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Abstract

This thesis proposes a general framework to extract information from low-resolution

data, a crucial challenge in applications ranging from microscopy, astronomy and

medical imaging to geophysics, signal processing and spectroscopy. Assume that we

only have information about the spectrum of a superposition of point sources in the

low-frequency band [−flo, flo]. We show that as long as the sources are separated

by 2/flo, solving a simple convex program achieves exact recovery, in the sense that

the original signal is the unique solution to the optimization problem. This is estab-

lished by leveraging a novel proof technique which constructs a dual certificate by

interpolation. In addition, we describe how to implement the recovery algorithm by

solving a finite-dimensional semidefinite program, which locates the support of the

signal with infinite precision. The guarantees extend to higher dimensions and other

models. They imply, for instance, that we can recover a piecewise-smooth function

from bandlimited data by super-resolving the discontinuity points. We also provide

an analysis of the stability of our method in the presence of noise. On the one hand,

we prove that it is possible to extrapolate the spectrum of the original signal up to

a frequency fhi > flo to obtain an approximation error between the higher-resolution

reconstruction and the truth that is proportional to the noise level times the square

of the super-resolution factor (SRF) fhi/flo. On the other hand, we derive support-

detection guarantees that quantify the precision with which we can determine the

location of each individual point source in the signal.
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Reinhard, Kenji and Raf.

I gratefully acknowledge financial support from Fundación Caja Madrid and from

Fundación La Caixa, which does a great job of supporting Spanish students abroad.

On a more personal note, I would like to thank Mahdi for our conversations about

castles and lawnmowers; Ricardo and Juan for some memorable nights; little Dani,

Uri, Félix, Idoia and Mı́kel for making Stanford feel more like home; Jacobo for those
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Chapter 1

Introduction

As Lord Rayleigh pointed out in his seminal 1891 paper On Pin-hole Photography [82],

it has long been known that the resolving power of lenses, however perfect, is lim-

ited. Indeed, diffraction imposes an inflexible limit on the resolution of any optical

system [73]. However we are often interested in information that is only apparent

beyond this limit. For instance, in microscopy [74], astronomy [81] or medical imag-

ing [58] it may be challenging to discern cellular structures, celestial bodies or incipient

tumors from the available data. This is illustrated by the image on the left of Fig-

ure 1.11, which shows measurements of the interior of a cell obtained by fluorescence

microscopy. The limited resolution of the microscope produces aliasing artifacts that

completely obscure the fine-scale details of the image. The aim of super-resolution

is to uncover such fine-scale structure from coarse-scale measurements. This is a

fundamental problem in optics [73], electronic imaging [75], where photon shot noise

constrains the minimum possible pixel size, and many other areas including spec-

troscopy [60], radar [76], non-optical medical imaging [67] and seismology [68].

The main objective of this thesis is to develop and analyze effective methods for

signal estimation from low-resolution measurements; a problem that we call super-

resolution. We warn the reader that this word has different meanings in different

disciplines. In optics it is usually used to describe data-acquisition techniques de-

signed to overcome the diffraction limit [73]. In image-processing and computer-vision

1I would like to thank Veniamin Morgenshtern for these two images.
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Raw data Super-resolved image

Figure 1.1: An example of super-resolution applied to cell imaging using fluorescence
microscopy data. The measurements on the left are contaminated by noise and heavy
aliasing. Super-resolving the probes reveals the fine-scale details of the cell, as we can see
on the right.

applications the term tends to refer to the problem of obtaining a high-resolution im-

age either from several low-resolution images [77] or by upsampling a single image

while preserving its edges and hallucinating textures in a reasonable way [52]. Here,

super-resolution denotes the inverse problem of estimating a signal from low-pass

measurements. In contrast to the previous definitions, we assume that the data-

acquisition mechanism is fixed and we aim to recover rather than hallucinate the lost

high-resolution information.

1.1 Super-resolution of point sources

In order to super-resolve a signal it is necessary to leverage some prior knowledge

about its structure. Otherwise the problem is hopelessly ill posed; the missing spec-

trum can be filled in arbitrarily to produce estimates that correspond to the data.

In this work we consider signals that are well modeled as superpositions of point

sources, although our analysis extends to other classes of signals such as piecewise-

differentiable functions. Point sources are an important model in many applications.
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They are used to represent celestial bodies in astronomy [55], neuron spikes in neuro-

science [83] or line spectra in signal processing and spectroscopy [70,95]. In addition,

locating pointwise fluorescent probes is a crucial step in some optical super-resolution

procedures capable of handling more complicated objects. Techniques such as pho-

toactivated localization microscopy (PALM) [13,62] or stochastic optical reconstruc-

tion microscopy (STORM) [88] are based on localizing probes that switch randomly

between a fluorescent and a non-fluorescent state. To obtain an image of a certain ob-

ject, multiple frames are gathered. Each frame consists of a superposition of blurred

light sources that correspond to the active probes. Deblurring these sources and

combining the results allows to super-resolve the object of interest. The image to the

right of Figure 1.1 was generated in this way.

Mathematically, we will be interested on signals modeled as sums of Dirac mea-

sures or spikes supported on a set T

x :=
∑
tj∈T

cjδtj , (1.1.1)

where δτ is a Dirac measure at τ and the amplitudes aj may be complex valued.

In many of the applications mentioned previously a reasonable model for the mea-

surement process is the convolution of the signal with a low-pass point spread func-

tion (PSF) φ. This convolution smooths out the fine-scale details producing a low-

resolution version of the original signal,

xLR (t) := φ ∗ x (t) =
∑
tj∈T

cjφ (t− tj) , (1.1.2)

as illustrated at the top of Figure 1.2. The aim of spatial super-resolution is to

estimate x from xLR, a problem which is often also referred to as deconvolution.

Recovering the lost fine-scale information amounts to extrapolating the spectrum of

x. This becomes apparent when we consider the sensing mechanism in the frequency

domain. If the cut-off frequency of the PSF is equal to flo, the spectrum of xLR

x̂LR = φ̂ x̂ = φ̂ Π[−flo,flo]d x̂,
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Spectrum (real part)

Signal

Data

Spatial super-resolution

Spectrum (magnitude)

Signal

Data

Spectral super-resolution

Figure 1.2: Schematic illustration of spatial and spectral super-resolution.
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where d is the ambient dimension, f̂ denotes the Fourier transform of a function or

measure f and Π[−flo,flo]d is an indicator function that is zero out of the set [−flo, flo]d.

Consequently, the high frequency information in the signal is suppressed in the data.

Super-resolution aims to extrapolate this information from the low-pass measure-

ments.

In this thesis, we assume that the PSF of the sensing mechanism is known. This is

usually a realistic assumption in point-source super-resolution as long as the measure-

ment process is indeed space-invariant. In such cases the PSF can be estimated by

locating an isolated blurred source in the data. However, for general images or PSFs

that are not low pass, which arise for instance due to motion blurring, it is necessary to

jointly estimate the PSF and the signal; a problem known as blind deconvolution [22].

An important instance of the model given by (1.1.1) and (1.1.2) is when the signal

is one dimensional and the Fourier transform of the PSF φ is constant over [−flo, flo],

i.e. φ is a periodized sinc or Dirichlet kernel. In this case, since the support of xLR is

restricted to the unit interval, it follows from the sampling theorem that its spectrum

is completely determined by the discrete samples

y(k) = x̂LR(k) =

∫ 1

0

e−i2πktx(dt) =
∑
j

cje
−i2πktj , k ∈ Z, |k| ≤ flo, (1.1.3)

where we assume for simplicity that flo is an integer. In a more compact form,

y = Fn x

where y ∈ Cn and Fn is the linear operator that maps a measure or function to its

lowest n := 2flo + 1 Fourier coefficients.

The interest of analyzing data of the form (1.1.3) is twofold. First, many of the

conclusions obtained from such an analysis translate almost directly to cases where

the sensing mechanism is based on low-pass PSFs other than the periodized sinc.

Second, the model is of prime importance in signal-processing applications. Indeed,

if we interpret x as the atomic spectrum of a multi-sinusoidal signal then the data y

have a very natural interpretation: they correspond to a finite number of samples of
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the signal measured at the Nyquist rate. Truncating the samples in the time domain

is equivalent to convolving the spectrum of the signal with a periodized sinc, which

induces aliasing in the frequency domain as depicted in the lower half of Figure 1.2.

Spectral super-resolution is the problem of estimating the line spectra x from such

measurements.

In the signal-processing literature, spectral super-resolution has particular sig-

nificance in direction-of-arrival (DOA) problems where the aim is to determine the

direction from which a propagating wave arrives at an array of sensors. In fact, some

of the most popular techniques for spectral super-resolution, such as ESPRIT [85],

have been motivated by this problem. We refer the reader to [1, 108] for a detailed

account of DOA problems and their connection to spectral super-resolution.

Before presenting an outline of the thesis and an overview of the main results, we

provide some context by describing the state of the art for tackling the problems of

spatial and spectral super-resolution.

1.2 Previous art

Existing super-resolution methods can be divided into two main categories: nonpara-

metric approaches, widely used in both spatial and spectral super-resolution, and

parametric approaches based on Prony’s method, which are popular mainly in spec-

tral super-resolution. The distinction is based on whether the algorithm receives the

number of sources present in the original signal as input. If this is the case, the

method is considered parametric.

1.2.1 Nonparametric estimation

Nonparametric techniques can be classified in turn depending on the PSF of the

sensing process. We begin by describing techniques applied in spatial super-resolution

and then move on to those adapted to spectral super-resolution, where the PSF is a

periodized sinc.



CHAPTER 1. INTRODUCTION 7

Spatial super-resolution

In this section, we assume that the low-resolution measurements of our signal of inter-

est x are obtained as in (1.1.2) and in addition are corrupted by a certain perturbation

z,

xdata (t) := xLR (t) + z (t) = φ ∗ x (t) + z (t) . (1.2.1)

Imagine that we know that the signal consists of a single blurred source. In this case, it

seems reasonable to estimate the location of the source by fitting the PSF to the data.

The fit can be carried out, for instance, by minimizing a least-squares cost function.

This is a common choice for two reasons: first, the minimizer can be computed very

efficiently, as we explain below, and second, the result corresponds to the maximum-

likelihood estimate under Gaussian noise. For a single source, performing a least-

squares fit amounts to finding the shift that maximizes the inner product between

the data and the PSF φ shifted by t̃, which is denoted by φt̃. More precisely, the

estimated location

test = arg min
t̃

min
α∈R
||xdata − αφt̃||2

= arg max
t̃
|〈xdata, φt̃〉| . (1.2.2)

Here 〈·, ·〉 is the inner product in L2 (or RN for some integer N if the data are

discretized). The procedure is equivalent to performing detection using matched

filters [54], a popular technique in signal processing and communications.

When more than one point source is present, estimating the signal support may

be significantly more difficult, depending on to what extent the data corresponding

to the different point sources can be teased apart. If the sources are far enough with

respect to the decay of the PSF, the aliasing caused by neighboring blurred sources

may be negligible. In this case, one can just fit the PSF locally to each of them. This

approach is often followed in fluorescence microscopy [13, 62, 88], where a Gaussian

parametric model can be used to approximate the PSF [110].

If there is interference between the blurred sources, then the problem becomes
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much more challenging. An option is to apply (1.2.2) iteratively to estimate the

sources one at a time in a greedy fashion. In [5] this scheme is applied to seismography

and in [63] to astronomy, where it is known as CLEAN. Assuming a statistical model

on the distribution of the spikes and on the noise allows to develop more sophisticated

schemes. For example, a common choice is to model the noise as Gaussian and

the spikes as following a Bernouilli prior. An approximation to the maximum a

posteriori (MAP) estimate can then be obtained by expectation maximization [31]

or by successively optimizing the estimate with respect to the location of one of the

spikes while fixing the rest, a technique known as Single Most Likely Replacement

(SMLR) [69] which is equivalent to maximizing the MAP criterion by coordinate

ascent. Although these methods may work well in some cases, for many applications

super-resolution of sources that are clustered is very challenging. As a result, in

fluorescence microscopy the data is usually measured at a rate that ensures a certain

separation between the active fluorophores [13, 62, 88]. Developing methods capable

of operating at higher densities is an active research area (see for example [112] for

an approach that is very related to the methods developed in this thesis).

Spectral super-resolution

In this section we focus on the case where φ is a periodized sinc, so that the measure-

ments are described by (1.1.3) and we have access to

ydata = Fn x+ z, (1.2.3)

where ydata ∈ Cn and z ∈ Cn is an unknown perturbation. By far the most popular

nonparametric method for analyzing this kind of data is the periodogram [91] (see

also Chapter 2 in [98] for a thorough analysis). The periodogram is computed by

projecting the data onto signal space, in order to obtain an approximation to the

spectrum of the original signal,

P = F∗n ydata.
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In a high signal-to-noise regime,

P (t) ≈ (F∗nFn x) (t) =
∑
tj∈T

cjDflo (t− tj) ,

where Dflo is the periodized sinc or Dirichlet kernel

Dflo (t) :=

flo∑
k=−flo

ei2πkt =

1 if t = 0

sin((2flo+1)πt)
(2flo+1) sin(πt)

otherwise .

Just to clarify, in most applications t would index the frequency domain, not the time

domain, but we keep this notation for the sake of consistency. Also, flo no longer has

a physical meaning (beyond determining the number of time-domain samples) in

contrast to spatial super-resolution where it represents the cut-off frequency of the

sensing mechanism.

In the absence of noise, the periodogram is consequently the result of convolving

the line spectra with a periodized sinc, which is equivalent to the projection of the

original line spectra onto a space of low-pass functions. Since Dflo is unimodal, a

straightforward way to detect the line spectra is to locate local maxima of P that are

far apart. The problem with this approach is that the side lobes corresponding to large

blurred spikes may mask the presence of smaller spikes. As a result, the periodogram

is not very useful if the spikes are not far enough from each other or if their amplitudes

differ substantially, even if no noise is present in the data. The image at the center

of Figure 1.3 illustrates this: detecting some of the lower-amplitude spikes from the

periodogram is impossible.

In order to alleviate this problem one can apply a window function ŵ ∈ Cn to the

data before computing the periodogram,

yŵ = ydata · ŵ,
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where · denotes pointwise multiplication. If the noise is small, the windowed peri-

odogram

Pŵ(f) = F∗n yŵ ≈
∑
tj∈T

cjw (t− tj) ,

where w denotes the inverse Fourier transform of the window function. Ideally, w

should be as spiky as possible to make it easier to locate the support of the line

spectra from the windowed periodogram. However, this is challenging due to the

constraint that ŵ has finite support and hence w is a low-pass function. In the image

on the top right of Figure 1.3 we apply a Gaussian window to the data. To be more

precise, we set ŵ to be a truncated Gaussian, so that w is equal to the convolution

between a periodized sinc and a periodized Gaussian. The resulting periodogram,

shown at the center of Figure 1.3, has much less spectral leakage from the largest

line spectra, due to the fact that the Gaussian window has lower side lobes than the

periodized sinc. However, the latter is spikier at the origin, which allows to better

distinguish neighboring line spectra with similar amplitudes. This is also apparent

in the image, especially for the line spectra on the right. In general, designing an

adequate window implies finding a good tradeoff between the width of the main lobe

and the height of the side lobes. We refer the reader to [59] for a detailed account of

design considerations and types of window function.

To conclude, the periodogram is a useful method to obtain a general idea of the

spectral structure of the signal and can provide insight as to the number of sources

and their approximate location, especially if the data is processed with a suitable

window function. However, the method does not provide a precise localization of the

line spectra of the original signal even in the absence of noise. This is the aim of the

techniques described in the following section.

1.2.2 Parametric methods for spectral super-resolution

In this section we review parametric methods for spectral analysis based on Prony’s

method. These algorithms take the number of line spectra of the original signal
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Data Window function
Windowed data

Signal (magnitude)
Periodogram

Signal (magnitude)
Periodogram

Signal (magnitude)
Windowed periodogram

Signal (magnitude)
Windowed periodogram

Figure 1.3: Example of data in spectral super-resolution generated according to (1.1.3)
before (top left) and after applying a window function (top right). No noise is added to
the data. Below we can see the periodogram (center) and windowed periodogram (bottom)
computed from the data. The scaling of the periodograms is set so that both the large and
small peaks can be seen on the plot.
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as input and return an estimate of their location. We would also like to mention

that algebraic techniques related to these parametric methods have been applied to

the location of singularities in the reconstruction of piecewise polynomial functions

from a finite number of Fourier coefficients (see [3, 6, 47] and references therein).

The theoretical analysis of these methods proves their accuracy up to a certain limit

related to the number of measurements.

Prony’s method

The following simple observation is the key idea behind Prony’s method [80]: the

position of s line spectra can be encoded as the zeros of a trigonometric polynomial

of order s. In fact, in the absence of noise, it turns out that we can always find

such a polynomial and achieve perfect spectral super-resolution by locating its roots.

Unfortunately, this good news comes with a caveat: the method can be extremely

unstable in the presence of noise, as we will show in a moment.

