Recall that the formula is $y=a b^{t}$.

growth factor is the same
and the initial amount is different.

growth factor is different and the initial amount is the same.

The horizontal line $y=k$ is a horizontal asymptote of a function $f(x)$, if the function values get arbitrarily close to k as x gets large. We use the following notation

$$
f(x) \rightarrow k \text { as } x \rightarrow \infty
$$

"approaches"

Example $y=2+3^{x}$. What is the horizontal asymptote as $x \rightarrow-\infty$?

$$
\text { The horizontal asymptote is } y=2
$$

Example. For the exponential function $a(R)=7 \cdot 2^{-3 R+4}$. Find
a) growth factor
b) percentage growth rate $\quad y=a b^{R}$
c) initial value.

Write $7 \cdot 2^{-3 R+4}$ in the form $a \cdot b^{R}$ where a is the initial value and b is the growth factor.

$$
\begin{aligned}
& 7 \cdot 2^{-3 R+4}=7 \cdot 2^{-3 R} 2^{4} \quad\left(a^{x+y}=a^{x} a^{y}\right) \\
&=7 \cdot 2^{-3 R}(16) \\
&=112 \cdot 2^{-3 R} \\
&=112\left(2^{-3}\right)^{R} \quad\left(\left(a^{x}\right)^{y}=a^{x y}\right) \\
&=112\left(\frac{1}{2^{3}}\right)^{R} \\
&=112\left(\frac{1}{8}\right)^{R}=a(b)^{R} \\
& \text { in factor is } \frac{1}{8}
\end{aligned}
$$

a) growth factor is $\frac{1}{8}$
b) pere. growth rate $b=1+r \Rightarrow r=b-1 \Rightarrow r=\left(\frac{1}{8}-1\right) 100 \%$
c) initial value is 112 .

