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1 Introduction and Motivation

In this report, we are concerned with nonlinear elasticity problems in different dimen-
sions. One of the problems we discuss are nonlinear equations of the form

F (u, λ) = 0, (1.1)

as presented in [KA68]. Here, F represents a nonlinear operator which depends on
the parameter λ operating on the unknown function u. There are two main questions
to ask. The first question to ask is whether or not (1.1) has any solution u for a given
value of λ. If a solution does exist, then we would like to know how many solutions
arise and then how this number varies with λ.

The process of bifurcation whereby a given solution of (1.1) splits into two or
more solutions as λ passes through a critical value λc, called the bifurcation point, is
particularly interesting. We consider a basic example of a bifurcation phenomenon,
that of the deformation of a slender beam under a load which was first analysed by
Euler and Bernoulli [Rei69].

It can be observed that as the load λ increases gradually from zero, the beam first
deforms by thickening and shortening but with its centreline still remaining straight.
However, after a critical value λc the beam bends out of plane, resulting in a large
deformation known as buckling. This phenomenon is illustrated in Figure 1.1.

(a) Undeformed. (b) λ = λc. (c) λ > λc (1st). (d) λ > λc (2nd).

Figure 1.1: Schematic diagrams of the deformation of a vertical beam when a load λ
is placed at its top. There is a qualitative change in the deformation of the beam
around a critical value λc of the load.

Even though the classical linear theory of elasticity predicts that there is a unique
solution to any problem, this is insufficient to describe buckling and so we need to
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employ a nonlinear theory. To visualise bifurcations we construct a so-called bifurca-
tion diagram, where the y-axis is a functional J(u), and the x-axis is the parameter λ.
Using a bifurcation diagram, we can see the structure of the solution curves in the
parameter space. Note that their intersection point is known as the bifurcation point.
A schematic of a bifurcation diagram is depicted in Figure 1.2.

λ

J(u)

λc0

Figure 1.2: Schematic of a bifurcation diagram. The blue circle represents the bifur-
cation point and it is at the critical load parameter λc. In this pitchfork bifurcation
diagram, the stable solutions are drawn with a solid line and the unstable ones with
a dashed line.

Due to the nonlinear nature of the problem, constructing a bifurcation diagram
and analysing the behaviour of the solution of (1.1) can be complex. However, it is
still possible to investigate these systems using iterative methods. Such methods try
to find a better approximation to the solution of (1.1), if we provide an initial guess
for the solution.

Newton’s method is one of the most widely used iterative methods. This is because
it has fast convergence properties close to the actual roots of the equation. However,
if we started instead far away from a solution, then Newton’s method could result in
fast divergence. This is evident especially in the case of highly nonlinear problems.

Iterative methods enable us to compute bifurcation diagrams using numerical
continuation. If an initial point is given on the solution branch, then we can use
this point as the initial guess to compute a solution on the same solution branch but
for a different value of the parameter. This means that the use of iterative methods
allows us to continue our solution along a solution branch. Furthermore, note that
if the steps taken are small enough such that the iterative methods are ensured to
converge at each step, then full solution branches can be traced out by proceeding in
an iterative manner along solution branches.
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1.1 Finite Elements in Elasticity with FEniCS

Finite elements are one of the most widely used methods for finding the deformations
of elastic materials subjected to loads. Here, we present one-dimensional beam models
(with various boundary conditions) but also two- and three-dimensional hyperelastic
models. Due to the nonlinearity of the governing equations, a finite element approach
implemented in FEniCS is used to find numerical solutions to the model equations.

Very briefly, the finite element method goes as follows: Given a function (Hilbert)
space V , a continuous and coercive bilinear form a(u, v), and a continuous linear form
L(v), we can now consider the variational formulation which is to find

u ∈ V such that a(u, v) = L(v) for all v ∈ V. (1.2)

This has a unique solution by the Lax-Milgram theorem [All07, Th. 3.3.1]. The
internal approximation of (1.2) consists of replacing the function space V by a finite
dimensional subspace Vh, or in other words, consists of finding

uh ∈ Vh such that a(uh, vh) = L(vh) for all vh ∈ Vh. (1.3)

Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.

2. Reformulate the PDE problem as a variational problem.

3. Write code in Python using Unified Form Language developed under FEniCS.
This includes the formulas in the weak form and definitions of input data.

4. Add statements in the program for solving the variational problem, computing
derived quantities such as ∇u, and finally visualising the results in ParaView.

2 Deflection of a Diving Board

Let us consider a horizontal beam and describe its deformation using arclength s along
the centreline and angle θ(s) between the centreline and the x-axis as in [HKO09, Sec.
4.9.2]. Note that s can be viewed as a Lagrangian coordinate, fixed in the deforming
beam. The displacement is given in parametric form as x = x(s) and w = w(s),
where we have

dx

ds
= cos θ and

dw

ds
= sin θ. (2.1)

In Figure 2.1 we show the bending moment M and also the sign convention for the
tangential and normal forces (T and N) at the ends of a beam.
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Figure 2.1: Forces and moments and sign convention at the ends of the beam.

Ignoring inertia and body forces (e.g. ignoring ρδs) and balancing forces horizon-
tally and vertically on a small segment of the beam, we get respectively

(→) [T (s+ δs)− T (s)] cos θ + [N(s)−N(s+ δs)] sin θ = 0, (2.2)

(↑) [N(s+ δs)−N(s)] cos θ + [T (s+ δs)− T (s)] sin θ = 0. (2.3)

Now, dividing (2.2) and (2.3) by δs and taking the limit δs→ 0 yields
d

ds
(T cos θ −N sin θ) = 0,

d

ds
(N cos θ + T sin θ) = 0. (2.4)

In equilibrium, the moments also balance and, following the convention that a positive
shear force creates a positive moment, we have

dM

ds
−N = 0. (2.5)

If we apply a force (T0, N0) at the right-hand end, and an equal and opposite force
at the left-hand end as in Figure 2.1, then it follows that

T = T0 cos θ +N0 sin θ, N = N0 cos θ − T0 sin θ. (2.6)

Assuming that the elastica is sufficiently thin, we can use as a constitutive relation,
relating the bending moment M to the curvature dθ

ds
, the following equation

M = −EI dθ

ds
. (2.7)

Combining (2.5) with (2.6) and (2.7) yields the Euler-Bernoulli equation

EI
d2θ

ds2
+N0 cos θ − T0 sin θ = 0. (2.8)

Let us first consider the steady deformation of a diving board of length L where we
neglect gravitational forces. Suppose that the diving board is clamped horizontally
at s = 0 (θ(0) = 0) and a downward force F is applied to the other end which is free
to move (zero moment). We thus have T0 = 0 and we can rewrite N0 as N0 = −F .
So (2.8) becomes

EI
d2θ

ds2
= F cos θ, θ(0) =

dθ

ds
(L) = 0. (2.9)

To solve this problem in FEniCS we need to turn (2.9) into variational form.
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2.1 Variational Statement of the Problem

We non-dimensionalise the problem by scaling s = Lŝ and dividing (2.9) by EI to
obtain the normalised problem (dropping hats)

d2θ

ds2
− δ cos θ = 0, θ(0) =

dθ

ds
(1) = 0, (2.10)

where we have a single dimensionless parameter δ = FL2

EI
. Note that this dimensionless

parameter δ measures the applied force F relative to the stiffness of the board. The
force F , the Young’s modulus, E, as well as the second moment of inertia, I, are
problem dependent. For the remainder of this problem, we choose the following
parameters for the diving board: E = 1.2× 109 Pa, L = 1 m and a rectangular cross
section of width b = 40 cm and height d = 5 cm, with moment of inertia I = 1

12
bd3.

These are estimates for what a real diving board would be.

We solve (2.10) by employing the finite element method (FEM). In order to use
this method we need to cast the problem into variational form. The main idea is
to multiply (2.9) by a function v, integrate the resulting equation over Ω which in
this case is just x ∈ [0, 1], and perform integration by parts of terms with second-
order derivatives. The function v which multiplies (2.9) is called a test function and
the unknown function θ that we wish to approximate is the trial function. Suitable
function spaces must be specified for the test and trial functions.

Let v be any sufficiently regular function such that v(0) = 0. We define the space

V = {v ∈ H1(0, 1) : v(0) = 0}. (2.11)

This definition makes sense because we know H1(Ω) functions in one dimension are
continuous and and we can thus evaluate v at the left endpoint. If we multiply both
sides of (2.10) by v ∈ V and integrate, we obtain∫ 1

0

(
d2θ

ds2
− δ cos θ

)
v ds = 0. (2.12)
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We wish to reduce the regularity requirements on θ by shifting one of the derivatives
from θ onto v; this is achieved by integration by parts. As we choose v to vanish on
x = 0, and using the boundary condition dθ

ds
(1) = 0, this reduces to∫ 1

0

(
dθ

ds

dv

ds
+ δv cos θ

)
ds = 0. (2.13)

Putting this into FEniCS we can obtain the deflection of the diving board under
some downward force. For a more realistic visualisation of the process that takes
place when we clamp one end of the board and apply a downwards force pointwise
at the free end, we plot the deflection of the diving board in (x(s), w(s)) as shown
in Figure 2.2. We show the diving board profile corresponding to different applied
forces, and it is clear how the force causes the deflection to increase. See Appendix A
for more details on the diving board example.

0.0 0.2 0.4 0.6 0.8 1.0
x(s)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

w
(s

)

Deformation of diving board (Cartesian coordinates)

= 1200/EI
= 2000/EI
= 3500/EI
= 5000/EI
= 7000/EI

Figure 2.2: Diving board centreline (x(s), w(s)) for different values of the dimension-
less force parameter δ.

2.2 Computing Convergence Rates

The method of manufactured solutions (MMS) is a general procedure that can be
used to construct analytical solutions to the differential equations that form the ba-
sis of our simulation code [Roa02]. Note that even though the resulting solutions
might not be of any physical relevance, they can be used as benchmark solutions for
verification tests. The accuracy of the code is determined by running test problems

7



on systematically refined grids and then comparing the output with the manufac-
tured analytical solution. We then compare the error against the theoretical order of
accuracy inherent in the discretisations of the code.

Suppose that the differential equation we wish to solve has the form

D(u) = 0, (2.14)

where u is the unknown variable and D(·) is a differential operator whose form de-
pends on the governing PDE. In MMS, we choose a u? that satisfies the appropriate
boundary conditions. Since u? does not necessarily satisfy the original governing
equation (2.14), a corresponding source term f is manufactured by applying the dif-
ferential operator to u? in order to balance

D(u?) = f. (2.15)

Therefore, we can test our numerical code — initially designed to solve (2.14) — by
finding a numerical solution uapprox to the new equation D(u) = f for which we have an
exact analytical solution given by the manufactured u?. The error is e = u?−uapprox.

For problem (2.10), we manufacture a solution θexact that is not symmetric, it is
not a polynomial, and that satisfies θ(0) = dθ

ds
(1) = 0, e.g.

θexact = 1− cos

[
2πs

1 + s(1− s)

]
. (2.16)

In Table 1, we show the computed relative residual norms after each iteration of
the Newton solver for the nonlinear model problem using P1 and P2 elements. We
denote by Pk the set of polynomials which have real coefficients and one real variable,
and degree less than or equal to k. Quadratic convergence is observed when using
δ = −5000

EI
, for both P1 and P2 elements.

Iteration Relative Residual Norm P1 Relative Residual Norm P2

1 1.085e-02 1.085e-02
2 1.530e-06 1.530e-06
3 2.416e-12 2.759e-11

Table 1: Relative residual norms computed when solving (2.10).
The results are shown in Figures 2.3 and 2.4. The source function f to be used

in the new equation is found using Maple. For the code, see Appendix B. Let us
remark that using a logarithmic scale enables us to visualise convergence rates as the
slope of the logarithm of the error as a function of the logarithm of the resolution h.
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Figure 2.3: We test the convergence of the numerical solution θ to the test solution
(2.16) in the L2-norm for first and second order Lagrange elements as a function of
the mesh size hmax, using MMS. The dotted lines show the theoretical convergence
rates, O(h2) for P1-elements and O(h3) for P2-elements, as predicted in [All07, pp.
167]. Note that predicted lines are just a reference for gradient.
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Figure 2.4: We test the convergence of the numerical solution θ to the test solution
(2.16) in the H1-norm for first and second order Lagrange elements as a function of
the mesh size hmax. The dotted lines show the theoretical convergence rates, O(h)

for P1-elements and O(h2) for P2-elements, as predicted in [All07, pp. 167].
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3 Deformation of a Slender Vertical Beam

Consider the deformation of a slender vertical beam under compression by a load
[HKO09]. Let us focus on a model problem of a beam with length L = 1 which
is clamped at both ends, is subject to a compressive force P = −T0 and has zero
transverse force.

This is governed by Euler’s elastica equation

d2θ

ds2
+

P

EI
sin θ = 0, (3.1)

with boundary conditions θ(0) = θ(1) = 0, where s is the arclength along the beam
and θ(s) is the angle relative to the vertical axis. This is a nonlinear eigenvalue
problem. Notice that θ ≡ 0 is always a solution, and we are seeking values of the
applied force P for which (3.1) admits nonzero solutions. If such solutions exist then
they correspond to buckling of the beam. Note that (3.1) can also be written as

d2θ

ds2
+ λ2 sin θ = 0, θ(0) = θ(1) = 0, (3.2)

where λ2 = P
EI

. This system is a basic model problem for bifurcation analysis [MH94,
Ch. 7]. One central task of bifurcation theory is to determine the effect of varying the
parameter on the number of solutions to an equation. The problem was largely solved
by Euler and the relevant bifurcation diagram is similar to that shown in Figure 3.2.

As we will discuss now, the bifurcation points λ = kπ, with k ∈ N+ can be
readily computed. They are the eigenvalues of the linearised problem about the
trivial solution θ = 0, i.e. small deflections, that is θ = 0 + ϕ+O(ϕ2) for ϕ� 1

d2ϕ

ds2
+ λ2ϕ = 0, ϕ(0) = ϕ(1) = 0. (3.3)

Therefore, if θ is small, then (3.1) reduces to the linear eigenvalue problem (3.3), for
which the solution to the second order differential equation (3.3) is

ϕ =

A sin(kπs) for λ = kπ, k ∈ N+,

0 otherwise.
(3.4)

Thus, ϕ = 0 unless λ (or equivalently, P ) takes one of a discrete set of critical values.
This corresponds to the vertical slender beam remaining straight. When λ = kπ,
with k ∈ N+, ϕ = A sin(kπs), which corresponds to the beam buckling with shape
sin(kπs). See the expected buckling shapes for k = 1, 2, 3 in Figure 3.1.
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(a) Mode shape 1 (k = 1) (b) Mode shape 2 (k = 2) (c) Mode shape 3 (k = 3)

Figure 3.1: First three buckling mode shapes for the Euler vertical buckling beam.

λ

θ′(0)

0 π 2π 3π 4π

Figure 3.2: Schematic of the bifurcation diagram for the Euler 1D elastica equa-
tion (3.2) as a function of λ. This is similar to [MH94, Fig. 7.1.3]. The blue circles
represent the bifurcation points, the stable solutions are drawn with a solid line and
the unstable ones with a dashed line. Also for λ < π, no buckling is possible and the
solution curves do not intersect as shown in [KA68, pp. 12].

The λ-axis is called the trivial branch of solution pairs and the other nontrivial
branches, correspond to the buckled states. One can observe that there are at least
three solution pairs when π < λ < 2π, at least five solution pairs when 2π < λ < 3π,
etc. For the simple one-dimensional elastica model, there are countably infinite such
λ’s which correspond to the eigenvalues of (3.3).

We shall now dissect the FEniCS program written to solve (3.2) in detail. The
program is written in the Python programming language. The listed FEniCS pro-
gram defines a finite element mesh, the discrete function space V corresponding to
this mesh and the element type. It also defines the boundary conditions for θ (which
is u in our code) and the variational formulation of the problem. Then, the unknown
function u is computed and we can investigate u visually using ParaView [LMW12].
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Since we are concerned with a one-dimensional problem with x ∈ [0, 1], we need
to define a uniform finite element mesh as

mesh = UnitIntervalMesh (32)

where the mesh consists of cells which are triangles with straight sides. The parameter
32 tells us that the unit interval is divided into 32 intervals, with 33 total vertices.

We can now define a discrete function space V over the constructed mesh

V = FunctionSpace (mesh , "Lagrange" , 1)

This means that we discretise (3.2) using piecewise linear Lagrange elements. This is
a triangle with nodes at the three vertices. Note that for (3.2) we define the function
space as V = H1

0 = {v ∈ H1(Ω) : v|Γ = 0} which is equivalent to v(0) = 0 = v(1).
We next define the test and trial functions as follows

u = Function (V)
v = TestFunction (V)

We have Dirichlet boundary conditions given by θ(0) = θ(1) = 0 and these are
translated in FEniCS as

bc = Dir ichletBC (V, 0 . 0 , "on_boundary" )

Now that we have all the components needed to specify the problem, we can write
the variational form of (3.2)

F = inner ( grad (u) , grad (v ) ) ∗dx − lambd∗∗2∗ s i n (u) ∗v∗dx

where we choose λ to be a particular constant. Note that we later use continuation
which is a very powerful algorithm for solving difficult nonlinear problems. The idea
is that we construct an initial guess by solving an easier problem.

We also set a good initial guess to ensure faster convergence

u . i n t e r p o l a t e ( Express ion ( "−s i n (x [ 0 ] ) " , degree=2) )

We solve (3.2), which we discretised using FEniCS and PETSc, from λ = 0 to λ = 4π

with numerical continuation. We choose to terminate Newton’s method with failure
if convergence does not occur within the first 100 iterations.

To apply continuation in FEniCS, we update the parameter in a loop and solve

# so l v e the v a r i a t i o n a l problem us ing numerica l cont inuat i on
f o r lambd_val in l i s t (np . l i n s p a c e (3∗ pi −0.01 , 4∗pi , 200) ) :

lambd . a s s i gn ( lambd_val )
s o l v e (F==0, u , bc , so lver_parameters={"newton_solver " :
{"maximum_iterations" : 100}})

Listing 3.1: Part of Python code for Euler’s 1D elastica problem (3.2).
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A number of solutions resulting from choosing different values for λ = kπ for k ∈ N+

are presented in Figure 3.3. We can see different buckled modes emanating from the
trivial branch.

(a) First. (b) Second. (c) Third. (d) Also third.

Figure 3.3: We observe three eigenmodes that arise under different loads. All subfig-
ures are plotted with different color bars. Also notice that (c) and (d) have opposite
signs corresponding to solutions in the upper and lower branches of Figure 3.2. There
is also a difference in amplitude because although they lie on solution branches of the
third eigenmode with opposite sign, they have different λ forcing. All of these have
the expected sinusoidal shape.

3.1 Computing Convergence Rates

The problem of the deformation of a vertical slender beam clamped at both ends
is very similar to that of the deformation of a diving board presented in Section 2.
Therefore, we expect that the convergence rates for both of these problems are similar.
Indeed, using the method of manufactured solutions, we construct the same θexact

given by

θexact = 1− cos

[
2πs

1 + s(1− s)

]
, (3.5)

since it satisfies both boundary conditions θ(0) = θ(1) = 0.
The convergence plots for the case of the deforming Euler’s elastica problem are

presented in Figure 3.4.
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(a) Convergence in the L2-norm.
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(b) Convergence in the H1-norm.

Figure 3.4: Convergence plots for the clamped-clamped elastica problem (3.2).

4 Hyperelasticity in Higher Dimensions

In this section, we consider hyperelasticity models for two and three dimensions. A
hyperelastic material is a material for which a type of constitutive model exists, for
which the stress-strain relationship is derived from a strain energy density function.
Given a solid body Ω ⊂ Rn we define the displacement field as u : Ω → Rn. This
transforms the undeformed body Ω to a deformed body Ω̃ = u(Ω) ⊂ Rn.

4.1 Deformation of a Hyperelastic Beam (2D)

Here, we follow the example shown in [FBB16, Sec. 4.4]. Recall that in Section 3 we
modelled the deformation of a beam under compression with Euler’s elastica equa-
tion (3.2). In this subsection, we model an analogue of this. In particular, we model
the two-dimensional compressible neo-Hookean hyperelastic PDE, solved again in the
computational platform FEniCS. Hyperelastic models are characterized by the exis-
tence of a stored strain energy density function ψ.

The potential energy Π is given by

Π(u) =

∫
Ω

ψ(u) dx−
∫

Ω

B · u dx−
∫
∂Ω

T · u ds, (4.1)

where Ω represents the domain, u : Ω → R2 represents the displacement, ψ is the
stored strain energy density, B is the body force per unit area, and T is the traction
force per unit length. Let us first consider the deformation gradient

F = I +∇u, (4.2)
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the right Cauchy-Green tensor
C = F>F, (4.3)

the isochoric decomposition of C given by J = det(F ) and the principal invariant
Ic = tr(C). The compressible neo-Hookean stored energy density is given by

ψ =
µ

2
(Ic − 2)− µ log(J) +

λ

2
log(J)2, (4.4)

where µ and λ are the Lamé parameters, which are calculated from the Young’s
modulus E and the Poisson ratio ν, as

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (4.5)

For this problem, we choose Ω = (0, 1)× (0, 0.1) which in FEniCS is translated as

mesh = RectangleMesh ( Point (0 , 0 ) , Point ( 1 , 0 . 1 ) ,64 ,64)

where we discretise the equation with 64 linear finite elements in the horizontal di-
rection and also 64 in the vertical direction, using FEniCS and PETSc. Notice that
since we are working in 2D now, we need to define V as a vector function space

V = VectorFunctionSpace (mesh , "Lagrange" , 1)

We again choose to terminate Newton’s method if convergence is not achieved within
the first 100 iterations.

Figure 4.1: Zoomed in section of the finite element discretisation.

In this report as in [FBB16, Sec. 4.4], we choose the following parameters: gravita-
tional body force B = (0,−1000), traction T = 0, E = 106 and ν = 0.3. Furthermore,
we impose Dirichlet boundary conditions on the left and right boundaries

u(0, ·) = (0, 0), u(1, ·) = (−ε, 0), (4.6)

where ε is the parameter to be numerically continued.

x l = CompiledSubDomain ( " ( std : : abs ( x [ 0 ] ) < DOLFIN_EPS) && on_boundary" )
xr = CompiledSubDomain ( " ( std : : abs ( x [0 ]−1) < DOLFIN_EPS) && on_boundary" )
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# Spec i f y the constant eps
eps = Constant ( 0 . 2 )

# Def ine D i r i c h l e t boundary (x = 0 or x = 1)
bc l = Dir ichletBC (V, ( 0 . 0 , 0 . 0 ) , x l )
bcr = Dir ichletBC (V, (−eps , 0 . 0 ) , xr )
bcs = [ bcl , bcr ]

We wish to compute minimizers of (4.1) by seeking solutions u ∈ Vε such that

Π′(u; v) = 0 for all v ∈ V, (4.7)

where for a fixed ε we have Vε = {u ∈ H1(Ω;R2) : u(0, ·) = (0, 0), u(1, ·) = (−ε, 0)}.
At minimum points of Π, the Gâteaux derivative of Π is zero for all displacement
fields, i.e.

dΠ(u+ τv)

dτ

∣∣∣∣
τ=0

= 0 for all v ∈ V. (4.8)

# Stra in energy dens i ty f o r compre s s ib l e neo−Hookean model
p s i = (mu/2) ∗( I c − 2) − mu∗ ln ( J ) + ( lambd/2) ∗( ln ( J ) ) ∗∗2

# Poten t i a l energy
Pi = ps i ∗dx − dot (B, u) ∗dx − dot (T, u) ∗ds

# Compute Gateaux d e r i v a t i v e o f Pi
F = de r i v a t i v e ( Pi , u , v )

Since the problem is nonlinear, we must find the Jacobian of (4.8) to solve the problem
using Newton’s method.

We solve (4.7) from ε = 0 to ε = 0.2, with small continuation steps of the form

f o r eps_val in l i s t (np . l i n s p a c e (0 . 1275 , 0 . 2 , 500) ) :

Note that using different initial values in the numerical continuation process, we can
essentially recover different solutions to (4.7). The ‘trick’ is to take very small steps
between the disconnected parts of the bifurcation diagram to switch between different
solution branches. Some of the solutions are shown in Figure 4.2.
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Figure 4.2: A sample of the solutions of the hyperelastic PDE (4.7) for ε = 0.2. The
color refers to the magnitude of the displacement of the reference configuration, with
blue being smaller than red. All subfigures are plotted with different color bars.

Note that solutions of the opposite sign also exist. For example, for the first
buckling eigenmode the following shape was found in [FBB16, Fig. 4.5]

The authors of [FBB16] used a powerful algorithm for computing bifurcation di-
agrams, called deflated continuation, however, the algorithm is not implemented in
this report. The bifurcation diagram would be symmetric about the ε-axis1 if we
chose both applied forces to be zero, i.e. B = 0 and T = 0. As the parameter ε is
increased, the diagram undergoes a series of bifurcations, but since we are imposing
a gravitational body force B, the reflective symmetry is broken and the bifurcation
diagram is disconnected.

4.2 Deformation of a Hyperelastic Cuboid (3D)

In this report, we present a hyperelastic model to study the effect of twisting a cuboid
made up of a hyperelastic material. This is inspired by the demo example in hypere-
lasticity, as described in [LMW12]. More specifically, we investigate the behaviour of

1This is also known as a Z2 reflective symmetry. In general, the Zn group describes a symmetry
of a plane figure invariant after a rotation of 2π/n degrees.
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the three-dimensional compressible Mooney-Rivlin model and show briefly the results
of using the neo-Hookean model in Appendix C.

In Table 2, we present the material parameters used in the numerical implemen-
tation of the two hyperelasticity models.

Description Value

E, Young’s modulus 106

ν, Poisson ratio 0.3
κ, bulk modulus E

3(1−2ν)

µ, Lamé parameter E
2(1+ν)

λ, Lamé parameter Eν
(1+ν)(1−2ν)

Table 2: Material parameter specification for three-dimensional cuboid models.

For both hyperelasticity models in this report, we use: gravitational body force B =

(0.0,−0.5, 0.0) and traction force on the boundary T = (1.0, 0.0, 0.0). Furthermore,
the boundary conditions that ensure a twisting by 60◦ are given by Dirichlet boundary
conditions on Γ0 = 0× (0, 1)× (0, 1) and Γ1 = 1.25× (0, 1)× (0, 1)

u|Γ0
=

 0

0

0

 and u|Γ1
=

 0

0.5[0.5 + (y − 0.5) cos(π/3)− (z − 0.5) sin(π/3)− y]

0.5[0.5 + (y − 0.5) sin(π/3) + (z − 0.5) cos(π/3)− z]

 ,

where u is the displacement field. The cuboid has dimensions (0, 1.25)×(0, 1)×(0, 1).

4.2.1 Mooney-Rivlin 3D model

Here we study the Mooney-Rivlin hyperelastic model [Moo40, Riv48]. Let us intro-
duce the relevant invariants of the right Cauchy-Green tensor. We have J = det(F ),
the principal invariants of the isochoric part I1 = tr(C) and I2 = 1

2
[tr(C)2 − tr(C2)].

The compressible Mooney-Rivlin stored energy density function ψ is given by

ψ = c1(I1 − 3) + c2(I2 − 3) + κ(J − 1)2, (4.9)

where c1 and c2 are material constants. In the implementation we arbitrarily choose
c1 = µ/2 and c2 = µ/4. If we chose c1 = µ/2 and c2 = 0, then we would recover
the compressible neo-Hookean solid, which is a special case of a Mooney-Rivlin solid,
with a stored energy density function given by (C.1), found in Appendix C.

The results are shown in Figure 4.3, with the elasticity parameters as shown in
Table 2. Note that the result is the same (both qualitatively and quantitatively)
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whether the compressible neo-Hookean or the Mooney-Rivlin model is used, and so
the model works for different materials. See Figure C.1.

Figure 4.3: Deformation of a Mooney-Rivlin cuboid of dimensions x = 1.25, y = z = 1

after twisting it through 60◦. The black outline is the initially undeformed cuboid.

5 Conclusion

In this report, we investigated numerically the deformation of two different cases
of 1D elastic beams and determined the accuracy of our code using the method of
manufactured solutions. We also studied 2D hyperelastic beams and the deformation
of hyperelastic cuboids under twisting. These problems were solved using FEniCS
which is a powerful tool for implementing the finite element method. We found that
in some cases, applying a certain forcing load, causes the beams to exhibit interesting
behaviour, such as buckling, which results in various eigenmodes.

An interesting extension to this work would be to study the deformation of bodies
composed of multiple materials or the bifurcation of buckling of spherical caps under
hydrostatic pressure or some load system, as illustrated in Figure 5.1. In this problem,
the parameter λ would denote the hydrostatic pressure and u the measure of distortion
from the uniform spherical configuration. This problem would also have an associated
bifurcation diagram.

Figure 5.1: Buckling of a spherical cap under hydrostatic pressure [Ant05, Fig. 2.9].
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Appendix A More on Diving Boards

In this appendix we present some analytical results on the problem of the deforming
diving board under a forcing load. If we multiply (2.9) by dθ

ds
and integrate once with

respect to s, we obtain the following equation(
dθ

ds

)2

=
2F

EI
(sin θ + sinα), (A.1)

where α = −θ(L). When taking the square root, we note that we expect dθ
ds

to be
negative and thus obtain the solution in parametric form as∫ −θ

0

dθ̃√
sinα− sin θ̃

= s

√
2F

EI
, (A.2)

where θ = −α when s = L, and so we can write the transcendental equation∫ α

0

dθ̃√
sinα− sin θ̃

= L

√
2F

EI
, (A.3)

which can be written in terms of so-called elliptic integrals.
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Appendix B Maple code for MMS

For finding the source term in the method of manufactured solutions we had to use
the software Maple. The code is shown below for both one-dimensional elasticity
problems. We start with the diving board example.

The following Maple code is used to determine f for the Euler’s elastica problem.
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Appendix C Nonlinear Elasticity Summary

In Subsection 4.2, we started with a theoretical background leading to the necessary
governing equations. We attained a weak form that was used in the code to solve an
example on a simple geometry, a cuboid. The weak form is valid for any geometry,
so the code can be used in other cases.

Description Formula

Infinitesimal strain tensor ε = 1
2

(
∇u+∇u>

)
Deformation Gradient F = 1 +∇u

Right Cauchy-Green tensor C = F>F

Green-Lagrange strain tensor E = 1
2
(C − 1)

Volumetric and isochoric
decomposition of C C = J−2/3C, J = det(F )

Principal invariants of C I1 = tr(C), I2 = 1
2
[tr(C)2 − tr(C2)], I3 = det(C)

Table 3: Definitions of some common strain measures [LMW12, pp. 528].

The material model is general enough to allow for us to consider different popular
material models such as

1. St. Venant-Kirchhoff model: ψ = λ
2
tr(E)2 + µtr(E2),

2. Mooney-Rivlin model: ψ = c1(I1 − 3) + c2(I2 − 3) + κ(J − 1)2.

C.1 Neo-Hookean 3D model

We also considered a three-dimensional compressible neo-Hookean hyperelastic PDE,
that that we solved in FEniCS. The same constitutive equations as in Section 4.1
hold. Given that now we are working in a three-dimensional frame, the compressible
neo-Hookean stored energy density is now given by

ψ =
µ

2
(Ic − 3)− µ log(J) +

λ

2
log(J)2. (C.1)

Note the difference in the log(J)2 and (J−1)2 terms. The precise form of this term is
not important as long as it reduces to zero when J is approximately 1 and it quickly
increases when J deviates from 1.

23



Figure C.1: Deformation of a neo-Hookean cuboid of dimensions x = 1.25, y = z = 1

after twisting it through 60◦. The black outline is the initially undeformed cuboid.
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