A first question that arises is whether a polynomial of order s with roots on the

support of the signal actually exists for any possible support. The answer is yes:

assume that x is as in (1.1.1) and |T | = s, then

PProny(t) :=
s∏
j=1

(
1− ei2π(t−tj)) = 1 +

s∑
l=1

vle
i2πlt, v0 := 1, (1.2.4)

is a polynomial of order s with roots located exactly on T .

Now, how can we find such a polynomial? We must relate the coefficients of the

polynomial to the available data. In spectral super-resolution the data correspond

to regular samples of the multi-sinusoidal signal, or equivalently to the Fourier coef-

ficients of the line spectra. We assume that we have access to n such measurements

x̂1, . . . , x̂n. This model is exactly equivalent to (1.1.3). Observe that for any integer

k, ∫ 1

0

ei2πktPProny(t)x(dt) =
s∑
j=0

cje
i2πktj

(
1− ei2π(tj−tj)) = 0.
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By Parseval’s Theorem this implies

∞∑
l=−∞

vlx̂k−l =
s∑
l=0

vlx̂k−l = 0, (1.2.5)

which provides us with an equation linking the coefficients of the Prony polynomial

and the Fourier coefficients of the signal for each k. The coefficients of the polynomial

can be interpreted as a filter that suppresses the signal x. This motivates the use

of the term annihilating filter in works on estimation of signals with a finite rate of

innovation [17, 109]. These are signals with a parametric representation that has a

finite number of degrees of freedom. The superpositions of Dirac measures that we

consider in spectral super-resolution belong to this class. For them, this approach

reduces to Prony’s method (see Section 3 in [109]).

If we select k to be between s+1 and n+s then (1.2.5) only involves the available

data. This provides a system of n equations, so that as long as n ≥ 2s, we have

enough equations to solve for the s unknown coefficients of the Prony polynomial

(recall that we fix v0 = 1). Prony’s method consists of solving this system and then

decoding the location of the line spectra by rooting the corresponding polynomial.

For simplicity we assume that n = 2s:

Input: Number of line spectra s, regular time samples x̂1, . . . , x̂n.

1. Solve the system of equations
x̂s . . . x̂2 x̂1

x̂s+1 . . . x̂3 x̂2

. . . . . . . . . . . .

x̂n−1 . . . x̂n−s+1 x̂n−s



ṽ1

ṽ2

· · ·
ṽs

 =


x̂s+1

x̂m+1

. . .

x̂n

 (1.2.6)

and set ṽ0 = 1.

2. Root the polynomial corresponding to ṽ0, . . . , ṽs to obtain its s roots z1, . . . ,

zs (for instance by building the companion matrix of the polynomial [79]).

3. For every root on the unit circle zj = ei2π(test)j output (test)j.
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It is straightforward to prove that this procedure achieves exact localization of the

line spectra in the absence of noise.

Lemma 1.2.1. In the absence of noise, the output of Prony’s method is equal to the

support of the line spectra of the original signal.

Proof. The coefficients of the polynomial (1.2.4) are a feasible solution for the system

of equations (1.2.6). In fact, they are the unique solution. To show this we compute

the factorization
x̂s . . . x̂2 x̂1

x̂s+1 . . . x̂3 x̂2

. . . . . . . . . . . .

x̂n−1 . . . x̂n−s+1 x̂n−s

 =


e−i2πt1 e−i2πt2 . . . e−i2πts

e−i2π2t1 e−i2π2t2 . . . e−i2π2ts

. . . . . . . . . . . .

e−i2πst1 e−i2πst2 . . . e−i2πsts



c1 0 . . . 0

0 c2 . . . 0

. . . . . . . . . . . .

0 0 . . . cs



e−i2π(s−1)t1 . . . e−i2πt1 1

e−i2π(s−1)t2 . . . e−i2π2t2 1

. . . . . . . . . . . .

e−i2π(s−1)ts . . . e−i2πsts 1

 .

The diagonal matrix is full rank as long as all the coefficients cj are non zero, whereas

the two remaining matrices are submatrices of Vandermonde matrices, and conse-

quently also full rank. As a result, the matrix in (1.2.6) is full rank, so the system

of equations has a unique solution equal to (1.2.4). This completes the proof, as

rooting (1.2.4) obviously yields the support of the line spectra.

Unfortunately, Prony’s method as presented above cannot be applied to real data

even if the signal-to-noise ratio is exceptionally high. The image on the left of Fig-

ure 1.4 shows how the Prony polynomial allows to super-resolve the location of the

line spectra to very high accuracy from noiseless data. However, on the right we can

see the result of applying the method to data that have a very small amount of noise

(the ratio between the `2 norm of the noise and the noiseless data is around 10−8!).

The roots of the Prony polynomial are perturbed away from the points of the unit

circle that correspond to the line spectra, so that it is no longer possible to accurately
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No noise SNR = 140 dB

Signal (magnitude)

Prony polynomial (magnitude)

Signal (magnitude)

Prony polynomial (magnitude)

Figure 1.4: Prony polynomial applied to the data in Figure 1.3 (left). On the right we
can see the effect of adding a very small quantity of noise to the data. The roots of the
polynomial no longer coincide with the line spectra of the original signal. Note that the
vertical axis is scaled differently in the two figures.

locate the support of the signal. It is consequently necessary to adapt the method to

deal with noisy data if there is to be any hope of applying it in any realistic scenario.

The following sections discuss such extensions.

Subspace methods

In this section we describe one of the most popular approaches for robustifying Prony’s

method. We will assume that the signal and the noise follow probabilistic models that

satisfy two assumptions:

• Assumption 1: The different sinusoidal components in the original signal are

of the form

x =
∑
tj∈T

cjδtj =
∑
tj∈T
|cj| eiφjδtj ,

where the phases φj are independent and uniformly distributed in the interval

[0, 2π], whereas the amplitudes are arbitrary and deterministic. Note that this
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implies that the expectation of x is equal to zero and that the covariance matrix

E [cc∗] = Dc, where

Dc :=


|c1|2 0 . . . 0

0 |c2|2 . . . 0

. . . . . . . . . . . .

0 0 . . . |cs|2

 .

• Assumption 2: The measurements are corrupted by white Gaussian noise with

zero mean and standard deviation σ, which is independent from the signal. At

time k we measure

yk =

∫ 1

0

e−i2πktx(dt) + zk, (1.2.7)

where z ∼ N(0, σ2I) is a zero-mean Gaussian random vector with covariance

matrix σ2I.

Let us compute the covariance matrix of the data under these assumptions. To ease

notation, for two integers n1 < n2 we define

an1:n2(t) :=


e−i2πn1t

e−i2π(n1+1)t

. . .

e−i2πn2t

 , An1:n2 :=
[
an1:n2 (t1) an1:n2 (t2) · · · an1:n2 (ts)

]
.

(1.2.8)

If the data consists of a vector y ∈ Cm of m samples of the form (1.2.7), we have

y = A1:mc+ z,

where c ∈ Cs is the vector of signal coefficients and z ∈ Cm is a noise vector. The

samples are indexed from 1 to m. This choice is made to simplify notation; we could

have taken anym contiguous integers (recall that we can interpret these measurements
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as time samples of a multisinusoidal signal, so choosing a different set of contiguous

integers merely introduces a time shift). Due to our two assumptions,

E [yy∗] = E [A1:mcc
∗A∗1:m + A1:mcz

∗ + zc∗A∗1:m + zz∗]

= A1:m E [cc∗]A∗1:m + A1:m E [c]E [z∗] + E [z]E [c∗]A∗1:m + E [zz∗]

= A1:mDcA
∗
1:m + σ2I.

The following lemma characterizes the eigendecomposition of the covariance matrix.

Lemma 1.2.2. The eigendecomposition of E [yy∗] is equal to

E [yy∗] =
[
US UN

] [Λ + σ2Is 0

0 σ2In−s

][
U∗S

U∗N

]
,

where US ∈ Cm×s is an orthonormal matrix that spans the column space of A1:m, UN ∈
Cm×(m−s) is an orthonormal matrix spanning its orthogonal complement, σ2Ik ∈ Ck×k

is a diagonal matrix with diagonal entries equal to σ2 and

Λ =


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λs

 , λj > 0 for 1 ≤ j ≤ s.

Proof. We begin by writing the full eigendecomposition of ADcA
∗, which is a sym-

metric matrix of rank s. By the spectral theorem, this matrix has a singular value

decomposition of the form

A1:mDcA
∗
1:m =

[
US UN

] [Λ 0

0 0

][
U∗S

U∗N

]
,
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where US, UN and Λ are as defined above. To complete the proof, note that

E [yy∗] = A1:mDcA
∗
1:m + σ2I

=
[
US UN

] [Λ 0

0 0

][
U∗S

U∗N

]
+
[
US UN

] [σ2Is 0

0 σ2In−s

][
U∗S

U∗N

]
.

Let us assume that we have available Σ ∈ Cm×m, an approximation to the real

covariance matrix E [yy∗]. The theorem suggests performing an eigendecomposition

of this matrix and then exploiting the fact that the eigenspace associated to the

largest eigenvalues should approximately correspond to the signal subspace, whereas

the remaining eigenvectors should belong to the noise subspace. As a final step, we

would somehow decode the position of the line spectra from these subspaces; hence

the term subspace methods.

A common approach used to approximate the covariance matrix is to compute

the empirical covariance matrix of the data. Assume that we have access to n mea-

surements of the form (1.2.7), where the realizations of the noise component in the

measurements are independent. For a fixed integer m, we define the empirical covari-

ance matrix

Σ (m) =
1

n−m+ 1

n−m+1∑
j=1

y[j:j+m−1]y
∗
[j:j+m−1], (1.2.9)

where y[j:j+m−1] :=
[
yj yj+1 · · · yj+m−1

]T
. Asymptotically, when the number of

measurements tends to infinity, this estimate converges to the true covariance matrix

of the data (see Section 4.9.1 in [98]). The left column of Figure 1.5 shows the

eigenvalues of this approximation for different values of the signal-to-noise ratio and

the parameter m.

We are now ready to describe the arguably most popular parametric spectral-

analysis method: multiple-signal classification (MUSIC) [4, 16,90].

Input: Number of line spectra s, value of m, noisy data y1, . . . , yn.
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1. Build the empirical covariance matrix Σ (m) as in (1.2.9).

2. Compute the eigendecomposition of Σ (m) and select the matrix of eigenvectors

ŨN corresponding to the m− s smallest eigenvalues.

3. Output an estimate of s estimated positions for the line spectra by:

(a) Spectral MUSIC [16,90]: Locating the s highest peaks of the pseudospec-

trum

PSMUSIC(t) =
1

a1:m(t)∗ŨN Ũ∗Na1:m(t)
.

(b) Root MUSIC [4]: Finding the s pairs of reciprocal roots of the polynomial

PRMUSIC(t) = a1:m(t)∗ŨN Ũ
∗
Na1:m(t)

which are closer to the unit circle.

If we set m = s+ 1 this is equivalent to the Pisarenko method [78]. In the absence of

noise, MUSIC allows us to locate the line spectra exactly, as shown in the following

lemma. This is not surprising, as Root MUSIC is essentially equivalent to Prony’s

method if no noise is added to the data.

Lemma 1.2.3. For noiseless data, the subspace corresponding to the matrix ŨN used

in the MUSIC algorithm, corresponds exactly to the noise subspace, i.e. it is the

orthogonal complement to the subspace spanned by a1:m(t1), . . . , a1:m(ts), where t1,

. . . , ts are the true locations of the line spectra.

Proof. In the absence of noise, we can write Σ = XX∗, where

X =


x̂1 x̂2 . . . x̂n−m+1

x̂2 x̂3 . . . x̂n−m+2

. . . . . . . . . . . .

x̂m x̂m+1 . . . x̂n

 = A1:m


c1 0 . . . 0

0 c2 . . . 0

. . . . . . . . . . . .

0 0 . . . cs

AT0:n−m
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The matrix X in the proof of the lemma is simultaneously Toeplitz and low rank.

This motivates a denoising procedure that can be used to preprocess the data prior

to applying MUSIC in the presence of noise:

1. Compute a rank-s approximation of X by truncating its singular value decom-

position. In general, this low-rank approximation will not be Toeplitz due to

the noise in the data.

2. Project the result onto the space of Toeplitz matrices by averaging its diagonals.

This approach was originally proposed by Tufts and Kumaresan [106] and is also

known as Cadzow denoising [21].

When noise is present, MUSIC will be effective as long as the empirical covariance

matrix– or the denoised approximation if we choose to apply preprocessing– is close to

the true covariance matrix. This will be the case if the noise is small. The theoretical

analysis that is currently available is based on an asymptotic characterization of the

sample covariance matrix under Gaussian noise [34,100]. This allows to obtain explicit

guarantees on the recovery error in simple cases involving one or two spikes. More

recently, some steps towards analyzing the algorithm in a non-asymptotic regime have

been taken in [48].

Figure 1.5 shows the performance of Root MUSIC for a specific example. On

the left column, we can see the decay of the eigenvalues of the empirical covariance

matrix. At high signal-to-noise ratios (SNR) there is a clear transition between the

eigenvalues corresponding to the signal subspace (in this case s = 7) and the noise

subspace, but this is no longer necessarily the case when the noise is increased. On

the right column, we can see the performance of the algorithm for different values

of the SNR and the parameter m. At relatively high SNRs MUSIC is an effective

algorithm as long as the assumptions on the signal (random phases), noise (Gaussian)

and measurement model (equispaced time samples) are satisfied. In Figure 1.6 we

show the result of running the algorithm for the wrong value of the parameter s. If

the value is not too different to s and the SNR not too low, the method is still capable

of approximately locating the support.
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Figure 1.5: Eigenvalues of the autocorrelation matrix used for the Root MUSIC algorithm
(left) and corresponding line-spectra estimates (right) for different values of the parameter
m and of the SNR respectively. The noise is i.i.d. Gaussian with zero mean.
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Figure 1.6: Line-spectra estimates obtained by Root MUSIC when the estimated number
of sources is equal to s− 1 (left) and s+ 1 (right) for the same data as in Figure 1.5.

Matrix-pencil methods

In this section we describe an alternative approach to perform spectral super-resolution

by robustifying Prony’s method. We assume that the data consists of a vector

y ∈ Cn+1 of n + 1 samples of the form (1.2.7), y = A0:nc + z, where c ∈ Cs is

the vector of signal coefficients and z ∈ Cn+1 is a noise vector, and define

Y0 =


y0 y1 . . . yn−m

y1 y2 . . . yn−m+1

. . . . . . . . . . . .

ym−1 ym . . . yn−1

 , Y1 =


y1 y2 . . . yn−m+1

y2 y3 . . . yn−m+2

. . . . . . . . . . . .

ym ym+1 . . . yn

 ,

for a certain integer s < m < n. Without further ado, we present the matrix-pencil

method for spectral super-resolution [65]:

Input: Number of line spectra s, value of m, noisy data y0, . . . , yn.

1. Build the matrices Y0 and Y1.

2. Compute the s largest eigenvalues λ1, λ2, . . . , λs of the matrix Y †0 Y1, where Y †0

indicates the Moore-Penrose pseudoinverse of the matrix Y0.
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3. Output the phase of λ1, λ2, . . . , λs divided by 2π.

At a first glance, it is not very clear why the method should produce a good estimate

of the line spectra, i.e. why λj ≈ ei2πtj for tj ∈ T , or for that matter why the method

has anything to do with matrix pencils. To clarify this, let us once again consider

what occurs in the noiseless case. In the absence of noise, Y0 and Y1 are equal to

X0 =


x̂0 x̂1 . . . x̂n−m

x̂1 x̂2 . . . x̂n−m+1

. . . . . . . . . . . .

x̂m−1 x̂m . . . x̂n−1

 , X1 =


x̂1 x̂2 . . . x̂n−m+1

x̂2 x̂3 . . . x̂n−m+2

. . . . . . . . . . . .

x̂m x̂m+1 . . . x̂n


respectively. The matrix pencil of two matrices M1 and M2 is defined as the matrix-

valued function

LM1,M2 (µ) := M2 − µM1

for any complex-valued µ. For square matrices, the eigenvalues of M †
1 M2 are called

generalized eigenvalues of the matrix pencil. In our case, the matrices are not rectan-

gular, but we can still define a rank-reducing value of the matrix pencil as a value of µ

for which LM1,M2 (µ) has a lower rank than M2. The following lemma establishes that

obtaining these values allows to super-resolve the line spectra if no noise is added to

the data.

Lemma 1.2.4. ei2πt1, ei2πt2, . . . , ei2πts are rank-reducing values for the matrix pencil

X1 − µX0, which can be obtained by computing the eigenvalues of the matrix X†0 X1.

Proof. Recall the definition of An1:n2 (1.2.8). We can write

X0 = A0:m−1CA
T
0:n−m.

Let Ũ Σ̃ Ṽ ∗ be the singular value decomposition of C AT0:n−m, where Ũ ∈ Cs×s, Σ̃ ∈
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Cs×s and Ṽ ∈ Cn−m+1×s. We have

X1 = A1:mC A
T
0:n−m

= A0:m−1 ΦC AT0:n−m

= X0 Ṽ Σ̃−1 Ũ∗Φ Ũ Σ̃ Ṽ ∗.

