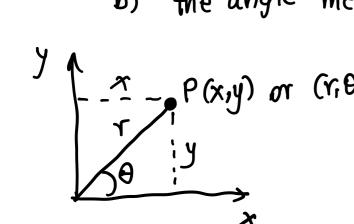
Polar coordinates Tuesday, July 21, 2020

Polar coordinates are an atternative way of describing a point P in a two-dimensional space.

- You need two measurements to describe the position of this point.
 - a) the distance from the pole (usually the origin 0), r b) the angle measured anticlockwise from the initial line (usually the x-oxis), θ



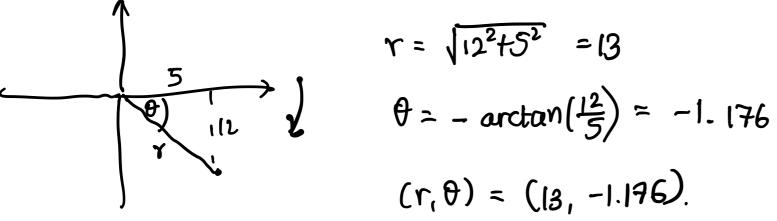
To convert between Cartesian wordinates and polar coordinates.

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

Find the polar coordinates of the point (x,y) = (5,-12)



$$(r,\theta) = (13, -1.176).$$

e.g. Find the Cartesian coords of
$$(r,\theta) = (10, \frac{4\pi}{3})$$

 $X = r\cos\theta = (0\cos(\frac{4\pi}{3}) = -5$

 $(x_1y) = (-5, -5\sqrt{3})$

Polar equations of curves are usually given by
$$r=f(0)$$
, for example $r=1+2\cos\theta$, $r=3$, $r=2\sin\theta$, etc.

y= raine = 10sin(對=-5屆

e.g Find the Carterian equation of v = 2 + 00520 Use identity $\cos 20 = 200520 - 1$

Standard curves: r=a is a circle of radius a centered at the origin

Sketching polar curves

• $\theta = \alpha$ is a half-line through 0 and that makes an

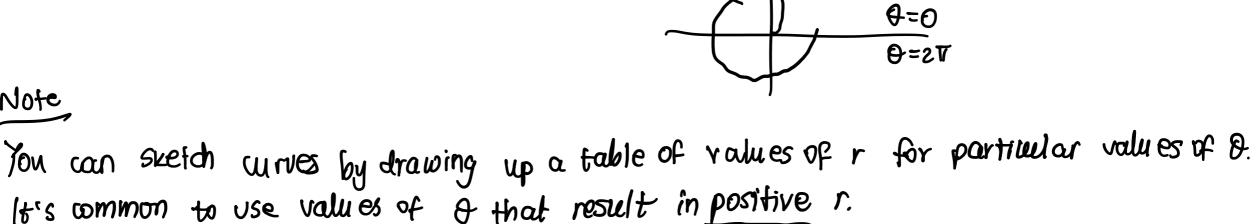
Note

Area

2.9

Find

- angle & w/ the x-axis . e.g. 0=311 • $r = a\theta$. This is a spiral starting at 0



