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Traditional optical fibers
•  Consist of layers of different materials.

•  These have different refractive indices.

Figure: Schematic diagram of optical fiber
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Total internal reflection (TIR)

•  Light travels by TIR: core and cladding have 
    different refractive indices (n1, n2)
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Microstructured optical fibers (MOFs)
•  Consist of a thread of a single material, usually glass or silica.
•  Has a solid or air core surrounded by an array of air channels.

Figure: a) A MOF with a hexagonal arrangement. b) Diameters of central holes 
and cladding holes are 5.8 and 2.8 μm. c) Silica layers between adjacent air 
holes are of order  50—100 nm.

Y. Huang and Y. Xu and A. Yariv. Fabrication of functional microstructured optical fibers 
through a selective filling technique. Applied Physics Letters. 2004



Fabrication process
1.  Preform is fed into the furnace.
2.  It gets heated up.
3.  Preform is drawn into fiber.
4.  Wrapped around spool.
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AIM: develop mathematical models to tell 
experimentalists how to design the preform.

The cost of trial and error:
Preform cost: ~$8,000
Fiber draw: ~$5,500

	

Preform is currently	

constructed	through 
trial and error.

2D cross-plane
problem3D problem



The problem: final fiber product differs 
from preform geometry

•  A preform that has circular channels yields a 
fiber that has channels that are not circular.

•  Surface tension deforms the geometrical cross 
section.

•  These shape deformations are undesired.

Goal: Predict these deformations



What has been done?
•  Griffiths and Howell studied the evolution of a 

single closed viscous loop.
•  Key features:
– Very viscous
– Asymptotic approximation: long and thin geometry
– Surface tension on free boundaries

I.M. Griffiths and P. D. Howell. The surface-tension-driven evolution of a two-dimensional annular viscous tube,
 Journal of Fluid Mechanics. 2007



2D model describing the shape evolution of the cross-section of a MOF



•  Crowdy uses complex variables and numerical 
methods to solve free BVPs with multiple holes.

D.G. Crowdy. et al. Elliptical pore regularisation of the inverse problem for 
microstructured optical fiber fabrication, Journal of Fluid Mechanics. 2015
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Model answers the following

Forward problem:
•  For a given preform geometry, what will the 

final MOF look like?



Model answers the following

Forward problem:
•  For a given preform geometry, what will the 

final MOF look like?

Inverse problem: 
•  For a desired MOF geometry, what preform 

will produce it?



Remainder of the talk

•  Model derivation of uniformly thick viscous 
sheet				

•  Free viscous sheet
•  Simply-supported viscous sheet
•  Clamped viscous sheet
•  Closed-loop viscous sheet

				

•  Generalization to non-uniform thickness



Governing equations

•  Geometrical identities:

•  Moment balance:

Model derivation

θ(s, t) is the centerline
A(t), B(t) are the total tensions in the x-, y-direction, respectively 



•  Evolution equation for thickness:

•  Constitutive relation for bending moment:

•  Non-dimensionalization of governing equations:



Evolution equation used in numerical simulations:

Assume an initial uniform thickness, h, of 
magnitude one.

4th order in space è four boundary conditions (BCs) 
1st order in time è one initial condition



Evolution equation used in numerical simulations:
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with length of viscous sheet, L(t) = 1/(1+t/2), found by mass-conservation.
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Free viscous sheet

•  Total tensions are zero: A(τ) = 0 = Β(τ).
•  BCs: Moments should vanish at both ends

•  Evolution equation becomes



Shape predictions
Choose the following
initial corner condition:

Exact analytical solution:
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Simply-supported viscous sheet

Boundary conditions
•  Specify the position of each end

•  Zero bending moments at both ends



Shape predictions
Choose the following initial corner condition:

τ	=	0	

Reflectional symmetry:
B(τ) = 0



Effect of corner smoothing
Focus on the following initial configurations



Clamped viscous sheet
Boundary conditions
•  Specify the position at each end

•  Fix the angle at each end
                                       and                                 . 



Shape predictions
Choose as initial condition:

τ	=	0	

Clamped conditions:



Closed-loop viscous sheet
Boundary conditions
•  The ends of the viscous sheet meet

•  The angle at the ends is given by

    where we choose                 .



Steady solutions

•  Focus on profiles with zero total tensions in 
either direction.

•  Profiles that possess rotational symmetry:

•  Equation solved analytically as



As τ increases, the centerline tends to
 a circle, regardless of the initial shape.

•  Corners persist but are not preserved.
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Relation between s and ξ

•  Net conservation relation:

•  Thus, we obtain:

Lagrangian Eulerian



Plotting thickness profiles

•  To plot the thickness profiles we use:

   
   where    ≠ 0 is small and                                        



Simply-supported and non-uniform

•  Thin parts of the viscous sheet evolve at a faster 
rate than thick parts.



Clamped and non-uniform



Shape predictions
Choose initial conditions as:

and This is an initially circular centerline.



Steady solutions

If the centerline and the thickness profiles satisfy:
                                         
                                        and                                ,

where n  is a common factor of the degrees of 
rotational symmetry.



•  Example:

   with                                                  and          . 
n = 4 n = 5

Steady solutions



No rotational symmetry
•  Ends do not join up if we assume                  

for not rotationally symmetric profiles.

n = 4n = 3



Junction of n viscous sheets
•  Balancing moments at 
    the n-viscous-sheets
    junction:

•  Identity:

•  All interior angles tend to same value as time increases.



Impact of our model

•  Inverse problem is easy to solve.
•  We overcome the need for expensive 

computational methods.
•  We get useful insights not available through 

experiments.
•  The cost of trial and error is reduced, saving 

lots of money!



    Applications 	



•  Connect edges with non-uniform thickness.
Future work
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