Now, note that the row space of X0 is spanned by AT0:n−m. This implies that Ṽ =

X†0 X0Ṽ so that

X†0 X1 = Ṽ Σ̃−1 Ũ∗Φ Ũ Σ̃ Ṽ ∗ = P−1

[
Φ 0

0 0

]
P,

where

P =

[
Ũ 0

0 I

][
Σ̃ 0

0 I

][
Ṽ ∗

Ṽ ∗⊥

]

and Ṽ⊥ is an orthonormal matrix whose column space is the orthogonal complement

to the column space of Ṽ . In words, computing the eigendecomposition of X†0 X1

yields Φ as stated by the lemma.

An analogous procedure to the matrix-pencil method can be carried out using

the signal subspace obtained from an eigendecomposition of the empirical covariance

matrix (see the previous section on subspace methods). This algorithm is known

as ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique)

and was originally introduced in the context of direction-of-arrival problems [85]. For

more information on ESPRIT, we refer the interested reader to Chapter 4 of [98],

where it is reported that matrix-pencil algorithms exhibit a similar performance to

subspace methods in practice.
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1.3 Outline and Contributions

At an abstract level, the deconvolution of point sources or spikes from bandlimited

data is an instance of a central question in modern data processing: how to recover a

low-dimensional object embedded in a high-dimensional space from incomplete linear

measurements. Nonparametric techniques based on convex optimization have had

great success in tackling problems of this flavor. Notable examples include sparse

regression in high-dimensional settings [103], compressed sensing [28, 39] and matrix

completion [25]. The main objective of this thesis is to explore the application of

these ideas to the problem of super-resolution. In the following outline we highlight

some of the main contributions:

• In Chapter 2 we propose a nonparametric algorithm to perform super-resolution

of point sources and provide theoretical guarantees for its success in the absence

of noise under a condition on the support of the signal. We also describe exten-

sions of our results to a multidimensional setting and to the super-resolution of

piecewise-smooth functions.

• Chapter 3 is dedicated to analyzing the stability of the proposed method. First,

we show that the problem of super-resolution may be hopelessly ill posed if the

point sources are too clustered. Then we provide robustness guarantees that

bound the estimation error at resolutions beyond that of the available data

under the same condition on the signal support as in the noiseless case. Finally,

we present guarantees on the support-detection capability of our method in the

presence of noise.

• In Chapter 4 discusses how to implement super-resolution via convex program-

ming, offering two alternatives that are based on the discretization of the domain

and on the reformulation of an infinite-dimensional program into a tractable

finite-dimensional semidefinite program.

• Chapter 5 proves the main result in Chapter 2. In it we present a novel proof

technique which allows to construct a polynomial that certifies exact recovery

and is also useful to establish stability guarantees.
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• Chapter 6 proves that exact recovery also occurs in a two-dimensional setting,

extending the techniques presented in Chapter 5.

• Chapter 7 proves stability guarantees presented in Chapter 3 which bound the

approximation error at higher resolutions.

• Chapter 8 proves the support-detection guarantees presented in Chapter 3.

• Chapter 9 contains the conclusion and outlines several future research directions

and open problems.



Chapter 2

Super-resolution via convex

optimization

In this chapter we propose a nonparametric algorithm to perform super-resolution

of point sources and provide theoretical guarantees for its success in the absence of

noise. In Section 2.1 we begin by motivating the condition under which these results

hold, which precludes the support of the signal from being too clustered. In Sec-

tion 2.2 we present our main result concerning exact recovery in a noiseless setting.

The extension to multiple dimensions is analyzed in Section 2.3, whereas Section 2.4

discusses a discrete setting which prompts the definition of super-resolution factor in

Section 2.5. Section 2.6 provides numerical experiments to characterize the perfor-

mance of the algorithm. Sections 2.7 and 2.8 survey related work in the literature.

Finally, Section 2.9 describes the extension of our results to the super-resolution of

piecewise-smooth functions.

2.1 Sparsity is not enough

In contrast to compressed sensing [26], where randomized measurements preserve the

energy of arbitrary sparse signals with high probability (this is commonly known as

The results presented in this section are joint work with Emmanuel Candès and have been
published in [23].

27
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the restricted isometry property [27]), sparsity is not a strong enough prior to ensure

that the super-resolution problem described in Section 1.1 is not extremely ill posed.

Indeed, clustered signals can be nearly completely annihilated by the low-pass sensing

mechanism. This can be characterized by means of the seminal work of Slepian [94]

on discrete prolate spheroidal sequences, as surveyed in Section 3.1, but we give here

a concrete example to drive home this important point .

To keep things simple and coherent with Slepian’s work, let us assume that (1) the

signal is supported on an infinite unit-step grid, not on a continuous interval, and (2)

we have access to a low-pass band [−W,W ] of the discrete-time Fourier transform of

the signal x̂(ω) =
∑

t∈Z xte
−i2πωt, ω ∈ [−1/2, 1/2]. The corresponding measurement

operator is denoted by PW , and is equivalent to a convolution with a sinc kernel, not

a periodized sinc or Dirichlet kernel as in Section 1.1. The quantity SRF = 1/2W

can be interpreted as a super-resolution factor, that quantifies to what extent we

need to extrapolate the spectrum in order to recover the signal. This definition of

the super-resolution factor coincides with the one in Section 2.5 when N → ∞. Set

a mild level of super-resolution to fix ideas,

SRF = 4.

Now the work of Slepian shows that there is a k-sparse signal supported on [0, . . . , k−
1] obeying

PWx = λx, λ ≈ 5.22
√
k + 1 e−3.23(k+1). (2.1.1)

For k = 48,

λ ≤ 7× 10−68. (2.1.2)

Even knowing the support ahead of time, how are we going to recover such signals

from noisy measurements? For a very mild super-resolution factor of just SRF = 1.05

(we only seek to extend the spectrum by 5%), (2.1.1) becomes

PWx = λx, λ ≈ 3.87
√
k + 1 e−0.15(k+1), (2.1.3)

which implies that there exists a unit-norm signal with at most 256 consecutive
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nonzero entries such that ||PWx||2 ≤ 1.2 × 10−15. Of course, as the super-resolution

factor increases, the ill-posedness gets worse. For large values of SRF, there is x

obeying (2.1.1) with

log λ ≈ −(0.4831 + 2 log(SRF))k. (2.1.4)

It is important to emphasize that this is not a worst-case analysis. In fact, with

k = 48 and SRF = 4, Slepian shows that there is a large-dimensional subspace of

signals supported on Ck spanned by orthonormal eigenvectors with eigenvalues of

magnitudes nearly as small as (2.1.2).

The conclusion is that if signals are allowed to be arbitrarily clustered, then super-

resolution can be completely ill posed. We need additional conditions on the signals

of interest beyond sparsity for the problem to make sense. Here we use a minimum-

separation condition, illustrated in Figure 2.1, for this purpose.

Definition 2.1.1 (Minimum separation). Let T be the circle obtained by identifying

the endpoints on [0, 1]. For a family of points T ⊂ T, the minimum separation is

defined as the closest distance between any two elements from T ,

∆(T ) = inf
(t,t′)∈T : t6=t′

|t− t′|. (2.1.5)

where |t− t′| is the `∞ distance (maximum deviation in any coordinate). To be clear,

this is the wrap-around distance so that the distance between t = 0 and t′ = 3/4 is

equal to 1/4.

In the rest of this thesis we will show that constraining the support of the signals

of interest to have a certain minimum separation allows to prove that a nonparametric

method based on convex optimization is capable of producing accurate estimates even

in the presence of noise.

2.2 Total-variation norm minimization

To perform super-resolution of point sources we propose to minimize a continuous

counterpart of the `1 norm, the total-variation norm, subject to data constraints.
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Figure 2.1: Illustration of the minimum-separation condition (2.1.5).

With T = [0, 1], the total variation of a complex measure ν on a set B ∈ B (T) is

defined by

|ν| (B) = sup
∞∑
j=1

|ν (Bj)| ,

where the supremum is taken over all partitions of B into a finite number of disjoint

measurable subsets. The total variation |ν| is a positive measure on B (T) and can be

used to define the total-variation norm on the space of complex measures on B (T),

||ν||TV = |ν| (T) .

For further details, we refer the reader to [87]. As mentioned above, for the purpose

of this work, one can think of this norm as a continuous analog to the `1 norm for

discrete signals. In fact, with x as in (1.1.1), ||x||TV is equal to the `1 norm of

the amplitudes ||c||1 =
∑

j |cj|. We would like to emphasize that it should not be

confused with the total variation of a piecewise constant function, which is a popular

regularizer in image processing [86].

To recover the signal of interest x from low-pass data we propose solving the

convex program

min
x̃
||x̃||TV subject to Fn x̃ = y, (2.2.1)
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where the minimization is carried out over the set of all finite complex measures x̃ sup-

ported on [0, 1]. Chapter 4 discusses ways of computing solutions to this optimization

problem.

One of our main theoretical results is that minimizing the total-variation norm

of the signal estimate achieves exact recovery in the absence of noise, as long as

the original signal satisfies a certain minimum separation. Its proof is provided in

Chapter 5.

Theorem 2.2.1. Let T = {tj} be the support of x. If the minimum distance obeys

∆(T ) ≥ 2 /flo := 2λlo, (2.2.2)

then x is the unique solution to (2.2.1). This holds with the proviso that flo ≥ 128.

If x is known to be real-valued, then the minimum gap can be lowered to 1.87λlo.

At first sight, this result might appear quite unexpected. The total-variation

norm makes no real assumption about the structure of the signal. Yet, not knowing

that there are any spikes, let alone how many there are, total-variation minimization

locates the position of those spikes with infinite precision! It is interesting to note

that the theorem does not depend on the amplitudes of the signal and applies to

situations where we have both very large and very small spikes, or– put in signal-

processing terms– a large dynamic range in the input signal.

The information we have about x is equivalent to observing the projection of

x onto its low-frequency components, i.e. the constraint in (2.2.1) is the same as

Pnx̃ = Pnx, where Pn = F∗nFn. As is well known, this projection is the convolution

with the Dirichlet kernel, which has slowly decaying side lobes. The width of the

main lobe of this convolution kernel is equal to λlo as shown in Figure 2.2. The

theorem states that exact recovery will occur if the spikes are 2λlo apart. Numerical

simulations provided in Section 2.6 indicate that the actual minimum separation at

which total-variation norm minimization is guaranteed to achieve exact recovery is

λlo. In the literature λlo/2 is known as the Rayleigh resolution limit.
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Figure 2.2: λlo corresponds to the width of the main lobe of the convolution kernel.

2.3 Super-resolution in higher dimensions

Our results extend to higher dimensions and reveal the same dependence between

the minimum separation and the measurement resolution as in one dimension. For

concreteness, we discuss the 2-dimensional setting and emphasize that the situation

in d dimensions is similar. Here, we have a measure

x =
∑
j

cjδtj ,

as before but in which the tj ∈ [0, 1]2. We are given information about x in the form

of low-frequency samples of the form

y(k) =

∫
[0,1]2

e−i2π〈k,t〉x(dt) =
∑
j

cje
−i2π〈k,tj〉, k = (k1, k2) ∈ Z2, |k1| , |k2| ≤ flo.

(2.3.1)

This again introduces a physical resolution of about λlo = 1/flo. In this context,

we may think of our problem as imaging point sources in the 2D plane—such as

idealized stars in the sky—with an optical device with resolution about λlo—such as

a diffraction-limited telescope. Our next result states that it is possible to locate the

point sources without any error whatsoever if they are separated by a distance of

2.38λlo simply by minimizing the total variation.
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Theorem 2.3.1. Let T = {tj} ⊂ [0, 1]2 identified with T2 be the support of x obeying

the separation condition1

∆(T ) ≥ 2.38 /flo = 2.38λlo. (2.3.2)

Then if x is real valued, it is the unique minimum total-variation solution among all

real objects obeying the data constraints (2.3.1). Hence, the recovery is exact. For

complex measures, the same statement holds but with a slightly different constant.

Whereas we have tried to optimize the constant in one dimension, we have not

really attempted to do so here in order to keep the proof reasonably short and simple.

Hence, this theorem is subject to improvement.

Theorem 2.3.1 is proved for real-valued measures in Chapter 6. However, the proof

techniques can be applied to higher dimensions and complex measures almost directly.

In details, suppose we observe the discrete Fourier coefficients of a d-dimensional ob-

ject at k = (k1, . . . , kd) ∈ Zd corresponding to low frequencies 0 ≤ |k1|, . . . , |kd| ≤ flo.

Then the minimum total-variation solution is exact provided that the minimum dis-

tance obeys ∆(T ) ≥ Cd λlo, where Cd is some positive numerical constant depending

only on the dimension. Finally, as the proof makes clear, extensions to other settings,

in which one observes Fourier coefficients if and only if the `2 norm of k is less or

equal to a frequency cut-off, are straightforward.

2.4 Discrete super-resolution

Our continuous theory immediately implies analogous results for finite signals. Sup-

pose we wish to recover a discrete signal x ∈ CN from low-frequency data. Just as

before, we could imagine collecting low-frequency samples of the form

yk =
N−1∑
t=0

xte
−i2πkt/N , |k| ≤ flo; (2.4.1)

1Recall that distance is measured in `∞.
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the connection with the previous sections is obvious since x might be interpreted as

samples of a discrete signal on a grid {t/N} with t = 0, 1, . . . , N − 1. In fact, the

continuous-time setting is the limit of infinite resolution in which N tends to infinity

while the number of samples remains constant (i.e. flo is fixed). Instead, we can

choose to study the regime in which the ratio between the actual resolution of the

signal 1/N and the resolution of the data defined as 1/flo is constant. This gives the

corollary below.

Corollary 2.4.1. Let T ⊂ {0, 1, . . . , N − 1} be the support of {xt}N−1
t=0 obeying

min
t,t′∈T :t6=t′

1

N
|t− t′| ≥ 2λlo = 2 /flo. (2.4.2)

Then the solution to

min ||x̃||1 subject to Fnx̃ = y (2.4.3)

in which Fn is the partial Fourier matrix in (2.4.1) is exact.

2.5 The super-resolution factor

In the discrete framework, we wish to resolve a signal on a fine grid with spacing 1/N .

However, we observe the lowest n = 2flo + 1 Fourier coefficients so that in principle,

one can only hope to recover the signal on a coarser grid with spacing 1/n as shown

in Figure 2.3. Hence, the factor N/n, or equivalently, the ratio between the spacings

in the coarse and fine grids, can be interpreted as a super-resolution factor (SRF).

Below, we set

SRF = N/n ≈ N/2flo; (2.5.1)

when the SRF is equal to 5 as in the figure, we are looking for a signal at a resolution

5 times higher than what is stricto senso permissible. One can then recast Corollary

2.4.1 as follows: if the nonzero components of {xt}N−1
t=0 are separated by at least

4× SRF, perfect super-resolution via `1-norm minimization occurs.

The reason for introducing the SRF is that with inexact data, we obviously cannot

hope for infinite resolution. Indeed, noise will ultimately limit the resolution one can
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1/N

1/n

λlo

Figure 2.3: Fine grid with spacing 1/N . We only observe frequencies between −flo and
flo, flo/N ≈ 1

2SRF−1, so that the highest frequency sine wave available has wavelength
1/flo = λlo. These data only allow a Nyquist sampling rate of λlo/2 ≈ 1/n. In this sense,
we can interpret the super-resolution factor N/n as the ratio between these two resolutions.

ever hope to achieve and, therefore, the question of interest is to study the accuracy

one might expect from a practical super-resolution procedure as a function of both the

noise level and the SRF. In Chapter 3 we will elaborate on this and in Section 3.2.3

we provide a definition of the super-resolution factor that is applicable for the case

when the point sources in the signals are located on a continuous interval rather than

on a discretized grid.

2.6 Numerical evaluation of the minimum distance

To evaluate the minimum distance needed to guarantee exact recovery by `1 mini-

mization of any signal in CN , for a fixed N , we propose the following heuristic scheme:

• For a super-resolution factor SRF = N/n, we work with a partial DFT matrix

Fn with frequencies up to flo = bn/2c. Fix a candidate minimum distance ∆.

• Using a greedy algorithm, construct an adversarial support with elements sep-

arated by at least ∆ by sequentially adding elements to the support. Each new

element is chosen to minimize the condition number formed by the columns

corresponding to the selected elements.
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• Take the signal x to be the singular vector corresponding to the smallest singular

value of Fn restricted to T .

• Solve the `1-minimization problem (2.4.3) and declare that exact recovery occurs

if the normalized error is below a threshold (in our case 10−4).

This construction of an adversarial signal was found to be better adapted to the

structure of our measurement matrix than other methods proposed in the literature

such as [43]. We used this scheme and a simple binary search to determine a lower

bound for the minimum distance that guarantees exact recovery for N = 4096, super-

resolution factors of 8, 16, 32 and 64 and support sizes equal to 2, 5, 10, 20 and 50.

