
Inverse trig functions (sec. 7.8)

Friday, November 20, 2020

1:14 AM

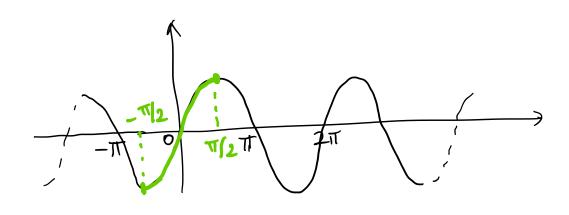
So to make the cosine function invertible we must restrict its domain to $0 \le z \le T$ The inverse cosme function (denoted by $\cos^{-1}(x)$, $\arccos(x)$) is the angle

In other words we have

between 0 and TT whose cosine is x.

$$y = \cos^{-1} x$$
 provided $x = \cos(y)$ and $0 \le y \le \pi$

(Note
$$(\cos x)^{-1} \neq \cos^{-1} x$$
)


recipro val

 $\frac{1}{\cos x}$

Domain of cost x is of yet.

The inverse sine function

_ 11/2

The domain of the inverse sine function is $-1 \le x \le 1$. The range of the inverse sine function is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

This function is denoted by $sin^{-1}(x)$ or arcsin(x)

WebWork: asin(x).

The inverse tangent function

tan x

The domain of the inverse tangent function is $-\infty < x < \infty$.

The range of the inverse tangent function is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ (endpoints not inverse tangent function is $-\frac{\pi}{2} < y < \frac{\pi}{2}$ included).