponential)
(2) $h(y) = \frac{4}{\sqrt{16y}}$ YES $h(y) = \frac{4}{\sqrt{16y}} = \frac{7}{\sqrt{2}}$ $k = 1$ $p = -\frac{1}{2}$

shifted

YES