The simulations were carried out in Matlab, using CVX [57] to solve the optimization

problem. Figure 2.4 shows the results, which suggest that on the discrete grid we

need at least a minimum distance equal to twice the super-resolution factor in order

to guarantee reconstruction of the signal (red curve). Translated to the continuous

setting, in which the signal would be supported on a grid with spacing 1/N , this

implies that ∆ ≥ λlo is a necessary condition for exact recovery.

2.7 Comparison with related work

The use of `1 minimization for the recovery of sparse spike trains from noisy bandlim-

ited measurements has a long history and was proposed in the 1980s by researchers

in seismic prospecting [33, 72, 89]. For finite signals and under the rather restrictive

assumption that the signal is real valued and nonnegative, [53] and [41] prove that

k spikes can be recovered from 2k + 1 Fourier coefficients by this method, a result

very related to Carathéodory’s work from the beginning of the 20th century [29, 30].

The work [36] extends this result to the continuous setting by using total-variation

minimization, dubbed as Beurling minimal extrapolation in honor of Beurling’s work

on extrapolating a function from a portion of its spectrum [14]. In contrast to these

previous works, our results require a minimum distance between spikes but allow

for arbitrary complex amplitudes, which is crucial in certain applications (especially

those concerning spectral super-resolution).
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Figure 2.4: Minimum distances (vertical axis) at which exact recovery by `1 minimization
occurs for the adversarial complex sign patterns against the corresponding super-resolution
factors. At the red curve, the minimum distance would be exactly equal to twice the
super-resolution factor. Signal length is N = 4096.

The only theoretical guarantee we are aware of concerning the recovery of spike

trains with general amplitudes is very recent and due to Kahane [66]. Kahane offers

variations on compressive sensing results in [26] and studies the reconstruction of a

function with lacunary Fourier series coefficients from its values in a small contiguous

interval, a setting that is equivalent to that of Corollary 2.4.1 when the size N of the

fine grid tends to infinity. With our notation, whereas we require a minimum distance

equal to 4 × SRF, this work shows that a minimum distance of 10 × SRF
√

log SRF

is sufficient for exact recovery. Although the log factor might seem unimportant at

first glance, it in fact precludes extending Kahane’s result to the continuous setting

of Theorem 2.2.1. Indeed, by letting the resolution factor tend to infinity so as to

approach the continuous setting, the spacing between consecutive spikes would need
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to tend to infinity as well.

2.8 Connections to sparse recovery literature

Theorem 2.2.1 and Corollary 2.4.1 can be interpreted in the framework of sparse signal

recovery. For instance, by swapping time and frequency, Corollary 2.4.1 asserts that

one can recover a sparse superposition of tones with arbitrary frequencies from n time

samples of the form

yt =
N−1∑
j=0

xje
−i2πtωj , t = 0, 1, . . . , n− 1

where the frequencies are of the form ωj = j/N . Since the spacing between con-

secutive frequencies is not 1/n but 1/N , we have an oversampled discrete Fourier

transform, where the oversampling ratio is equal to the super-resolution factor. In

this context, our results imply that a sufficient condition for perfectly super-resolving

these tones is a minimum separation of 4/n. Moreover, Theorem 2.2.1 extends this

to continuum dictionaries where tones ωj can take on arbitrary real values.

In the literature, there are several conditions that guarantee perfect signal recovery

by `1-norm minimization. The results obtained from their application to our problem

are, however, very weak.

• The matrix with normalized columns fj = {e−i2πtωj/√n}n−1
t=0 does not obey the

restricted isometry property [27] since a submatrix composed of a very small

number of contiguous columns is already very close to singular, see [94] and

Section 3.1 for related claims. For example, with N = 512 and a modest

SRF equal to 4, the smallest singular value of submatrices formed by eight

consecutive columns is 3.32 10−5.

• Applying the discrete uncertainty principle proved in [40], we obtain that re-

covery by `1 minimization succeeds as long as

2 |T | (N − n) < N.
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If n < N/2, i.e. SRF > 2, this says that |T | must be zero. In other words, to

recover one spike, we would need at least half of the Fourier samples.

• Other guarantees based on the coherence of the dictionary yield similar results.

A popular condition [105] requires that

|T | < 1

2
(M−1 + 1), (2.8.1)

where M is the coherence of the system defined as maxi 6=j |〈fi, fj〉|. When

N = 1024 and SRF = 4, M ≈ 0.9003 so that this becomes |T | ≤ 1.055, and we

can only hope to recover one spike.

There are slightly improved versions of (2.8.1). In [42], Dossal studies the decon-

volution of spikes by `1 minimization. This work introduces the weak exact recovery

condition (WERC) defined as

WERC (T ) =
β (T )

1− α (T )
,

where

α(T ) = sup
i∈T

∑
j∈T/{i}

|〈fi, fj〉| , β(T ) = sup
i∈T c

∑
j∈T
|〈fi, fj〉| .

The condition WERC (T ) < 1 guarantees exact recovery. Considering three spikes

and using Taylor expansions to bound the sine function, the minimum distance needed

to ensure that WERC (T ) < 1 may be lower bounded by 24 SRF3/π3 − 2 SRF. This

is achieved by considering three spikes at ω ∈ {0,±∆}, where ∆ = (k + 1/2)/n for

some integer k; we omit the details. If N = 20, 000 and the number of measurements

is 1, 000, this allows for the recovery of at most 3 spikes, whereas Corollary 2.4.1

implies that it is possible to reconstruct at least n/4 = 250. Furthermore, the cubic

dependence on the super-resolution factor means that if we fix the number of mea-

surements and let N →∞, which is equivalent to the continuous setting of Theorem

2.2.1, the separation needed becomes infinite and we cannot guarantee the recovery

of even two spikes.

Finally, we would also like to mention some very recent work on sparse recovery
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in highly coherent frames by modified greedy compressed sensing algorithms [44,

49]. Interestingly, these approaches explicitly enforce conditions on the recovered

signals that are similar in spirit to our minimum distance condition. As opposed

to `1-norm minimization, such greedy techniques may be severely affected by large

dynamic ranges (see [49]). Understanding under what conditions their performance

may be comparable to that of convex programming methods is an interesting research

direction.

2.9 Extensions

Our results and techniques can be extended to super-resolve many other types of

signals. We just outline such a possible extension. Suppose x : [0, 1] → C is a

periodic piecewise smooth function with period 1, defined by

x(t) =
∑
tj∈T

1(tj−1,tj)pj(t);

on each time interval (tj−1, tj), x is polynomial of degree `. For ` = 0, we have a

piecewise constant function, for ` = 1, a piecewise linear function and so on. Also

suppose x is globally ` − 1 times continuously differentiable (as for splines). We

observe

yk =

∫
[0,1]

x(t) e−i2πktdt , |k| ≤ flo.

The (` + 1)th derivative of x (in the sense of distributions) denoted by x(`+1) is an

atomic measure supported on T and equal to

x(`+1) =
∑
j

cjδtj , cj = p
(`)
j+1(tj)− p(`)

j (tj).

Hence, we can imagine recovering x(`+1) by solving

min ‖x̃(`+1)‖TV subject to Fnx̃ = y. (2.9.1)
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Standard Fourier analysis gives that the kth Fourier coefficient of this measure is

given by

y
(`+1)
k = (i2πk)`+1 yk, k 6= 0. (2.9.2)

Hence, we observe the Fourier coefficients of x(`+1) except that corresponding to k = 0,

which must vanish since the periodicity implies
∫ 1

0
x(`+1)(dt) = 0 =

∫ 1

0
x(j)(t)dt,

1 ≤ j ≤ `. Hence, it follows from Theorem 2.2.1 that (2.9.1) recovers x(`+1) exactly

as long as the discontinuity points are at least 2λlo apart. Because x is ` − 1 times

continuously differentiable and periodic, x(`+1) determines x up to a shift in function

value, equal to its mean. However, we can read the mean value of x off y0 =
∫ 1

0
x(t)dt

and, therefore, (2.9.1) achieves perfect recovery.

Corollary 2.9.1. If T = {tj} obeys (2.2.2), x is determined exactly from y by solving

(2.9.1).

Extensions to non-periodic functions and other types of discontinuities and smooth-

ness assumptions are also possible using similar arguments.



Chapter 3

Stability guarantees

In Chapter 2 we studied the problem of recovering superpositions of point sources in

a noiseless setting, where one has perfect low-frequency information. In this chapter

we consider a setting where the data are contaminated with noise, a situation which

is unavoidable in practical applications. In a nutshell, Chapter 2 proves that with

noiseless data, one can recover a superposition of point sources exactly, namely, with

arbitrary high accuracy, by solving a simple convex program. This phenomenon holds

as long as the spacing between the sources is on the order of the resolution limit. With

noisy data it is of course no longer possible to achieve infinite precision, but we can

still evaluate the robustness of the method.

We begin by justifying the need for conditions on the signal support beyond spar-

sity to ensure that the problem is well posed when noise is added to the data in

Section 3.1. Under such a condition, stability guarantees are then derived in two

different ways: by quantifying the estimation accuracy at a higher resolution in Sec-

tion 3.2 and by studying the support-detection accuracy in Section 3.3. At the end

of the chapter, relevant references are discussed in Section 3.4.

3.1 Sparsity and stability

Consider the vector space C48 of sparse signals of length N = 4096 supported on

a certain interval of length 48. Figure 3.1 shows the eigenvalues of the low-pass

42
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Figure 3.1: (a) Eigenvalues of Pn acting on signals supported on a contiguous interval
of length 48 for super-resolution factors of 2, 4, 8 and 16 and a signal length of 4096. (b)
Singular values of 1√

N
Fn on a logarithmic scale. (c) Same as (b) but on a linear scale. Due

to limited numerical precision (machine precision), the smallest singular values, marked
with circular dots on the graphs, are of course not computed accurately.

filter Pn = 1
N
FnF

∗
n acting on C48 for different values of the super-resolution factor.

Recall the definition of super-resolution factor (SRF) in Section 2.5. For SRF = 4,

there exists a subspace of dimension 24 such that any unit-normed signal (‖x‖2 = 1)

belonging to it obeys

‖Pnx‖2 ≤ 2.52 10−15 ⇔ 1√
N
‖Fnx‖2 ≤ 5.02 10−8.

For SRF = 16 this is true of a subspace of dimension 36, two thirds of the total

dimension. Such signals can be completely canceled out by perturbations of norm

5.02 10−8, so that even at signal-to-noise ratios (SNR) of more than 145 dB, recovery

is impossible by any method whatsoever.

Interestingly, the sharp transition shown in Figure 3.1 between the first singu-

lar values almost equal to one and the others, which rapidly decay to zero, can be

characterized asymptotically by using the work of Slepian on prolate spheroidal se-

quences [94]. Introduce the operator Tk, which sets the value of an infinite sequence

to zero on the complement of an interval T of length k. With the notation of Sec-

tion 2.1, the eigenvectors of the operator PWTk are the discrete prolate spheroidal
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sequences {sj}kj=1 introduced in [94],

PWTksj = λjsj, 1 > λ1 ≥ λ2 ≥ . . . ≥ λk > 0. (3.1.1)

Set vj = Tksj/
√
λj, then by (3.1.1), it is not hard to see that

TkPWvj = λjvj, ||vj||2 = 1.

In fact, the vj’s are also orthogonal to each other [94], and so they form an orthonormal

basis of Ck (which can represent any sparse vector supported on T ). For values of j

near k, the value of λj is about Aje
−γ(k+1) for

Aj =

√
π2

14(k−j)+9
4 α

2(k−j)+1
4 (k + 1)k−j+0.5

(k − j)! (2− α)k−j+0.5
,

where

α = 1 + cos 2πW, γ = log

(
1 +

2
√
α√

2−√α

)
.

Therefore, for a fixed value of SRF = 1/2W , and k ≥ 20, the small eigenvalues are

equal to zero for all practical purposes. In particular, for SRF = 4 and SRF = 1.05

we obtain (2.1.1) and (2.1.3) in Section 2.1 respectively. Additionally, a Taylor series

expansion of γ for large values of SRF yields (2.1.4).

Since ‖PWvj‖L2 =
√
λj, the bound on λj for j near k directly implies that some

sparse signals are essentially zeroed out, even for small super-resolution factors. How-

ever, Figure 3.1 suggests an even stronger statement: as the super-resolution factor

increases not only some, but most signals supported on T seem to be almost com-

pletely suppressed by the low pass filtering. Slepian provides an asymptotic charac-

terization for this phenomenon. Indeed, just about the first 2kW eigenvalues of PWTk
cluster near one, whereas the rest decay abruptly towards zero. To be concrete, for

any ε > 0 and j ≥ 2kW (1 + ε), there exist positive constants C0, and γ0 (depending

on ε and W ) such that

λj ≤ C0e
−γ0k.
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This holds for all k ≥ k0, where k0 is some fixed integer. This implies that for any

interval T of length k, there exists a subspace of signals supported on T with dimen-

sion asymptotically equal to (1− 1/SRF) k, which is obliterated by the measurement

process. This has two interesting consequences. First, even if the super-resolution

factor is just barely above one, asymptotically there will always exist an irretrievable

vector supported on T . Second, if the super-resolution factor is two or more, most

of the information encoded in clustered sparse signals is lost. Consider for instance a

random sparse vector x supported on T with i.i.d. entries. Its projection onto a fixed

subspace of dimension about (1− 1/SRF) k (corresponding to the negligible eigen-

values) contains most of the energy of the signal with high probability. However,

this component is practically destroyed by low-pass filtering. Hence, super-resolving

almost any tightly clustered sparse signal in the presence of noise is hopeless. This

justifies the need for a minimum separation between nonzero components.

3.2 Accuracy at a higher resolution

Suppose that we aim to super-resolve a signal and that the noise level and sensing

resolution are fixed. Then one expects that it will become increasingly hard to recover

the fine details of the signal as the scale of these features become finer. There should

be a tradeoff between the resolution at which we aim to recover the signal and the

precision with which we are able to do so, which will depend on the noise level. The

goal of this section is to make this vague statement mathematically precise. We begin

with an analysis of the discrete setting and then provide a more general result valid

for signals supported on a continuous domain.

3.2.1 A discrete result

In this section we study the robustness to noise of super-resolution via convex opti-

mization in the discrete setting of Section 2.4. For simplicity, we study a deterministic

scenario in which the projection of the noise onto the signal space has bounded `1

The results presented in this section are joint work with Emmanuel Candès and have been
published in [23] and [24].
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norm but is otherwise arbitrary and can be adversarial. The observations are conse-

quently of the form

y = Fnx+ z,
1

N
||F ∗nz||1 ≤ δ (3.2.1)

for some δ ≥ 0, where Fn is the partial Fourier matrix in (2.4.1). Letting Pn be the

orthogonal projection of a signal onto the first n Fourier modes, Pn = 1
N
F ∗nFn, we

can view (3.2.1) as an input noise model since with z = Fnw, we have

y = Fn(x+ w), ||z||1 ≤ δ.

Another way to write this model with arbitrary input noise w ∈ CN is

y = Fn(x+ w), ||Pnw||1 ≤ δ

since the high-frequency part of w is filtered out by the measurement process. Finally,

with ỹ = N−1F ∗ny, (3.2.1) is equivalent to

ỹ = Pnx+ Pnw, ||Pnw||1 ≤ δ. (3.2.2)

In words, we observe a low-pass version of the signal corrupted with an additive low-

pass error whose `1 norm is at most δ. In the case where n = N , Pn = I, and our

model becomes

ỹ = x+ w, ‖w‖1 ≤ δ.

In this case, one cannot hope for a reconstruction with an error in the `1 norm less

than the noise level δ. We now wish to understand how quickly the recovery error

deteriorates as the super-resolution factor increases.

We propose studying the relaxed version of the noiseless problem (2.4.3)

min
x̃
||x̃||1 subject to ||Pnx̃− ỹ||1 ≤ δ. (3.2.3)

We show that this recovers x with a precision inversely proportional to δ and to the

square of the super-resolution factor.
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Theorem 3.2.1. Assume that x obeys the separation condition (2.4.2). Then with

the noise model (3.2.2), the solution xest to (3.2.3) obeys

||xest − x||1 ≤ C0 SRF2 δ, (3.2.4)

for some positive constant C0.

This theorem, which shows the simple dependence upon the super-resolution factor

and the noise level, is proved in the next section. Clearly, plugging in δ = 0 in (3.2.4)

gives Corollary 2.4.1. In the rest of Section 3.2, we show that the same dependence

between the error at a higher resolution and the super-resolution factor holds for

signals supported on continuous domains, as long as the definition of the SRF is

adapted to this setting.

3.2.2 Proof of Theorem 3.2.1

The proof is a fairly simple consequence of the following lemma.

Lemma 3.2.2. Under the assumptions of Theorem 3.2.1, any vector h such that

Fnh = 0 obeys

||PTh||1 ≤ ρ ||PT ch||1 , (3.2.5)

for some numerical constant ρ obeying 0 < ρ < 1. This constant is of the form

1− ρ = α/SRF2 for some positive α > 0. If SRF ≥ 3.03, we can take α = 0.0883.