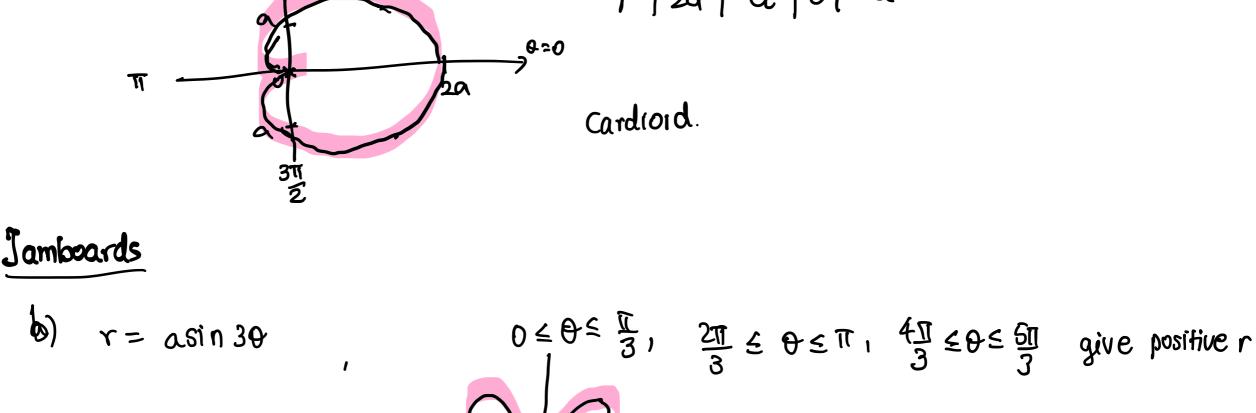
X = YOUSO

y = rsind

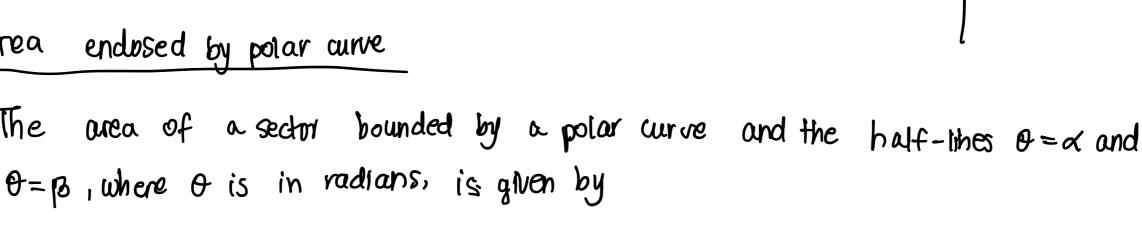
and $r^2 = \chi^2 + \mu^2$

Use

It's common to use values of 8 that result in positive r. e.9 Sketch $r = (1 + \cos \theta) \alpha$ θ 0 17/2 π 311/2 211 γ 29 0 0 a 29



c) $V^2 = \alpha^2 \cos 2\theta$ 蛋白 日色星, 3月11日日 5月



The area endosed by
$$r = \alpha(1+\cos\theta)$$
 (recall when is given by $r = f(\theta)$).

Area = $2/2 \int_0^{17} (a(1+\cos\theta))^2 d\theta$

symmetric

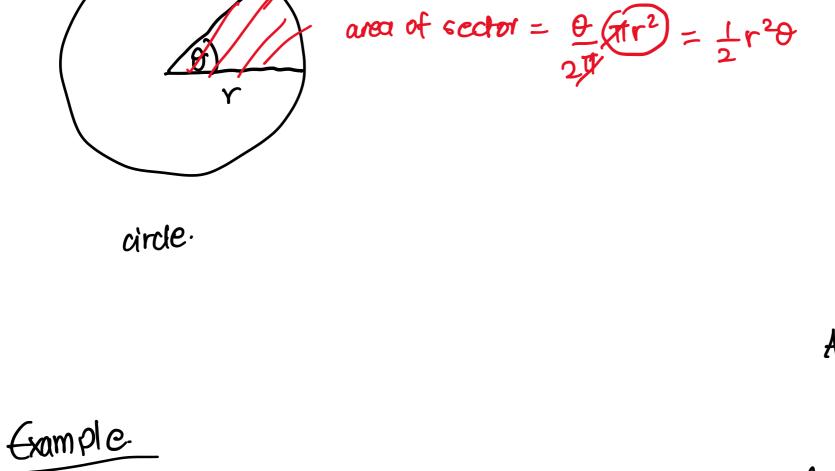
If you are given a curve
$$r = f(\theta)$$
 then you can use $x = r\cos\theta = f(\theta)\cos\theta$

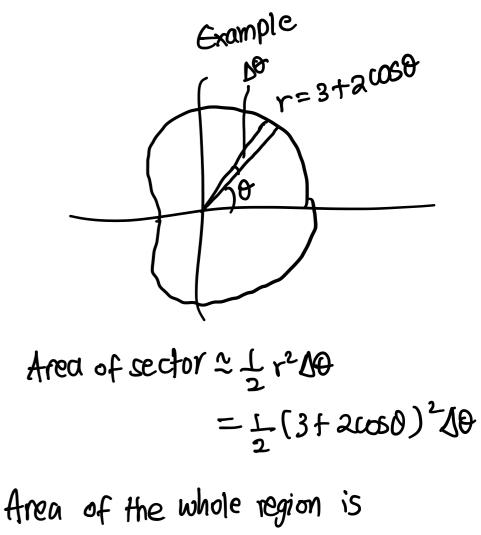
 $y = rsin \theta = f(\theta) sin \theta$

Parametric eqns:
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}}$$
When $\frac{dy}{d\theta} = 0$, the tangent to the curve is horizontal

When $\frac{dx}{dA} = 0$, the tangent to the curve is vertical. Deriving the area in polar coordinates

Area = $\int_{2}^{\beta} \int_{d}^{\beta} r^{2} d\theta$





 $\sum_{\frac{1}{2}} (3+2\omega S\theta)^2 \Delta\theta$ As $n \rightarrow \infty$ and $\Delta \theta \rightarrow 0$ $\frac{\pi |3}{2} \int_{0}^{\pi/2} \tau_{1}^{2} d\theta + \frac{1}{2} \int_{\pi/3}^{\pi/2} \tau^{2} d\theta$ Area = $\int \frac{1}{2} (3 + 2 \cos \theta)^2 d\theta$