Horizontal stretches and combinations of transformations

($\sec 6.3$)

Thursday, November 5, 2020 6:05 PM

1. [15 points]
a. [5 points] Suppose $f(x)$ is a function with domain $[-2,5]$ and range $[7,12]$. What are the domain and range of the transformation $g(x)=-f(2 x+1)+2$?
vertical changes reflection in x-axis The domain of $g(x)$ is $[-3 / 2,2]$ range $[7,12] \rightarrow[-12,-7] \rightarrow[-10,-5]$

b. [4 points] Suppose $y=p(t)$ has vertical asymptote $t=1$ and horizontal asymptote $y=2$ Give the equations for a horizontal and vertical asymptote of the function $y=2 p(-t+3)+1=2 p(-(t-3))+1$
$y=2 \rightarrow y=4 \rightarrow y=5$ \qquad
A vertical asymptote of $2 p(-t+3)+1$ is $\quad t=2$

$$
t=1 \rightarrow t=-1 \rightarrow t=-1+3=2
$$

$\rightarrow(-2,-2)$
$\rightarrow(-2,-3)$
$\xrightarrow{\text { hor. }}(-4,-3)$
$(-1,0) \rightarrow(-3,-1)$
$(0,4) \rightarrow(-2,-3)$
$(2,0) \rightarrow(0,-1)$
2. [12 points] Parts \mathbf{a}. and \mathbf{b}. of this problem are unrelated to each other
a. [6 points] The graph of $y=f(x)$, defined on $[-2,3]$ is given below.

This is the graph of
$y=\frac{1}{2} f(-(x-1))+\frac{1}{2}$.
This is the graph of
This is the graph of
$y=-f(2 x)$ \qquad
b. [6 points] If a function $f(x)$ has domain $[0,3)$, range $[-1, \infty)$, and a vertical asymptote
at $(x=3$. find the domain, range and vertical asymptote of the function

$$
g(x)=\frac{1}{3} f(-x+1)-2=\frac{1}{3} f(-(x-1))-2
$$

(i) The domain of $g(x)$ is \qquad

$$
[0,3) \rightarrow(-3,0]
$$

$$
\rightarrow(-2,1]
$$

(ii) The range of $g(x)$ is
$\left[-\frac{7}{3}, \infty\right)$
$[-1, \infty) \rightarrow\left[-\frac{1}{3}, \infty\right)$
(iii) The vertical asymptote of $g(x)$ is \qquad

7. [8 points] Consider the following graph of a function $y=q(x)$ defined on $[-4,3]$.

For each of the following graphs, if the graph is not a combination of shifts, stretches, com pressions and reflections of the graph of $(y=q(x)$ write NOT A TRANSFORMATION. Otherwise, write a formula for the function corresponding to graph in terms of $q(x)$.

$y=\quad \quad q(-(x+1))$.
$y=-\frac{1}{2} q(X)+2$
factored form

