Sine function

period $=2 \pi$
amplitude $=\frac{\text { max }-\min }{2}=\frac{1-(-1)}{2}=\frac{2}{2}=1$
midline $=y=\frac{\text { max }+ \text { min }}{2}=\frac{1+(-1)}{2}=0$
range: $-1 \leqslant y \leqslant 1$
domain: $-\infty<x<\infty$
odd function: $\sin (x)=-\sin (-x)$

$$
\begin{aligned}
& \text { period }=2 \pi \\
& \text { amplitude }=1 \\
& \text { midline }=y=0 \\
& \text { range: }-1 \leq y \leq 1 \\
& \text { domain: }-\infty<x<\infty \\
& \text { even function : } \cos (x)=\cos (-x)
\end{aligned}
$$

Note:

$$
\sin \left(x+\frac{\pi}{2}\right)=\cos (x)
$$

EXTRA!
4. [14 points] The noise level of the sound of a fire alarm at a factory oscillates between a maximum of 120 decibels to a minimum of 70 decibels. It takes the alarm 10 seconds to go from its maximum to its minimum noise level. Let $y=f(t)$ be the noise level of the sound of the alarm (in decibels) t seconds after it is activated. Suppose that $f(t)$ is a sinusoidal function and that $f(0)=70$.
a. [6 points] Find the period, the amplitude, the midline and formula of the function $y=f(t)$. Include units.

amplitude $=\frac{\text { max }-\min }{2}=\frac{120-70}{2}=\frac{50}{2}$
$=25$
midline $=\left(y=\frac{\text { max }+ \text { min }}{2}=\frac{120+70}{2}=\frac{190}{2}\right.$

Period $=20$ seconds
Amplitude $=25$ decibels
Midline: $y=95$ (decibels)
$f(t)=-25 \cos \left(\frac{\pi}{10} t\right)$
$=95$

reflection about t-axis

$$
f(0)=-25 \cos \left(\frac{\pi}{10} \cdot 0\right)+95
$$

$$
=-25 \cos (0)+95
$$

$$
=-25+95
$$

$$
=70
$$

$$
\begin{aligned}
f(10) & =-25 \cos \left(\frac{\pi}{10} \cdot 10\right)+95 \\
& =-25 \cos (\pi)+95 \\
& =-25(-1)+95 \\
& =25+95 \\
& =120
\end{aligned}
$$