Proof. Let PTht = |PTht| eiφt be the polar decomposition of PTh, and consider the

low-frequency polynomial q(t) in Proposition 5.2.1 interpolating vt = e−iφt . We shall

abuse notations and set q = {qt}N−1
t=0 where qt = q(t/N). For t /∈ T , |q(t/N)| = |qt| ≤

ρ < 1. By construction q = Pnq, and thus 〈q, h〉 = 〈q, Pnh〉 = 0. Also,

〈PT q, PTh〉 = ‖PTh‖1.
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The conclusion follows from

0 = 〈q, h〉
= 〈PT q, PTh〉+ 〈PT cq, PT ch〉
≥ ‖PTh‖1 − ‖PT cq‖∞‖PT ch‖1

≥ ‖PTh‖1 − ρ‖PT ch‖1.

For the numerical constant, we use Lemma 5.2.5 which says that if 0 ∈ T and

1/N ≤ 0.1649λlo, which is about the same as 1/SRF ≈ 2fc/N ≤ 2 × 0.1649 or

SRF > 3.03, we have

|q(1/N)| ≤ 1− 0.3533 (fc/N)2 ≈ 1− 0.0883/SRF2 = ρ.

This applies directly to any other t such that minτ∈T |t− τ | = 1. Also, for all t at

distance at least 2 from T , Lemma 5.2.5 implies that |q(t/N)| ≤ ρ. This completes

the proof.

Set h = xest − x and decompose the error into its low-pass and high-pass compo-

nents

hL = Pnh, hH = h− hL.

The high-frequency part is in the null space of Pn and (3.2.5) gives

||PThH ||1 ≤ ρ ||PT chH ||1 . (3.2.6)

For the low-frequency component we have

‖hL‖1 = ‖Pn(xest − x)‖1 ≤ ‖Pnxest − s‖1 + ‖s− Pnx‖1 ≤ 2δ. (3.2.7)
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To bound ‖PT chH‖1, we exploit the fact that xest has minimum `1 norm. We have

||x||1 ≥ ||x+ h||1 ≥ ||x+ hH ||1 − ‖hL‖1

≥ ‖x‖1 − ||PThH ||1 + ||PT chH ||1 − ‖hL‖1

≥ ‖x‖1 + (1− ρ) ||PT chH ||1 − ‖hL‖1,

where the last inequality follows from (3.2.6). Hence,

||PT chH ||1 ≤
1

1− ρ‖hL‖1 ⇒ ‖hH‖1 ≤
1 + ρ

1− ρ ‖hL‖1.

To conclude,

‖h‖1 ≤ ‖hL‖1 + ‖hH‖1 ≤
2

1− ρ‖hL‖1 ≤
4δ

1− ρ,

where the last inequality follows from (3.2.7).

Since from Lemma 3.2.2, we have 1 − ρ = α/SRF2 for some numerical constant

α, the upper bound is of the form 4α−1 SRF2 δ. For ∆(T ) ≥ 2.5λlo, we have α−1 ≈
11.235.

3.2.3 The super-resolution factor for continuous domains

Let us consider a continuous setting where we have observations about an object x

of the form

y(t) = (Qlox)(t) + z(t), (3.2.8)

where t is a continuous parameter (time, space, and so on) belonging to the d-

dimensional cube [0, 1]d. Above, z is a noise term which can either be stochastic

or deterministic, and Qlo is a bandlimiting operator with a frequency cut-off equal to

flo = 1/λlo. Here, λlo is a positive parameter representing the finest scale at which x

is observed. To make this more precise, we take Qlo to be a low-pass filter of width

λlo as illustrated at the top of Figure 3.2; that is,

(Qlox)(t) = (Klo ∗ x)(t)
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such that in the frequency domain the convolution equation becomes

(Q̂lox)(f) = K̂lo(f)x̂(f), f ∈ Zd,

and the setting is the same as the one described in Section 1.1 with Klo = φ. Recall

that we denote the usual Fourier transform of a measure or function g, provided that

it exists, by ĝ(f) =
∫
e−i2π〈f,t〉g(dt) and note that we assume that the spectrum of

the low-pass kernel K̂lo(f) vanishes outside of the cell [−flo, flo]d.

Our goal is to resolve the signal x at a finer scale λhi � λlo. In other words,

we would like to obtain a high-resolution estimate xest such that Qhi xest ≈ Qhi x,

where Qhi is a bandlimiting operator with cut-off frequency fhi := 1/λhi > flo. This

is illustrated at the bottom of Figure 3.2, which shows the convolution between Khi

and x. A different way to pose the problem is as follows: we have noisy data about

the spectrum of an object of interest in the low-pass band [−flo, flo], and would like

to estimate the spectrum in the possibly much wider band [−fhi, fhi]. We redefine

the super-resolution factor (SRF) as

SRF :=
fhi

flo

=
λlo

λhi

; (3.2.9)

in words, we wish to double the resolution if the SRF is equal to two, to quadruple

it if the SRF equals four, and so on. Given the notorious ill-posedness of spectral

extrapolation, a natural question is how small the error at scale λhi between the

estimated and the true signal Khi ∗ (xest − x) can be? In particular, how does it

scale with both the noise level and the SRF? The rest of this section addresses this

important question.

3.2.4 Stability guarantees at a higher resolution

We consider the signal model (1.1.1). Although we focus on the one-dimensional case,

our methods extend in a straightforward manner to the multidimensional case, as we

shall make precise later on. In addition, we assume the measurement model (3.2.8)

in which t ∈ [0, 1], which from now on we identify with the unit circle T, and z(t) is
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Figure 3.2: Illustration of the super-resolution factor (SRF). A signal (left) is measured
at a low resolution by a convolution with a kernel (top middle) of width λlo (top right).
Super-resolution aims at approximating the outcome of a convolution with a much narrower
kernel (bottom middle) of width λhi. Hence, the goal is to recover the bottom right curve.

a bandlimited error term obeying

‖z‖L1 =

∫
T
|z(t)| dt ≤ δ. (3.2.10)

The measurement error z is otherwise arbitrary and can be adversarial. For concrete-

ness, we set Klo to be the periodic Dirichlet kernel

Klo(t) =

flo∑
k=−flo

ei2πkt =
sin(π(2flo + 1)t)

sin(πt)
. (3.2.11)

By definition, for each f ∈ Z, this kernel obeys K̂lo(f) = 1 if |f | ≤ flo whereas

K̂lo(f) = 0 if |f | > flo. We emphasize, however, that our results hold for other low-

pass filters. Indeed, our model (3.2.8) can be equivalently written in the frequency

domain as ŷ(f) = x̂(f) + ẑ(f), |f | ≤ flo. Hence, if the measurements are of the form

y = Glo ∗ x + z for some other low-pass kernel Glo, we can filter them linearly to

obtain ŷG(f) := ŷ(f)/Ĝlo(f) = x̂(f) + ẑ(f)/Ĝlo(f). Our results can then be applied
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Figure 3.3: The Fejér kernel (3.2.13) (a) with half width about λhi, and its Fourier series
coefficients (b). The kernel is bandlimited since the Fourier coefficients vanish beyond the
cut-off frequency fhi.

to this formulation if the weighted perturbation ẑ(f)/Ĝlo(f) is bounded.

To perform recovery, we propose solving

min
x̃
||x̃||TV subject to ||Qlox̃− y||L1 ≤ δ. (3.2.12)

This is a relaxed version of Problem (2.2.1) analyzed in Chapter 2. It is important to

observe that the recovery algorithm is completely agnostic to the target resolution λhi,

so our results hold simultaneously for any value of λhi > λlo.

Our objective is to approximate the signal up until a certain resolution determined

by the width of the smoothing kernel λhi > λlo used to compute the error. To fix

ideas, we set

Khi(t) =
1

fhi + 1

fhi∑
k=−fhi

(fhi + 1− |k|) ei2πkt =
1

fhi + 1

(
sin(π(fhi + 1)t)

sin(πt)

)2

(3.2.13)

to be the Fejér kernel with cut-off frequency fhi = 1/λhi. Figure 3.3 shows this kernel

together with its spectrum.

Our model (3.3.1) asserts that we can achieve a low-resolution error obeying

||Klo ∗ (xest − x)||L1 ≤ δ,
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but that we cannot do better as well. The main question is: how does this degrade

when we substitute the low-resolution with the high-resolution kernel?

Theorem 3.2.3. Assume that the support T of x obeys the separation condition

∆(T ) ≥ 2λlo. (3.2.14)

Then under the noise model (3.3.1), any solution xest to problem (3.2.12)1 obeys

||Khi ∗ (xest − x)||L1 ≤ C0 SRF2 δ,

where C0 is a positive numerical constant.

Thus, minimizing the total-variation norm subject to data constraints yields a

stable approximation of any superposition of Dirac measures obeying the minimum-

separation condition. When z = 0, setting δ = 0 and letting SRF→∞, this recovers

the conclusion of Theorem 2.2.1 which shows that xest = x, i.e. we achieve infinite

precision. What is interesting here is the quadratic dependence of the estimation

error in the super-resolution factor. Chapter 7 contains the proof of the result.

3.2.5 Application to stochastic noise

We have chosen to analyze problem (3.2.12) and a perturbation with bounded L1

norm for simplicity, but our techniques can be adapted to other recovery schemes

and noise models. For instance, suppose we observe noisy samples of the spectrum

η(k) =

∫
T
e−i2πkt x(dt) + εk, k = −flo,−flo + 1, . . . , flo, (3.2.15)

where εk is an iid sequence of complex-valued N (0, σ2) variables (this means that the

real and imaginary parts are independent N (0, σ2) variables). This is equivalent to

a line-spectra estimation problem with additive Gaussian white noise, as we explain

1To be precise, the theorem holds for any feasible point x̃ obeying ||x̃||TV ≤ ||x||TV; this set is
not empty since it contains x.
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below. In order to super-resolve the signal under this model, we propose the following

convex program

min
x̃
||x̃||TV subject to ||Qlox̃− y||L2 ≤ δ, (3.2.16)

which can be implemented using off-the-shelf software as discussed in Section 4.3.

A corollary to our main theorem establishes that with high probability solving this

problem allows to super-resolve the signal despite the added perturbation with an

error that scales with the square of the super-resolution factor and is proportional to

the noise level.

Corollary 3.2.4. Fix γ > 0. Under the stochastic noise model (3.2.15), the solution

to problem (3.2.16) with δ = (1 + γ)σ
√

4flo + 2 obeys

||Khi ∗ (xest − x)||L1 ≤ C0 (1 + γ)
√

4flo + 2 SRF2 σ (3.2.17)

with probability at least 1− e−2floγ
2
.

Proof. The proof of Theorem 3.2.3 relies on two identities

||xest||TV ≤ ||x||TV , (3.2.18)

||Qlo (xest − x)||L1 ≤ 2δ, (3.2.19)

which suffice to establish

||Khi ∗ (xest − x)||L1 ≤ C0 SRF2 δ.

To prove the corollary, we show that (3.2.18) and (3.2.19) hold. Due to the fact that

||ε||22 follows a χ2-distribution with 4flo + 2 degrees of freedom, we have

P
(
||ε||2 > (1 + γ)σ

√
4flo + 2 = δ

)
< e−2floγ

2

,

for any positive γ by a concentration inequality (see [71, Section 4]). By Parseval,

this implies that with high probability ||Qlox− y||L2 = ||ε||2 ≤ δ. As a result, xest is
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feasible, which implies (3.2.18) and furthermore

||Qlo (xest − x)||L1 ≤ ||Qlo (xest − x)||L2
≤ ||Qlox− y||L2 + ||y −Qloxest||L2
≤ 2δ,

since by the Cauchy-Schwarz inequality ||f ||L1 ≤ ||f ||L2 for any function f with

bounded L2 norm supported on the unit interval. Thus, (3.2.19) also holds and the

proof is complete.

3.2.6 Extensions

Other high-resolution kernels. We work with the high-resolution Fejér kernel but our

results hold for any symmetric kernel that obeys the properties (3.2.20) and (3.2.21)

below, since our proof only uses these simple estimates. The first reads∫
T
|Khi (t)| dt ≤ C0,

∫
T
|K ′hi (t)| dt ≤ C1 λ

−1
hi , sup |K ′′hi (t)| ≤ C2 λ

−3
hi , (3.2.20)

where C0, C1 and C2 are positive constants independent of λhi. The second is that

there exists a nonnegative and nonincreasing function f : [0, 1/2]→ R such that

|K ′′hi (t+ λhi)| ≤ f(t), 0 ≤ t ≤ 1/2,

and ∫ 1/2

0

f(t)dt ≤ C3 λ
−2
hi . (3.2.21)

This is to make sure that (7.1.6) holds. (For the Fejér kernel, we can take f to be

quadratic in [0, 1/2− λhi] and constant in [1/2− λhi, 1/2].)

Higher dimensions. Our techniques can be applied to establish robustness guaran-

tees for the recovery of point sources in higher dimensions. The only parts of the proof

of Theorem 3.2.3 that do not generalize directly are Lemmas 7.2.1, 7.2.2 and 7.2.4.

However, the methods used to prove these lemmas can be extended without much
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difficulty to multiple dimensions as described in Section 7.3.

Spectral line estimation. Swapping time and frequency, Theorem 3.2.3 can be

immediately applied to the estimation of spectral lines in which we observe

y(t) =
∑
j

αje
i2πωjt + z(t), t = 0, 1, . . . , n− 1,

where α is a vector of complex-valued amplitudes and z is a noise term. Here, our

work implies that a nonparametric method based on convex optimization is capable

of approximating the spectrum of a multitone signal with arbitrary frequencies, as

long as these frequencies are sufficiently far apart, and furthermore that the recon-

struction is stable. In this setting, the smoothed error quantifies the quality of the

approximation windowed at a certain spectral resolution.

3.3 Support-detection accuracy

In this section we consider the problem of super-resolving the support of a superpo-

sition of point sources x, denoted by T . Our aim is to quantify how accurately we

can estimate T from the lower end of the spectrum of x when the data are perturbed

by noise. We will assume measurements of the form y = Fn x + z, as in (1.1.3). We

model the perturbation z ∈ Cn as having bounded `2 norm,

||z||2 ≤ δ. (3.3.1)

The noise is otherwise arbitrary and can be adversarial.

To recover x we again propose relaxing Problem 2.2.1 to account for our prior

knowledge about the noise:

min
x̃
||x̃||TV subject to ||Fnx̃− y||2 ≤ δ. (3.3.2)

This problem is equivalent to 3.2.16 and can be solved tractably using semidefinite

The results presented in this section have been published in [51].



CHAPTER 3. STABILITY GUARANTEES 57

programming as detailed in Section 4.3.

Chapter 2 established that TV-norm minimization achieves exact recovery in a

noiseless setting under the minimum-separation condition. Section 3.2 characterizes

the reconstruction error for noisy measurements as the target resolution increases. In

this section, we study support detection. If the original signal contains a spike of a

certain amplitude we ask: How accurately can we recover the position of the spike?

How does the accuracy depend on the noise level, the amplitude of the spike and the

amplitude of the signal at other locations?

The following theorem characterizes the error between the estimated support Test

and the original support T in terms of the estimated spikes that are near or far from

the locations of the original spikes.

Theorem 3.3.1. Consider the noise model (3.3.1) and assume the support T satisfies

the minimum-separation condition (3.2.14). The solution to problem (3.2.12)2

xest =
∑

testk ∈Test

cest
k δtestk

with support Test obeys the properties∣∣∣∣∣∣∣cj −
∑

{testl ∈Test: |testl −tj|≤cλlo}
cest
l

∣∣∣∣∣∣∣ ≤ C1δ ∀tj ∈ T, (3.3.3)

∑
{testl ∈Test, tj∈T : |testl −tj|≤cλlo}

∣∣cest
l

∣∣ (test
l − tj

)2 ≤ C2λ
2
loδ, (3.3.4)

∑
{testl ∈Test: |testl −tj|>cλlo ∀tj∈T}

∣∣cest
l

∣∣ ≤ C3δ, (3.3.5)

where C1, C2 and C3 are positive numerical constants and c = 0.1649.

In plain words, the energy of the estimate is guaranteed to cluster tightly around

2This solution can be shown to be an atomic measure with discrete support under very general
conditions.
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locations where the amplitude of the original signal is above the noise level. Prop-

erty (3.3.3) implies that each individual spike tj in the original support T is well

approximated by spikes that belong to a small neighborhood around tj of width

about 0.16λlo. Property (3.3.4) strengthens this statement, by showing that the far-

ther away the estimated spikes are from tj the smaller their amplitude has to be.

Finally, Property (3.3.5) establishes that any spurious spikes that do not belong to a

neighborhood of the original support must have small amplitude. These bounds are

essentially optimal for the case of adversarial noise, which can be highly concentrated.

The main novelty of the result is that it provides local stability guarantees that only

depend on the value of the original signal at a given location. This allows to quantify

the accuracy of support detection for each individual spike in the signal.

Corollary 3.3.2. Under the conditions of Theorem 3.3.1, for any element ti in the

support of x such that ci > C1δ there exists an element test
i in the support of the

estimate xest satisfying

∣∣ti − test
i

∣∣ ≤√ C2δ

|ci| − C1δ
λlo.

