For polynomials: $0 \leq x \leq 1$

(power functions)

For large x, when you are comparing power function with positive coefficients, the ones with the higher power dom motor.

Comparing power functions to exponential functions
Any positive increasing exponential function eventually (for sarge enough x) grows faster than any power function.

Reminder: $\begin{aligned} y & =a b^{x} & \text { exponential function } & \text { (variable in exponent) } \\ y & =x^{n} & \text { power function } & \text { (variable in base) }\end{aligned}$

For large $x, 2^{x}$ dominates x^{4}.

- Any positive decreasing exponential function eventually (for large enough x) approaches the horizontal axis fester than any. decreasing, positive power function.

$$
\text { eng. } \begin{aligned}
& y=2^{-x} \text { (decreasing, i.e. } \frac{1}{2^{x}} \text {) } \\
& \text { and } \begin{aligned}
& y=x^{-2}=\frac{1}{x^{2}} \\
& \\
& \uparrow_{2^{-x}}^{1 / x^{2}}
\end{aligned}
\end{aligned}
$$

Comparing \log and power functions
Any positive increasing power function eventually grows faster than $y=\log x$ and $y=\ln (x)$.

$$
\begin{array}{ll}
& \text { lieastdominant) } \quad \text { (most dominant) } \\
\text { Summary: } & \log s<\text { power }<\text { exponential }
\end{array}
$$

