Logarithms and their properties (sec 5.1)
Reminder: Exponential models (1) $y=a b^{t}: \begin{aligned} & a \text { initial amount } \\ & b \\ & b=1+r \text { grow h factor } \\ & b\end{aligned} \quad \begin{aligned} & \text { where growth rate }\end{aligned}$
(2) $y=a e^{k t}: \begin{aligned} & a \text { initial amount } \\ & \\ & k \text { continuous growth rate. }\end{aligned}$
Example: Solve $\quad 2^{x}=7$

What is a logarithm?
$\begin{array}{ll}\text { If } x>0 \quad \log _{10} x & \text { is the exponent of } 10 \text { that gives } x . \\ \text { ie. } y=\log x \underset{\text { means }}{\Leftrightarrow} 10^{y}=x & \left(\begin{array}{l}\downarrow \\ y=\log _{\text {d }} x \\ \text { base }\end{array}\right)\end{array}$
Eg. (a) $\log 0.01=-2$
$10^{y}=x$
$\log _{10} 0.01=-2$
$10^{-2}=0.01$
(b) $\log 100=$?
$10^{?}=100$
? $=2$
Note logarithmic and exponential functions are inverses.
For any $N, \quad,-\frac{\log _{\uparrow}\left(10^{1}\right)}{1}=N$ and $10^{\log N}=N$
Seal $f\left(f^{-1}(x)\right)=x$
$f^{-1}(f(x))=x$

$$
\begin{aligned}
\text { egg. Find } & \cdot 10^{\log (3)}=3 \\
\cdot & \log \left(10^{2 x}\right)=2 x
\end{aligned}
$$

Properties of logarithms
By definition $y=\log x$ means $10^{y}=x$
We also have that $\log 1=0$ and $\log 10=1$
Since logs and exponential are inverse

$$
\begin{aligned}
& \log \left(1_{0} x\right)=x \\
& \text { and } 10 \log x=x \text { for } x>0
\end{aligned}
$$

* For a and b both positive and any t
(1) $\log (a b)=\log (a)+\log (b)$
(2) $\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
(3) $\log ^{(b)}$ (b) $)=t \log (b)$

Example Solve $\quad 3.5^{t}=7$

$$
5^{t}=\frac{7}{3}
$$

Take logs on both sides: $\quad \log \left(5^{t}\right)=\log \left(\frac{t}{3}\right)$

$$
\begin{aligned}
& t \log (5)=\log \left(\frac{7}{3}\right) \\
& t=\frac{\log \left(\frac{7}{3}\right)}{\log (5)}
\end{aligned}
$$

The natural logarithm
For $x>0 \ln (x)$ is the power of e that give x, or

$$
\begin{array}{ll}
y=\ln (x) \text { means } e^{y}=x & \frac{N B}{\text { exponent }} \ln \ln ^{\text {resesult }} \\
\text { called the natural logarithm. } & e^{y}=x
\end{array}
$$

and $y=\ln (x)$ is culled the n
aperies of natural logarithms:
a) $\ln (1)=0$
b) $\ln (e)=1$
c) $\ln \left(e^{x}\right)=x$
$\left.\begin{array}{l}\ln \left(e^{x}\right)=x \\ e^{\ln x}=x\end{array}\right\} e^{x}$ and $\ln (x)$ are inverses, so they "undo" each other
(1) $\quad \ln (a b)=\ln (a)+\ln (b)$
(2) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$
(3) $\quad \ln \left(b^{t}\right)=t \ln (b)$

Examples a) Solve $\ln (x+5)=8$

$$
\begin{aligned}
& e^{8}=x+5 \\
& x=e^{8-5}
\end{aligned}
$$

b) Solve $2^{x}=1000$

Take \ln on both sides: $\begin{gathered}\ln \left(2^{x}\right)=\ln (1000) \\ x \ln (2)=\ln (1000)\end{gathered}$

$$
x=\frac{\ln (1000)}{\operatorname{lon}(2)}
$$

c) Solve $5 e^{2 x}=50$
$e^{2 x}=10$
Take \ln on bath sides: $\quad \ln \left(e^{2 x}\right)=\ln (10)$

$$
\begin{aligned}
2 x & =\ln (10) \\
x & =\ln (10)
\end{aligned}
$$

$$
x=\frac{\ln (10)}{2}
$$

Note: $\log (a+b) \neq \log (a+\log (b)$

$$
\log (a-b) \neq \log (a)-\log (b)
$$

$\log \left(\frac{a}{b}\right)=\frac{\log (a)}{\log (b)}$
Examples Solve the equations using logs:

$$
\text { a) } \begin{aligned}
84(0.74)^{t} & =38 \\
(0.74)^{t} & =\frac{38}{84}
\end{aligned}
$$

Take logs on both sides
$\log \left(0.74^{t}\right)=\log \left(\frac{38}{84}\right)$
$t \log (0.74)=\log \left(\frac{38}{84}\right)$

$$
t=\frac{\log \left(\frac{38}{84}\right)}{\log (0.74)}
$$

b) $0.4\left(\frac{1}{3}\right)^{3 x}=7 \cdot 2^{-x}$

$$
\begin{aligned}
& \left(\frac{1}{3}\right)^{3 x}=\frac{7}{0.4} \cdot 2^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
3 \times \log \left(\frac{1}{3}\right)=\log \left(\frac{7}{0.4}\right) & +\underbrace{\log \left(2^{-x}\right)}_{=-\times \log (2)}
\end{aligned} \\
& 3 \times \log \left(\frac{1}{3}\right)=\log \left(\frac{7}{0.4}\right)-x \log (2) \\
& \text { Since were solving for } x \text {, bring all the } x \text { 's together: } \\
& 3(x) \log \left(\frac{1}{3}\right)+\left(x \log (2)=\log \left(\frac{7}{0.4}\right)\right. \\
& x\left[3 \log \left(\frac{1}{3}\right)+\log (2)\right]=\log \left(\frac{7}{0.4}\right) \\
& x=\frac{\log \left(\frac{7}{0.4}\right)}{3 \log (3)+\log (2)}
\end{aligned}
$$