Despite the aliasing effect of the low-pass filter applied to the signal, the bound on

the support-detection error only depends on the amplitude of the corresponding spike

(and the noise level). This does not follow from previous analysis. In particular,

the bound on the weighted L1 norm of the error derived in Section 3.2 does not

allow to derive such local guarantees. As explained in Chapter 8, obtaining detection

guarantees that only depend on the amplitude of the spike of interest is made possible

by the existence of a certain low-frequency polynomial, constructed in Lemma 8.1.2.

We illustrate the significance of this result with the example shown in Figure 3.4.

The signal in the figure has a source with very large amplitude which induces very

heavy aliasing. Our theory predicts that nonetheless applying our convex-programming

approach will yield an accurate estimate as long as the smallest spikes are sufficiently

large with respect to the noise level. In the example, we add white Gaussian noise

to induce a signal-to-noise ratio of 20 dB, which would actually be 15 dB without
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Signal Noisy data

Signal Noisy data

Signal Estimate

Signal Estimate

Figure 3.4: Super-resolution of a signal with a large dynamic range. We add white
Gaussian noise to induce a signal-to-noise ratio of 20 dB, which would actually be 15 dB
without the presence of the large spike. To compute the estimate we solve Problem (3.3.2)
as explained in Section 4.3.

the presence of the large spike. Our numerical experiment shows that convex pro-

gramming is indeed capable of super-resolving the spikes despite the aliasing and

the noise. This is interesting because such situations can be highly problematic for

more traditional nonparametric super-resolution methods such as those described in

Section 1.2.1, as shown in Figure 1.3, and may also be challenging for the paramet-

ric methods described in Section 1.2.2, since the aliasing might make it difficult to

estimate the number of point sources beforehand.

3.4 Related work

Earlier work on the super-resolution problem in the presence of noise studied under

which conditions recovery is not ill-posed. Donoho [38] studies the modulus of con-

tinuity of the recovery of a signed measure on a discrete lattice from its spectrum

on the interval [−flo, flo], a setting which is also equivalent to that of Corollary 2.4.1

when the size N of the fine grid tends to infinity. More precisely, if the support of

the measure is constrained to contain at most ` elements in any interval of length

2/(` flo), then the modulus of continuity is of order O
(
SRF2`+1

)
as SRF grows to
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infinity (note that for ` = 1 the constraint reduces to a minimum distance condi-

tion between spikes, which is comparable to the separation condition (2.2.2)). This

means that if the `2 norm of the difference between the measurements generated by

two signals satisfying the support constraints is known to be at most δ, then the

`2 norm of the difference between the signals may be of order O
(
SRF2`+1 δ

)
. This

result suggests that, in principle, the super-resolution of spread-out signals is not

hopelessly ill-conditioned. Having said this, it does not propose any practical recov-

ery algorithm (a brute-force search for sparse measures obeying the low-frequency

constraints would be computationally intractable). More recently, [7] studies the lo-

cal stability of the super-resolution problem in a continuous domain, but also does

not provide any tractable algorithms to perform recovery.

Other works have explored the trade-off between resolution and signal-to-noise

ratio for the detection of two closely-spaced line spectra [93] or light sources [61,92].

A recent reference [50], which focuses mainly on the related problem of imaging point

scatterers, analyzes the performance of a parametric method in the case of signals

sampled randomly from a discrete grid under the assumption that the sample covari-

ance matrix is close enough to the true one. In general, parametric techniques require

prior knowledge of the model order and rely heavily on the assumption that the noise

is white or at least has known spectrum (so that it can be whitened) as described in

Section 1.2.2. An alternative approach that overcomes the latter drawback is to per-

form nonlinear least-squares estimation of the model parameters [99]. Unfortunately,

the resulting optimization problem has an extremely multimodal cost function, which

makes it very sensitive to initialization [97].

Previous theoretical work on the stability of methods based on `1-norm regular-

ization is limited to a discrete and finite-dimensional setting, where the support of

the signal of interest is restricted to a finer uniform grid [23]. However, even if we

discretize the dictionary, previous stability results for sparse recovery in redundant

dictionaries do not apply due to the high coherence between the atoms of the over-

complete Fourier dictionary. In addition, it is worth mentioning that working with

a discrete dictionary can easily degrade the quality of the estimate [32] (see [96] for

a related discussion concerning grid selection for spectral analysis), which highlights
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the importance of analyzing the problem in the continuous domain. This observation

has spurred the appearance of modified compressed-sensing techniques specifically

tailored to the task of spectral estimation [44,49,64]. Proving stability guarantees for

these methods under conditions on the support or the dynamic range of the signal is

an interesting research direction.

Finally, we would like to mention some very recent work on super-resolution via

convex programming. In [2], the authors bound the support-detection error of a

convex program similar to Problem (3.2.16) in the presence of stochastic noise, but

the bound depends on the amplitude of the solution rather than on the amplitude

of the original spike. In [15], the authors consider the problem of denoising samples

taken from signals with sparse spectra using convex programming. In more detail, for

a signal composed of s sinusoids supported on an arbitrary set T of the unit interval,

assume that we have access to n measurements of the form

yk = wk + zk, 1 ≤ k ≤ n,

where wk denotes the noiseless sample

wk =
s∑
j=1

cje
−i2πktj , 1 ≤ k ≤ n,

and z is a vector of i.i.d. Gaussian noise with standard deviation equal to σ. Using an

estimator that combines a least-squares term with total-variation norm regularization,

[15] shows that it is possible to obtain an estimate west satisfying

||w − west||22
n

. σ

√
log n

n

s∑
j=1

|cj| .

In later work [101], this result is improved to

||w − west||22
n

. σ2k log n

n

under the minimum-separation condition (3.2.14) by building upon the techniques
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presented in Chapters 5 and 7. It is important to emphasize that these results concern

the denoising of the available samples, which in the case of spatial super-resolution

would correspond to the low-pass part of the spectrum, in contrast to the methods

analyzed in this chapter, which aim to achieve the extrapolation of the spectrum

of the signal up to a higher resolution. However, [15] does include an extension of

the results of Section 3.3 to sparse superpositions of point sources measured under

Gaussian perturbations.



Chapter 4

Total-variation minimization

In this chapter we discuss how to solve Problem (2.2.1), which may seem challeng-

ing at first because its primal variable is infinite-dimensional. We describe two ap-

proaches: Section 4.1 explains how to approximate the solution to the primal problem

by discretizing the support of the estimate, whereas in Section 4.2 we show that it is

actually possible to solve the continuous program directly by reformulating its dual

as a semidefinite program. The latter approach is extended to a noisy setting in

Section 4.3. An alternative method to perform total-variation minimization, which

we do not discuss, would be to approximate the solution by estimating the support

of the signal in an iterative fashion as proposed in [20].

4.1 Discretization of the primal problem

For superpositions of Dirac measures lying on a finite grid, the total-variation norm

reduces to the `1 norm, for which many efficient optimization algorithms have been

developed in the last decade. We refer the interested reader to [8–10,18,35,56,107] and

references therein. In more detail, if we discretize the unit interval into an N -point

The results presented in this chapter are joint work with Emmanuel Candès and have been
published in [23] and [24].
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grid, the operator Fn becomes a matrix Fn ∈ Cn×N and Problem (2.2.1) becomes

min
x̃∈CN

||x̃||1 subject to Fn x̃ = y.

This approach is particularly appropriate for applications such as imaging where the

original data may correspond to discrete samples of the low-resolution version of the

signal xLR, which we denote by xLR,N (for simplicity we assume that the grids for x

and xLR are the same). In such applications, the point spread function φ in (1.1.2)

is usually not well approximated by a sinc function. For instance, in fluorescence

microscopy a Gaussian parametric model is often employed for this purpose [110].

We can incorporate a discretized estimate φN of the point spread function of the

sensing process by recasting the problem as

min
x̃∈CN

||x̃||1 subject to φN ∗ x̃ = xLR,N . (4.1.1)

A possible disadvantage of discretizing the primal problem is the higher computa-

tional cost that is incurred when a very high accuracy is desired in the support

estimate. The computational complexity will depend on N , instead of on the number

of measurements n or the number of spikes, which may be undesirable for certain

applications. In such cases, the approach described in the following section would be

more appropriate, as long as the sensing mechanism is well modeled as a convolution

with a sinc or a Dirichlet kernel, which is the case in spectral super-resolution as

described in Section 1.2.1.

4.2 Reformulation of the dual problem

In this section we take an alternative route to the discretization of the primal prob-

lem, showing that (2.2.1) can be cast as a semidefinite program with just (n+ 1)2 /2

variables, and that highly accurate solutions can be found rather easily. This formu-

lation is similar to that in [15] which concerns a related infinite-dimensional convex

program.
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The convex program dual to

min
x̃
||x̃||TV subject to Fn x̃ = y

is

max
ν

Re〈y, ν〉 subject to ||F∗n ν||∞ ≤ 1; (4.2.1)

the constraint says that the trigonometric polynomial (F∗n ν)(t) =
∑
|k|≤flo νke

i2πkt

has a modulus uniformly bounded by 1 over the interval [0, 1]. The interior of the

feasible set contains the origin and is consequently non empty, so that strong duality

holds by a generalized Slater condition [84]. The cost function involves a finite vector

of dimension n, but the problem is still infinite dimensional due to the constraint.

Theorem 4.24 in [45] allows to express this constraint as the intersection between

the cone of positive semidefinite matrices {X : X � 0} and an affine hyperplane.

The result follows from the Fejér-Riesz Theorem. We provide a proof for the sake of

completeness. To ease notation we define the matrix-valued operator T : Cn → Cn×n.

For any vector u such that u1 is positive and real, T (u) is a Hermitian Toeplitz matrix

whose first row is equal to u. The adjoint of T with respect to the usual matrix inner

product 〈M1,M2〉 = Tr (M∗
1M2), extracts the sums of the diagonal and off-diagonal

elements of a matrix

T ∗ (M)j =

n−j+1∑
i=1

Mi,i+j−1.

Proposition 4.2.1. For any ν ∈ Cn and any positive constant d,

|(F∗n ν)(t)| ≤ d for all t ∈ T

if and only if there exists a Hermitian matrix Q ∈ Cn×n obeying[
Q ν

ν∗ 1

]
� 0, T ∗ (Q) = d2e1, (4.2.2)
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where e1 is the first vector of the canonical basis of Rn.

Proof. Let us define

z0(t) :=
[
ei2πfct ei2π(fc−1)t . . . e−i2πfct

]T
,

z1(t) :=
[
1 ei2πt . . . ei2πnt

]T
.

Note that (F∗n c)(t) = z0(t)∗c and T (z1 (t)) = z0(t)∗z0(t).

If (4.2.2) holds then Q− νν∗ � 0 and T ∗ (Q) = d2e1. This implies

|(F∗n ν)(t)|2 = z0(t)∗νν∗z0(t)

≤ z0(t)∗Qz0(t)

= Tr (z0(t)∗Qz0(t))

= 〈Q, z0(t)z0(t)∗〉
= 〈Q, T (z1 (t))〉
= 〈T ∗ (Q) , z1 (t)〉
= d2 (z1(t))1 = d2.

For the converse, |(F∗n ν)(t)| ≤ d implies that the trigonometric polynomial d2 −
z0(t)∗νν∗z0(t) is non-negative. By the Fejér-Riesz Theorem there exists a polynomial

P (t) = ν̃∗z0(t) such that

d2 − z0(t)∗νν∗z0(t) = |P (t)|2 = z0(t)∗ν̃ν̃∗z0(t). (4.2.3)

Now let us set Q = νν∗ + ν̃ν̃∗. Q− νν∗ is obviously positive semidefinite and conse-

quently so is [
Q ν

ν∗ 1

]
� 0.
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Figure 4.1: The sign of a real atomic measure x is plotted in red. The trigonometric
polynomial F∗nν where ν is a solution to the dual problem (4.2.4) is plotted in blue. Note
that F∗nν interpolates the sign of x. Here, flo = 50 so that we have n = 101 low-frequency
coefficients.

Furthermore, by (4.2.3)

d2 = z0(t)∗Qz0(t)

= 〈Q, z0(t)z0(t)∗〉
= 〈Q, T (z1(t))〉
= 〈T ∗ (Q) , z1 (t)〉

for all t, which is only possible if T ∗ (Q) = d2e1. This completes the proof.

Setting d = 1 in Proposition 4.2.1, Problem (4.2.1) is consequently equivalent to

max
ν∈Cn, Q∈Cn×n

Re〈y, ν〉 subject to

[
Q ν

ν∗ 1

]
� 0, T ∗ (Q) = e1. (4.2.4)

To be complete, the decision variables are an Hermitian matrix Q ∈ Cn×n and a

vector of coefficients ν ∈ Cn. The finite-dimensional semidefinite program can be

solved by off-the-shelf convex programming software.
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flo 25 50 75 100
Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

Table 4.1: Support-estimation accuracy achieved by solving (4.2.4) via CVX [57]. For
each value of the cut-off frequency flo, 100 signals were generated with random complex
amplitudes situated at approximately flo/4 random locations in the unit interval separated
by at least 2/flo. The table shows the errors in estimating the support locations.

The careful reader will observe that we have just shown how to compute the

optimal value of (2.2.1), but we are really interested in the solution of the primal

instead of the dual problem, as the theoretical results in Chapters 2 and 3 suggest

that the former will be a good estimate of the signal of interest. Fortunately, due

to strong duality the finite-dimensional solution has a very useful interpretation: it

corresponds to the coefficients of a polynomial that interpolates the sign of the primal

solution.

In more detail, to find a primal solution, we abuse notation by letting ν be the

solution to (4.2.4) and consider the trigonometric polynomial

p2n−2(ei2πt) = 1− |(F∗nν)(t)|2 = 1−
2flo∑

k=−2flo

uke
i2πkt, uk =

∑
j

νj ν̄j−k. (4.2.5)

Note that z2flop2n−2(z), where z ∈ C, is a polynomial of degree 4flo = 2(n− 1) with

the same roots as p2n−2(z)—besides the trivial root z = 0. Hence, p2n−2(ei2πt) has

at most 2n − 2 roots. By construction p2n−2(ei2πt) is a real-valued and nonnegative

trigonometric polynomial; in particular, it cannot have single roots on the unit circle

since the existence of single roots would imply that p2n−2(ei2πt) takes on negative

values. Therefore, p2n−2(ei2πt) is either equal to zero everywhere or has at most n− 1
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roots on the unit circle. By strong duality, any solution xest to (2.2.1) obeys

Re〈y, ν〉 = Re〈Fn xest, ν〉
= Re〈xest,F∗n ν〉

= Re

[∫ 1

0

(F∗nν) (t)xest(dt)

]
= ||xest||TV ,

which implies that the trigonometric polynomial F∗nν is exactly equal to the sign of

xest when xest is not vanishing. This is illustrated in Figure 4.1. Thus, to recover the

support of the solution to the primal problem, we must simply locate the roots of p2n−2

on the unit circle, for instance by computing the eigenvalues of its companion matrix

[79]. As shown in Table 4.1, this scheme allows to recover the support with very high

precision. Having obtained the estimate for the support Test, the amplitudes of the

signal can be reconstructed by solving the system of equations
∑

tj∈Test cje
−i2πktj = yk,

|k| ≤ fc, using the method of least squares. There is a unique solution as we have

at most n− 1 columns which are linearly independent since one can add columns to

form a Vandermonde system.1 Figure 4.2 illustrates the accuracy of this procedure; a

Matlab script reproducing this example is available at http://www-stat.stanford.

edu/~candes/superres_sdp.m.

In summary, in the usual case when p2n−2 has less than n roots on the unit circle,

we have explained how to retrieve the minimum total-variation norm solution. It

remains to address the situation in which p2n−2 vanishes everywhere. In principle,

this could happen even if a primal solution to (2.2.1) is an atomic measure supported

on a set T obeying |T | < n. For example, let x be a positive measure satisfying the

conditions of Theorem 2.2.1, which implies that it is the unique solution to (2.2.1).

Consider a vector ν ∈ Cn such that (F∗nν)(t) = 1; i.e. the trigonometric polynomial

1The set of roots contains the support of a primal optimal solution; if it is a strict superset, then
some amplitudes will vanish.

http://www-stat.stanford.edu/~candes/superres_sdp.m
http://www-stat.stanford.edu/~candes/superres_sdp.m
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Figure 4.2: There are 21 spikes situated at arbitrary locations separated by at least 2λc
and we observe 101 low-frequency coefficients (flo = 50). In the plot, seven of the original
spikes (black dots) are shown along with the corresponding low resolution data (blue line)
and the estimated signal (red line).

is constant. Then

Re〈y, ν〉 = Re〈Fn x, ν〉 = Re〈x,F∗n ν〉 = ||x||TV ,

which shows that ν is a solution to the dual (4.2.4) that does not carry any information

about the support of x. Fortunately, this situation is highly unusual in practice. In

fact, it does not occur as long as

there exists a solution ν̃, Q̃ to (4.2.4) obeying |(F∗nν̃)(t)| < 1 for some t ∈ [0, 1],

(4.2.6)

and we use interior point methods as in SDPT3 [104] to solve (4.2.4). (Our simulations

use CVX which in turn calls SDPT3.) This phenomenon is explained below. At the

moment, we would like to remark that Condition (4.2.6) is sufficient for the primal

problem (2.2.1) to have a unique solution, and holds except in very special cases. To

illustrate this, suppose y is a random vector, not a measurement vector corresponding

to a sparse signal. In this case, we typically observe dual solutions as shown in

Figure 4.3 (non-vanishing polynomials with at most n−1 roots). To be sure, we have

solved 400 instances of (4.2.4) with different values of flo and random data y. In
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1

0

Figure 4.3: The trigonometric polynomial p2n−2(ei2πt) computed from random data y ∈
C21 (n = 21 and flo = 10) with i.i.d. complex Gaussian entries. The polynomial has 16
roots.

every single case, Condition (4.2.6) held so that we could construct a primal feasible

solution x with a duality gap below 10−8, see Figure 4.4. In all instances, the support

of x was constructed by determining roots of p2n−2(z) at a distance at most 10−4 from

the unit circle.

