Logarithms and their properties (sec 5.1)

Monday, November 2, 2020 5:55 PM

Reminder: Exponential models ()
$$y = ab^{t}$$
: a mitial amount
b growth factor
 $b = 1 + r$ where r is growth rate
(2) $y = ae^{kt}$: a initial amount
k continuous growth rate.
Example: Solve $a^{x} = 7$
(that is a low up 2)

What is a logarithm?

If
$$x > 0$$
 $\log x$ is the exponent of 10 that gives x.
i.e. $y = \log x \iff 10^{3} = x$ ($y = \log x$)
 $fg \cdot (a) \log 0.01 = -2$
 $\log_{10} 0.01 = -2$

Note logarithmic and exponential functions are inverses.

For any N, $log(10^{N}) = N$ and $10^{log}N = N$ $\uparrow 1$

Recall
$$f(f^{-1}(x)) = x$$

 $f^{-1}(f(x)) = x$
e.g. Find • $10^{\log(3)} = 3$
• $\log(10^{2x}) = 2x$
Properties of Logarithms

? = 2

By definition
$$y = \log x$$
 means $10^{y} = x$
We also have that $\log 1 = 0$ and $\log 10 = 1$
Since logs and exponentials are inverses $\log(10^{x}) = x$
and $\log^{10} x = x$ for $x > 0$

(1)
$$\log(ab) = \log(a) + \log(b)$$

(2) $\log(\frac{a}{b}) = \log(a) - \log(b)$
(3) $\log(\frac{b}{b}) = t \log(b)$

Example Solve
$$3 \cdot 5^t = 7$$

 $5^t = \frac{7}{3}$
Take logs on both sides:

$$log(5^{t}) = log(\frac{2}{3})$$

+ log(5) = log(\frac{2}{3})
+ = log(\frac{2}{3})
log(5)

The natural logarithm

For x70 ln(x) is the power of e that give x, or

$$log(y) = x$$

$$lo^{x} = y$$

$$lo^{x} = y$$

$$lo^{x} = y$$

$$lo^{x} > 0$$

$$so input of log$$
is always
positive

$$y = ln(x)$$
 means $e^{y} = x$

and y=ln(x) is called the natural logarithm.

Properties of natural logarithms: