Ordinary Differential Equations Fall 2023 tentative schedule

The following (preliminary) schedule serves as a guideline for the sections covered in the lecture. Homework assignments are **not** included below, you have to check Brightspace for the latest updates and to keep up with the deadlines!

Math UA 262 Section 005 Schedule		
Week	Date	Topic
1	Wed, Sep 6th	Introduction and first-order ODEs (§1.1, 1.2)
2	Mon, Sep 11th Wed, Sep 13th	Separation of variables (§1.2, 1.4) Exact equations (§1.9)
3	Mon, Sep 18th Wed, Sep 20th	Existence and Uniqueness; Picard iteration (§1.10) Numerical Approximation; Euler methods (§1.13)
4	Mon, Sep 25th Wed, Sep 27th	Improved Euler, Runge-Kutta method ($\S 1.13, 1.15, 1.16$) Second order linear equations ($\S 2.1$)
5	Mon, Oct 2nd Wed, Oct 4th	Constant coefficients: homogeneous equations ($\S 2.2$) Constant coefficients: nonhomogeneous equations, series solutions ($\S 2.3,\ 2.4$)
6	Mon, Oct 9th Wed, Oct 11th	— Fall Break (no class) — Series solutions, Singular points (§2.8, 2.8.1)
7	Mon, Oct 16th Wed, Oct 18th	Method of Frobenius, special functions (§2.8.2, 2.8.3) Systems of equations (review of linear algebra) (§3.1–3.7)
8	Mon, Oct 23rd Wed, Oct 25th	Midterm Exam Linear ODE systems: Eigenvalues and eigenvectors (§3.8)
9	Mon, Oct 30th Wed, Nov 1st	Complex & Equal roots (§3.9, 3.10) Matrix solutions (§3.11, 3.12)
10	Mon, Nov 6th Wed, Nov 8th	Stability of linear systems (§4.1, 4.2) Stability of equilibrium solutions, Lyapunov's second method (§4.3 [B], 9.6 [BDM])
11	Mon, Nov 13th Wed, Nov 15th	Phase plane analysis, (§4.4) Phase portrait of linear systems (§4.7)
12	Mon, Nov 20th Wed, Nov 22nd	Laplace transforms (§2.9) — Fall Break (no class) —
13	Mon, Nov 27th Wed, Nov 29th	Laplace transforms (§2.10) Properties of Laplace transforms, discontinuous forcing (§2.10, 2.11)
14	Mon, Dec 4th Wed, Dec 6th	Intro to PDEs: Heat equation ($\S 5.2$) Fourier series ($\S 5.4$)
15	Mon, Dec 11th Wed, Dec 13th	Boundary value problems, Hermitian operators (§5.1, 6.3) Last Class (Review)