Interior point methods approach solutions from the interior of the feasible set by

solving a sequence of optimization problems in which an extra term, a scaled barrier

function, is added to the cost function [19]. To be more precise, in our case (4.2.4)

would become

max
ν,Q

Re [y∗ν] + t log det

([
Q ν

ν∗ 1

])
subject to (4.2.2), (4.2.7)

where t is a positive parameter that is gradually reduced towards zero in order to

approach a solution to (4.2.4). Let λk, 1 ≤ k ≤ n, denote the eigenvalues of Q− νν∗.
By Schur’s formula (Theorem 1.1 in [111]) we have

log det

([
Q ν

ν∗ 1

])
= log det (Q− νν∗) =

n∑
k=1

log λk.

Suppose Condition (4.2.6) holds. Lemma 4.2.2 below states that there exists a solu-

tion to Problem (4.2.4) ν̃, Q̃ with the property that at least one eigenvalue of Q̃− ν̃ν̃∗
is bounded away from zero. This immediately implies that the magnitude of the cor-

responding polynomial F∗nν̃ is not equal to one all over the unit interval and therefore
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Figure 4.4: Primal feasible points x with a duality gap below 10−8 are constructed from
random data y sampled with i.i.d. complex Gaussian entries. A dual gap below 10−8 implies
that ‖x‖TV−‖xest‖TV ≤ 10−8, where xest is any primal optimal solution. (For reference, the
optimal value ‖xest‖TV is on the order of 10 in all cases.) Each figure plots the frequency of
occurrence of support cardinalities out of 100 realizations. For example, in (a) we obtained
a support size equal to 44 in 25 instances out of 100. The value of n is the same in each
plot and is marked by a dashed red line; (a) n = 51, (b) n = 101, (c) n = 151, (d) n = 201.

the solution will be informative if we use an interior-point method and will allow us

to estimate the support. More precisely, in the limit t → 0, (4.2.7) will construct a

non-vanishing polynomial p2n−2 with at most n − 1 roots on the unit circle rather

than the trivial solution p2n−2 = 0 since in the latter case, all the eigenvalues of

Q̃ − ν̃ν̃∗ vanish. Hence, an interior-point method can be said to solve the primal

problem (2.2.1) provided Condition (4.2.6) holds.

Lemma 4.2.2. The solution ν̃, Q̃ from Condition (4.2.6) is such that

Q̃− ν̃ν̃∗ � 0.
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Proof. Let t̃ be the point at which
∣∣(F∗nν̃)

(
t̃
)∣∣ < 1. Then,

z0

(
t̃
)∗ (

Q̃− ν̃ν̃∗
)
z0

(
t̃
)

= Tr
(
z0

(
t̃
)∗
Q̃z0

(
t̃
))
− z0

(
t̃
)∗
ν̃ν̃∗z0

(
t̃
)

=
〈
Q̃, z0

(
t̃
)
z0

(
t̃
)∗〉− ∣∣(F∗nν̃)

(
t̃
)∣∣2

=
〈
Q̃, T

(
z1

(
t̃
))〉
−
∣∣(F∗nν̃)

(
t̃
)∣∣2

=
〈
T ∗
(
Q̃
)
, z1

(
t̃
)〉
−
∣∣(F∗nν̃)

(
t̃
)∣∣2

= 1−
∣∣(F∗nν̃)

(
t̃
)∣∣2 > 0.

4.3 Reformulation of the dual problem for super-

resolution from noisy data

In this section we discuss how to solve a total-variation norm minimization problem

with relaxed constraints that account for perturbations in the data. The dual problem

of the convex program

min
x̃
||x̃||TV subject to ||Fnx̃− y||2 ≤ δ, (4.3.1)

takes the form

max
ν∈Cn

Re [y∗ν]− δ ||ν||2 subject to ||F∗n ν||∞ ≤ 1.

This dual problem can be recast as the semidefinite program

max
ν,Q

Re [y∗ν]− δ ||ν||2 subject to

[
Q ν

ν∗ 1

]
� 0, T ∗ (Q) = e1, (4.3.2)

where Q is an n×n Hermitian matrix, leveraging Proposition 4.2.1. As in the noiseless

case, our aim is to obtain a primal solution, which corresponds to the estimate of our

signal of interest. This means that after solving Problem (4.3.2) we still need a
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procedure to compute a solution to the primal. The following lemma provides such a

procedure. Similarly to the noiseless case, the argument is based on strong duality.

Lemma 4.3.1. Let (xest, νest) be a primal-dual pair of solutions to (4.3.1)–(4.3.2).

For any t ∈ T with xest (t) 6= 0,

(F∗n νest) (t) = sign (xest (t)) .

Proof. Since xest is feasible, ‖y − Fnxest‖`2 ≤ δ. Strong duality holds here by a

generalized Slater condition [84]. Hence, we have that

||xest||TV = Re [y∗νest]− δ ||νest||2
= 〈Fnxest, νest〉+ 〈y −Fnxest, νest〉 − δ ||νest||2
≤ 〈xest,F∗nνest〉 .

Since the Cauchy-Schwarz inequality gives

δ ||νest||2 ≥ ||y −Fnxest||2 ||νest||2 ≥ 〈y −Fnxest, νest〉 .

By Hölder’s inequality and the constraint on F∗nνest, ||xest||TV ≥ 〈xest,F∗nνest〉 so that

equality holds. This is only possible if F∗nνest equals the sign of xest at every point

where xest is nonzero.

This result implies that it is usually possible to determine the support of the

primal solution by locating those points where the polynomial q(t) = (F∗nνest)(t) has

modulus equal to one. Once the support is estimated accurately, a solution to the

primal problem can be found by solving a discrete least-squares problem.

Figure 4.5 shows the results of some numerical experiments that illustrate this

approach. On the left column we see the projection of the data onto the signal space

compared to the noiseless low-pass projection of the signal for different values of the

signal-to-noise ratio induced by adding i.i.d. white Gaussian noise. On the right

column, we see the result of solving the semidefinite program (4.3.2), locating the

support by determining at what points the modulus of F∗nνest (t) is equal to one and
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fitting the amplitude of the spikes using least squares. For large signal-to-noise ratios

the estimate produced in this way is very accurate. For lower signal-to-noise ratios

we are still able to locate the larger spikes. This behavior is in agreement with the

theoretical results on support detection provided in Section 3.3.
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Figure 4.5: Results of super-resolving a signal by applying semidefinite programming for
different values of the signal-to-noise ratio induced by adding i.i.d. white Gaussian noise.



Chapter 5

Proof of Exact Recovery

This chapter proves that total-variation norm minimization achieves exact recovery

under a minimum-separation condition on the signal support, as stated in Theorem

2.2.1. Section 5.1 explains how the proof relies on the construction of a certain polyno-

mial that certifies exact recovery. Section 5.2 presents a novel proof technique which

allows to construct such a polynomial when the support of the signal is not too clus-

tered together. A number of subsequent works build upon this construction to prove

the support-detection capability of super-resolution via convex programming [2, 46],

guarantees on denoising of line spectra via convex programming [101], recovery of

sparse signals from a random subset of their low-pass Fourier coefficients [102], re-

covery of non-uniform splines from their projection onto spaces of algebraic poly-

nomials [12, 37] and recovery of point sources from their projection onto spherical

harmonics [11]. Finally, the lemmas used to establish the result are proved in Sec-

tion 5.3. Throughout the chapter we write ∆ = ∆(T ) ≥ ∆min = 2λlo. Also, we

identify the interval [0, 1) with the circle T.

5.1 Dual certificates

In the discrete setting, the compressed sensing literature has made clear that the

existence of a certain dual certificate guarantees that the `1 solution is exact [26].

In the continuous setting, a sufficient condition for the success of the total-variation

77
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solution also concerns the existence of a solution to the dual of the convex program,

which corresponds to a low-pass polynomial that interpolates the sign pattern of the

signal. This is made precise by the following proposition.

Proposition 5.1.1. Suppose that for any vector v ∈ C|T | with unit-magnitude entries,

there exists a low-frequency trigonometric polynomial

q(t) =

flo∑
k=−flo

ake
i2πkt (5.1.1)

obeying the following propertiesq(tj) = vj, tj ∈ T,
|q(t)| < 1, t ∈ T \ T.

(5.1.2)

Then x is the unique solution to Problem (2.2.1).

Proof. The proof is a variation on the well-known argument for finite signals, and

we note that a proof for continuous-time signals, similar to that below, can be found

in [36]. Let xest be a solution to (2.2.1) and set xest = x+ h. Consider the Lebesgue

decomposition of h relative to |x|,

h = hT + hT c ,

where (1) hT and hT c is a unique pair of complex measures on B (T) such that hT is

absolutely continuous with respect to |x|, and (2) hT c and |x| are mutually singular.

It follows that hT is concentrated on T while hT c is concentrated on T c. Invoking a

corollary of the Radon-Nykodim Theorem (see Theorem 6.12 in [87]), it is possible

to perform a polar decomposition of hT ,

hT = ei2πφ(t) |hT | ,

such that φ (t) is a real function defined on T. We can now choose v such that

vj = e−i2πφ(tj) for all tj ∈ T , so that
∫
T q(t)hT (dt) = ||hT ||TV. The existence of the
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corresponding q suffices to establish a valuable inequality between the total-variation

norms of hT and hT c . Begin with

0 =

∫
T
q(t)h(dt) =

∫
T
q(t)hT (dt) +

∫
T
q(t)hT c(dt) = ||hT ||TV +

∫
T
q(t)hT c(dt)

and observe that ∣∣∣∣∫
T
q(t)hT c(dt)

∣∣∣∣ < ||hT c||TV

provided hT c 6= 0. This gives

||hT ||TV ≤ ||hT c||TV

with a strict inequality if h 6= 0. Assuming h 6= 0, we have

||x||TV ≥ ||x+ h||TV = ||x+ hT ||TV+||hT c||TV ≥ ||x||TV−||hT ||TV+||hT c||TV > ||x||TV .

This is a contradiction and thus h = 0. In other words, x is the unique minimizer.

Constructing a bounded low-frequency polynomial interpolating the sign pattern

of certain signals becomes increasingly difficult if the minimum distance separating

the spikes is too small. This is illustrated in Figure 5.1, where we show that if

spikes are very near, it would become in general impossible to find an interpolating

low-frequency polynomial obeying (5.1.2).

5.2 Proof of Theorem 2.2.1

Theorem 2.2.1 is a direct consequence of combining Proposition (5.1.1) and the propo-

sition below, which establishes the existence of a valid dual certificate provided the

elements in the support are sufficiently spaced.

Proposition 5.2.1. Let v ∈ C|T | be an arbitrary vector obeying |vj| = 1. Then

under the hypotheses of Theorem 2.2.1, there exists a low-frequency trigonometric

polynomial obeying (5.1.2).
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+1

1

(a)

+1

1

(b)

Figure 5.1: (a) Low-frequency polynomial interpolating a sign pattern in which the sup-
port is well separated, and obeying the off-support condition (5.1.2). In (b), we see that
if the spikes become very near, we would need a rapidly (high-frequency) interpolating
polynomial in order to achieve (5.1.2). This is the reason why there must be a minimum
separation between consecutive spikes.

The remainder of the chapter proves this proposition. Our method consists in

interpolating v on T with a low-frequency kernel and correcting the interpolation to

ensure that the derivative of the dual polynomial is zero on T . The kernel we employ

is

K(t) =

[
sin
((

flo
2

+ 1
)
πt
)(

flo
2

+ 1
)

sin (πt)

]4

, 0 < t < 1, (5.2.1)

and K(0) = 1. If flo is even, K(t) is the square of the Fejér kernel which is a trigono-

metric polynomial with frequencies obeying |k| ≤ flo/2. As a consequence, K is of

the form (5.1.1). The careful reader might remark that the choice of the interpola-

tion kernel seems somewhat arbitrary. In fact, one could also use the Fejér kernel

or any other power of the Fejér kernel using almost identical proof techniques. We

have found that the second power nicely balances the trade-off between localization

in time and in frequency, and thus yields a good constant.

To construct the dual polynomial, we interpolate v with both K and its derivative

K ′,

q(t) =
∑
tj∈T

αjK(t− tj) + βjK
′(t− tj), (5.2.2)

where α, β ∈ C|T | are coefficient sequences. The polynomial q is as in (5.1.1). In
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order to make it obey q(tk) = vk, we impose

q(tk) =
∑
tj∈T

αjK (tk − tj) + βjK
′ (tk − tj) = vk, ∀tk ∈ T, (5.2.3)

whereas to ensure that it verifies |q(t)| < 1 for t ∈ T c, we impose q′(tk) = 0,

q′(tk) =
∑
tj∈T

αjK
′ (tk − tj) + βjK

′′ (tk − tj) = 0, ∀tk ∈ T. (5.2.4)

As we will see, this implies that the magnitude of q reaches a local maximum at those

points, which in turn can be used to show that (5.1.2) holds.

The proof of Proposition 5.2.1 consists of three lemmas, which are proved in the

following section. The first one establishes that if the support is spread out, it is

possible to interpolate any sign pattern exactly.

Lemma 5.2.2. Under the hypotheses of Proposition 5.2.1, there exist coefficient vec-

tors α and β obeying

||α||∞ ≤ α∞ := 1 + 8.824 10−3,

||β||∞ ≤ β∞ := 3.294 10−2 λlo,
(5.2.5)

such that (5.2.3)–(5.2.4) hold. Further, if v1 = 1,

Reα1 ≥ 1− 8.824 10−3,

|Imα1| ≤ 8.824 10−3.
(5.2.6)

To complete the proof, Lemmas 5.2.3 and 5.2.4 show that |q (t) | < 1 in the unit

interval.

Lemma 5.2.3. Fix τ ∈ T . Under the hypotheses of Proposition 5.2.1, |q(t)| < 1 for

|t− τ | ∈ (0, 0.1649λlo].

Lemma 5.2.4. Fix τ ∈ T . Then under the hypotheses of Proposition 5.2.1, |q(t)| < 1

for |t− τ | ∈ [0.1649λlo,∆/2]. This can be extended as follows: letting τ+ be the closest

spike to the right, i. e. τ+ = min{t ∈ T : t > τ}. Then |q(t)| < 1 for all t obeying

0 < t− τ ≤ (τ+ − τ)/2, and likewise for the left side.
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In addition, we record a useful lemma to derive stability results.

Lemma 5.2.5. If ∆ (T ) ≥ 2.5λlo, then for any τ ∈ T ,

|q (t)| ≤ 1− 0.3353f 2
lo (t− τ)2 , for all t : |t− τ | ≤ 0.1649λlo. (5.2.7)

Further, for minτ∈T |t− τ | > 0.1649λlo, |q (t)| is upper bounded by the right-hand

side above evaluated at 0.1649λlo.

Finally, Section 5.3.5 describes how the proof can be adapted to obtain a slightly

smaller bound on the minimum distance for real-valued signals.

5.3 Proofs of lemmas

The proofs of the three main lemmas of the previous section make repeated use of

the fact that the interpolation kernel and its derivatives decay rapidly away from

the origin. The intermediate result below, proved in Section 5.3.6, quantifies this by

establishing upper bounds on the magnitude of the kernel.

Lemma 5.3.1. For ` ∈ {0, 1, 2, 3}, let K(`) be the `th derivative of K (K = K(0)).

For 1
2
f−1

lo = 1
2
λlo ≤ t ≤ 1

2
, we have

∣∣K(`)(t)
∣∣ ≤ B`(t) =

B̃`(t) = π`H`(t)
(flo+2)4−` t4

, 1
2
λlo ≤ t ≤

√
2/π,

π`H∞`
(flo+2)4−` t4

,
√

2/π ≤ t < 1
2
,

where H∞0 = 1, H∞1 = 4, H∞2 = 18, H∞3 = 77,

H0(t) = a4(t),

H1(t) = a4(t) (2 + 2b(t)) ,

H2(t) = a4(t)
(
4 + 7b(t) + 6b2(t)

)
,

H3(t) = a4(t)
(
8 + 24b(t) + 30b2(t) + 15b3(t)

)
,
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and

a(t) =
2

π
(
1− π2t2

6

) , b(t) =
1

flo

a(t)

t
.

