The inverse caine function:

So to make the cosine function invertible we must restrict its domain to $0 \leq x \leq \pi$ The inverse come function (denoted by $\cos ^{-1}(x)$, $\arccos (x)$) is the angle between 0 and π whose cosine is x.

In other words we have

$$
y=\cos ^{-1} x \text { provided } x=\cos (y) \text { and } 0 \leqslant y \leqslant \pi
$$

(Note $\left.(\cos x)^{-1} \neq \cos ^{-1} x\right)$
recipo val

$$
\frac{1}{\cos x}
$$

Domain of $\cos ^{-1} x$ is $-1 \leq x \leq 1$
Range of $\cos ^{-1} x$ is $0 \leq y \leq \pi$.
The inverse sine function

The domain of the inverse sine function is $-1 \leq x \leqslant 1$
The range of the inverse sine function is $-\frac{\pi}{2} \leqslant y \leq \frac{\pi}{2}$.
This function is denoted by $\sin ^{-1}(x)$ or $\arcsin (x)$ Webw ord: ain (x).

The inverse tangent function

The domain of the inverse tangent function is $-\infty<x<\infty$
The range of the inverse tangent function is $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (endpoints not

