Invertible and properties of inverses (sec. 10.2) Tuesday, December 1, 2020 Given a function Q=f(x) with the property that each value of Q determines exactly one value of t then the function f has an inverse function ft and $f^{-1}(Q) = t$ if and only if Q = f(t)Such a function is said to be invertible e.g. $f^{-1}(100) = 2$ if and only if f(2) = 100equal to Finding the inverse from a formula e.g. $g(x) = \frac{4x}{3x+2}$. Find the inverse $g^{-1}(x)$. STEP1: Write g(x)=y: $y = \frac{4x}{}$ 3x+2

eg. log(x) is the inverse of 10^{x} (x = log(y) if and only if y = lo(x))

Note $(f(x))^{-1} = \frac{1}{f(x)}$ reciprocal \neq inverse.

Rearrange for x to be the subject of the formula: STEP2 $(3x+2)\cdot(y) = 4x$

remember to put parentheses 3xy+2y=4x2y = 4(x) - 3(x)y factorize x

 $2y = X \left(4 - 3y \right)$

 $x = \frac{2y}{4 - 3y}$

Switch x with y and vice versa: $y = \frac{2x}{4-3x}$ Write y as $g^{-1}(x)$: $g^{-1}(x) = \frac{2x}{4-3x}$ STEP 4

STEP3

Consider $h(t) = e^{t} - 3$. Find $h^{-1}(t)$. Example Replace hlt) by y: y=et-3 Rearrange to make t subject of the formula i

y+3=et

ln(y+3)=t

h-1(t) = In(t+3))

Switch t with y & vice versa (n(t+3) = y STEP 4 Write y as h-1(t)

composition

If y = f(x) is an invertible function and $f^{-1}(x)$ is its inverse then f'(f(x)) = x

e.g. Recoll. $h(t) = e^{t} - 3$ and $h^{-1}(t) = \ln(t + 3)$ Check $h^{-1}(h(t)) = t \leftarrow$

for all values of x for which fox) is defined.

• $(f(f^{-1}(x)) = x)$ for all values of x for which $f^{-1}(x)$ is defined.

 $h^{-1}(e^{t}-3) = ln(e^{t}-3)+3) = ln(e^{t}) = t$ Check $h(h^{-1}(t)) = t$ $h(\ln(t+3)) = e^{\ln(t+3)} - 3 = t + 3 - 3 = t$

Non-invertible functions can be determined from the HORIZONTAL LINE TEST

Is $f(x) = x^2$ invertible? fails the horizontal line test =) NOT invertible

The horizontal line test states that if a horizontal line intersects a function's

graph in more than one point, then the function does not have an inverse.

 $f(x)=x^2$ $y=x^2$ $\sqrt{x} = y$

we restrict the domain such that (x = 0), then x^2 becomes invertible.

(b,a) (switch x with y and vice versa)

Domain of ft is the range of f Range of f^t is the domain of f. χ^2 for $\chi > 0$ e.g.

The graph, the domain and the range of an inverse

Graph of f⁻¹ is the reflection of f a cross the line (y=x)