The leapfrogging of vortex pairs
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A vortex pair in a uniform flow
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Complex potential and stream function
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Compare the imaginary parts to get the stream function:
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Streamlines are defined by a constant stream function. l |
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How do we find the separating streamline?
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Find stagnation point
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Two vortices and stagnation
points form an equilateral triangle
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Vortex rings




Leapfrogging motion of vortex pairs



Schematic diagram
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Important coordinates

Relative coordinates
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Centre-of-vorticity coordinates
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From figure, observe that
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Governing equations (induced velocities)

Consider the vortex with strength K;and find the velocities induced by the other three vortices
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So, y, a constant and can be considered as the
mean width of the vortex pair.




Thinking in terms of a Hamiltonian

Recall that the motion of individual fluid particles is given by

.y Y
ib—ay where y——%

This has a Hamiltonian structure with Hamiltonian ¢ and conjugate variables x, vy.
The stream function for the fluid due to N vortices is

N
_ , K;
¢_Z¢’(w) where %:—%lnHﬂ?—fBiH
i=1

H is related to w and physically it represents the kinetic energy of the N-vortex
system.



Hamiltonian and velocities

Hamiltonian system:
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The Hamiltonian is a conserved quantity that can be thought of as the energy of
the vortex system.
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More on the Hamiltonian

The Hamiltonian is a conserved quantity that can be thought of as the energy
of the vortex system.
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From the energy conservation we get
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Vortex trajectories in relative coordinates

Each curve corresponds to a different energy value E.
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Steps for finding the leapfrogging criterion

We let the relative coordinate in the x-direction go to +/- infinity

Now take the derivative wrt y, and set it equal to 0. We obtain
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Leapfrogging criterion in terms of energies
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In the case of equality the
period of the leapfrogging is infinite.




Leapfrogging criterion in terms of vortex pair separation

There is an upper bound for the distance, d, between two given vortex pairs for which
leapfrogging occurs.
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Brief derivation of the criterion

How did we derive this upper bound for d?
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