For each `, the bound on the magnitude of B`(t) is nonincreasing in t and B̃`(∆−
t) + B̃`(∆ + t) is increasing in t for 0 ≤ t < ∆/2 if 0 ≤ ∆ + t ≤

√
2/π.

This result can be used to control quantities of the form
∑

ti∈T\{τ} |K (t− ti)| for

τ ∈ T as shown in the following lemma.

Lemma 5.3.2. Suppose 0 ∈ T . Then for all t ∈ [0,∆/2],

∑
ti∈T\{0}

∣∣K(`) (t− ti)
∣∣ ≤ F` (∆, t) = F+

` (∆, t) + F−` (∆, t) + F∞` (∆min),

where

F+
` (∆, t) = max

{
max

∆≤t+≤3∆min

∣∣K(`) (t− t+)
∣∣ , B` (3∆min − t)

}
+

20∑
j=2

B̃`(j∆min − t),

F−` (∆, t) = max

{
max

∆≤t−≤3∆min

∣∣K(`) (t−)
∣∣ , B` (3∆min)

}
+

20∑
j=2

B̃`(j∆min + t),

F∞` (∆min) =
κπ`H∞`

(flo + 2)4−`∆4
min

, κ =
π4

45
− 2

19∑
j=1

1

j4
≤ 8.98 10−5.

Moreover, F` (∆, t) is nonincreasing in ∆ for all t, and F` (∆min, t) is nondecreasing

in t.

Proof. We consider the sum over positive ti ∈ T first and denote by t+ the positive

element in T closest to 0. We have

∑
ti∈T : 0<ti≤1/2

∣∣K(`) (t− ti)
∣∣ =

∣∣K(`) (t− t+)
∣∣+

∑
ti∈T\{t+}: 0<ti≤1/2

∣∣K(`) (t− ti)
∣∣ . (5.3.1)

Let us assume t+ < 2∆min (if t+ > 2∆min the argument is very similar). Note that the
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assumption that flo ≥ 128 implies 21∆min < 0.33 <
√

2/π. By Lemma 5.3.1 and the

minimum-separation condition, this means that the second term on the right-hand

side is at most

20∑
j=2

B̃`(j∆min − t) +
π`

(flo + 2)4−`

∞∑
j=21

H∞`
(j∆min ± t)4 , (5.3.2)

which can be upper bounded using the fact that

∞∑
j=21

H∞`
(j∆min ± t)4 ≤

∞∑
j=20

H∞`
(j∆min)4

=
H∞`
∆4

min

( ∞∑
j=1

1

j4
−

19∑
j=1

1

j4

)

=
H∞`
∆4

min

(
π4

90
−

19∑
j=1

1

j4

)

=
κH∞`
2∆4

min

;

the first inequality holds because t < ∆min and the last because the Riemann zeta

function is equal to π4/90 at 4. Also,

∣∣K(`) (t− t+)
∣∣ ≤

max∆≤t+≤3∆min

∣∣K(`) (t− t+)
∣∣ , t+ ≤ 3∆min,

B`(3∆min − t), t+ > 3∆min.

Hence, the quantity in (5.3.1) is bounded by F+
` (∆, t)+F∞` (∆min)/2. A similar argu-

ment shows that the sum over negative ti ∈ T is bounded by F−` (∆, t)+F∞` (∆min)/2.

To verify the claim about the monotonicity with respect to ∆, observe that both

terms

max

{
max

∆≤t+≤3∆min

∣∣K(`) (t− t+)
∣∣ , B` (3∆min − t)

}
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and

max

{
max

∆≤t−≤3∆min

∣∣K(`) (t−)
∣∣ , B` (3∆min)

}
are nonincreasing in ∆.

Fix ∆ = ∆min now. Since B̃` (j∆− t) + B̃` (j∆ + t) is increasing in t for j ≤
20 (recall that 21∆min <

√
2/π), we only need to check that the first term in the

expression for F+
` is nondecreasing in t. To see this, rewrite this term (with ∆ = ∆min)

as

max

{
max

∆min−t≤u≤3∆min−t

∣∣K(`) (u)
∣∣ , B` (3∆min − t)

}
.

Now set t′ > t. Then by Lemma 5.3.1,

B` (3∆min − t′) ≥

B` (3∆min − t) ,
|K(u)| , u ≥ 3∆min − t′.

Also, we can verify that

max
∆min−t′≤u≤3∆min−t′

∣∣K(`) (u)
∣∣ ≥ max

∆min−t≤u≤3∆min−t′
∣∣K(`) (u)

∣∣ .
This concludes the proof.

In the proof of Lemmas 5.2.3 and 5.2.4, it is necessary to find a numerical up-

per bound on F`(∆min, t) at t ∈ {0, 0.1649λlo, 0.4269λlo, 0.7559λlo} (for the last two

points, we only need bounds for ` = 0, 1). For a fixed t, it is easy to find the maximum

of
∣∣K(`) (t− t+)

∣∣ where t+ ranges over [∆min, 3∆min] since we have expressions for the

smooth functions K(`) (see Section 5.3.6). For reference, these functions are plotted

in Figure 5.2. The necessary upper bounds are gathered in Table 5.1.

Finally, a last fact we shall use is that K (0) = 1 is the global maximum of K and

|K ′′ (0)| = |−π2flo (flo + 4) /3| the global maximum of |K ′′|.
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t/λlo F0 (1.98λlo, t) F1 (1.98λlo, t) F2 (1.98λlo, t) F3 (1.98λlo, t)
0 6.253 10−3 7.639 10−2flo 1.053 f 2

lo 8.078 f 3
lo

0.1649 6.279 10−3 7.659 10−2flo 1.055 f 2
lo 18.56 f 3

lo

0.4269 8.029 10−3 0.3042flo

0.7559 5.565 10−2 1.918flo

Table 5.1: Numerical upper bounds on F`(1.98λlo, t).
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Figure 5.2:
∣∣K(`) (t)

∣∣ for t ∈ [∆min, 3∆min]. The scaling of the x-axis is in units of λlo.

5.3.1 Proof of Lemma 5.2.2

Set

(D0)jk = K (tj − tk) , (D1)jk = K ′ (tj − tk) , (D2)jk = K ′′ (tj − tk) ,

where j and k range from 1 to |T |. With this, (5.2.3) and (5.2.4) become[
D0 D1

D1 D2

][
α

β

]
=

[
v

0

]
.

A standard linear algebra result asserts that this system is invertible if and only if

D2 and its Schur complement D0−D1D
−1
2 D1 are both invertible. To prove that this
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is the case we can use the fact that a symmetric matrix M is invertible if

||I−M ||∞ < 1, (5.3.3)

where ‖A‖∞ is the usual infinity norm of a matrix defined as

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
i

∑
j

|Aij|.

This follows from M−1 = (I − H)−1 =
∑

k≥0H
k, H = I −M , where the series is

convergent since ||H||∞ < 1. In particular,

∣∣∣∣M−1
∣∣∣∣
∞ ≤

1

1− ||I−M ||∞
. (5.3.4)

We also make use of the inequalities below, which follow from Lemma 5.3.2,

||I−D0||∞ ≤ F0 (∆min, 0) ≤ 6.253 10−3, (5.3.5)

||D1||∞ ≤ F1 (∆min, 0) ≤ 7.639 10−2 flo, (5.3.6)

||K ′′ (0) I−D2||∞ ≤ F2 (∆min, 0) ≤ 1.053 f 2
lo. (5.3.7)

Note that D2 is symmetric because the second derivative of the interpolation kernel

is symmetric. The bound (5.3.7) and the identity K ′′ (0) = −π2flo (flo + 4) /3 give∣∣∣∣∣∣∣∣I− D2

K ′′ (0)

∣∣∣∣∣∣∣∣
∞
< 1,

which implies the invertibility of D2. The bound (5.3.4) then gives

∣∣∣∣D−1
2

∣∣∣∣
∞ ≤

1

|K ′′ (0)| − ||K ′′ (0) I−D2||∞
≤ 0.4275

f 2
lo

. (5.3.8)
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Combining this with (5.3.5) and (5.3.6) yields

∣∣∣∣I− (D0 −D1D
−1
2 D1

)∣∣∣∣
∞ ≤ ||I−D0||∞ + ||D1||2∞

∣∣∣∣D−1
2

∣∣∣∣
∞

≤ 8.747 10−3 < 1. (5.3.9)

Note that the Schur complement of D2 is symmetric because D0 and D2 are both

symmetric whereas DT
1 = −D1 since the derivative of the interpolation kernel is

odd. This shows that the Schur complement of D2 is invertible and, therefore, the

coefficient vectors α and β are well defined.

There just remains to bound the interpolation coefficients, which can be expressed

as [
α

β

]
=

[
I

−D−1
2 D1

]
C−1v, C := D0 −D1D

−1
2 D1,

where C is the Schur complement. The relationships (5.3.4) and (5.3.9) immediately

give a bound on the magnitude of the entries of α

||α||∞ =
∣∣∣∣C−1v

∣∣∣∣
∞ ≤

∣∣∣∣C−1
∣∣∣∣
∞ ≤ 1 + 8.824 10−3.

Similarly, (5.3.6), (5.3.8) and (5.3.9) allow to bound the entries of β:

||β||∞ ≤
∣∣∣∣D−1

2 D1C
−1
∣∣∣∣
∞

≤
∣∣∣∣D−1

2

∣∣∣∣
∞ ||D1||∞

∣∣∣∣C−1
∣∣∣∣
∞ ≤ 3.294 10−2 λlo.

Finally, with v1 = 1, we can use (5.3.9) to show that α1 is almost equal to 1. Indeed,

α1 = 1− γ1, γ1 = [(I− C−1)v]1,

|γ1| ≤ ||I− C−1||∞, and

∣∣∣∣I− C−1
∣∣∣∣
∞ =

∣∣∣∣C−1(I− C)
∣∣∣∣
∞ ≤

∣∣∣∣C−1
∣∣∣∣
∞ ||I− C||∞ ≤ 8.824 10−3.

This concludes the proof.
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5.3.2 Proof of Lemma 5.2.3

We assume without loss of generality that τ = 0 and q(0) = 1. By symmetry, it

suffices to show the claim for t ∈ (0, 0.1649λlo]. Since q′(0) = 0, local strict concavity

would imply that |q (t)| < 1 near the origin. We begin by showing that the second

derivative of |q| is strictly negative in the interval (0, 0.1649λlo). This derivative is

equal to

d2 |q|
dt2

(t) = −(qR (t) q′R (t) + qI (t) q′I (t))2

|q (t)|3
+
|q′ (t)|2 + qR (t) q′′R (t) + qI (t) q′′I (t)

|q (t)| ,

where qR is the real part of q and qI the imaginary part. As a result, it is sufficient

to show that

qR (t) q′′R (t) + |q′ (t)|2 + |qI (t)| |q′′I (t)| < 0, (5.3.10)

as long as |q (t)| is bounded away from zero. In order to bound the different terms in

(5.3.10), we use the series expansions of the interpolation kernel and its derivatives

around the origin to obtain the inequalities, which hold for all t ∈ [−1/2, 1/2],

K (t) ≥ 1− π2

6
flo (flo + 4) t2, (5.3.11)

|K ′ (t)| ≤ π2

3
flo (flo + 4) t, (5.3.12)

K ′′ (t) ≤ −π
2

3
flo (flo + 4) +

π4

6
(flo + 2)4 t2, (5.3.13)

|K ′′ (t)| ≤ π2

3
flo (flo + 4) , (5.3.14)

|K ′′′ (t)| ≤ π4

3
(flo + 2)4 t. (5.3.15)

The lower bounds are decreasing in t, while the upper bounds are increasing in t, so

we can evaluate them at 0.1649λlo to establish that for all t ∈ [0, 0.1649λlo],

K (t) ≥ 0.9539, K ′′ (t) ≤ −2.923 f 2
lo,

|K ′ (t)| ≤ 0.5595 flo, |K ′′ (t)| ≤ 3.393 f 2
lo, |K ′′′ (t)| ≤ 5.697 f 3

lo.
(5.3.16)
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We combine this with Lemmas 5.3.2 and 5.2.2 to control the different terms in (5.3.10)

and begin with qR (t). Here,

qR (t) =
∑
tj∈T

Re (αj)K (t− tj) + Re (βj)K
′ (t− tj)

≥ Re (α1)K (t)− ||α||∞
∑

tj∈T\{0}
|K (t− tj)| − ||β||∞

∑
tj∈T
|K ′ (t− tj)|

≥ Re (α1)K (t)− α∞F0 (∆, t)− β∞ (|K ′ (t)|+ F1 (∆, t))

≥ Re (α1)K (t)− α∞F0 (∆min, t)− β∞ (|K ′ (t)|+ F1 (∆min, t))

≥ 0.9182. (5.3.17)

The third inequality follows from the monotonicity of F` in ∆, and the last from

(5.3.16) together with the monotonicity of F1 (∆min, t) in t, see Lemma 5.3.2, so that

we can plug in t = 0.1649λlo. Observe that this shows that q is bounded away from

zero since |q (t)| ≥ qR (t) ≥ 0.9198. Very similar computations yield

|qI (t)| =

∣∣∣∣∣∣
∑
tj∈T

Im (αj)K (t− tj) + Im (βj)K
′ (t− tj)

∣∣∣∣∣∣
≤ |Im (α1)|+ ||α||∞

∑
tj∈T\{0}

|K (t− tj)|+ ||β||∞
∑
tj∈T
|K ′ (t− tj)|

≤ |Im (α1)|+ α∞F0 (∆min, t) + β∞ (|K ′ (t)|+ F1 (∆min, t))

≤ 3.611 10−2

and

q′′R (t) =
∑
tj∈T

Re (αj)K
′′ (t− tj) +

∑
tj∈T

Re (βj)K
′′′ (t− tj)

≤ Re (α1)K ′′ (t) + ||α||∞
∑

tj∈T\{0}
|K ′′ (t− tj)|+ ||β||∞

∑
tj∈T
|K ′′′ (t− tj)|

≤ Re (α1)K ′′ (t) + α∞F2 (∆min, t) + β∞ (|K ′′′ (t)|+ F3 (∆min, t))

≤ −1.034 f 2
lo. (5.3.18)
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Similarly,

|q′′I (t)| =

∣∣∣∣∣∣
∑
tj∈T

Im (αj)K
′′ (t− tj) +

∑
tj∈T

Im (βj)K
′′′ (t− tj)

∣∣∣∣∣∣
≤ Im (α1) |K ′′ (t)|+ ||α||∞

∑
tj∈T\{0}

|K ′′ (t− tj)|+ ||β||∞
∑
tj∈T
|K ′′′ (t− tj)|

≤ Im (α1) |K ′′ (t)|+ α∞F2 (∆min, t) + β∞ (|K ′′′ (t)|+ F3 (∆min, t))

≤ 1.893 f 2
lo

and

|q′ (t)| =

∣∣∣∣∣∣
∑
tj∈T

αjK
′ (t− tj) + βjK

′′ (t− tj)

∣∣∣∣∣∣
≤ ||α||∞

∑
tj∈T
|K ′ (t− tj)|+ ||β||∞

∑
tj∈T
|K ′′ (t− tj)|

≤ α∞ |K ′ (t)|+ α∞F1 (∆min, t) + β∞ (|K ′′ (t)|+ F2 (∆min, t))

≤ 0.7882 flo.

These bounds allow us to conclude that |q|′′ is negative on [0, 0.1649λlo] since

qR (t) q′′R (t) + |q′ (t)|2 + |qI (t)| |q′′I (t)| ≤ −9.291 10−2f 2
lo < 0.

This completes the proof.

5.3.3 Proof of Lemma 5.2.4

As before, we assume without loss of generality that τ = 0 and q(0) = 1. We

use Lemma 5.3.2 again to bound the absolute value of the dual polynomial on
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[0.1649λlo,∆/2] and write

|q (t)| =
∣∣∣∑
tj∈T

αjK (t− tj) + βjK
′ (t− tj)

∣∣∣
≤ ||α||∞

[
|K (t)|+

∑
tj∈T\{0}

|K (t− tj)|
]

+ ||β||∞
[
|K ′ (t)|+

∑
tj∈T\{0}

|K ′ (t− tj)|
]

≤ α∞ |K (t)|+ α∞F0 (∆min, t) + β∞ |K ′ (t)|+ β∞F1 (∆min, t) . (5.3.19)

Note that we are assuming adversarial sign patterns and as a result we are unable to

exploit cancellations in the coefficient vectors α and β. To control |K(t)| and |K ′(t)|
between 0.1649λlo and 0.7559λlo, we use series expansions around the origin which

give

K (t) ≤ 1− π2flo (flo + 4) t2

6
+
π4 (flo + 2)4 t4

72

|K ′ (t)| ≤ π2flo (flo + 4) t

3
,

(5.3.20)

for all t ∈ [−1/2, 1/2]. Put

L1 (t) = α∞
[
1− π2flo (flo + 4) t2

6
+
π4 (flo + 2)4 t4

72

]
+ β∞

π2flo (flo + 4) t

3
,

with derivative equal to

L′1 (t) = −α∞
[π2flo (flo + 4) t

3
− π4 (flo + 2)4 t3

18

]
+ β∞

π2flo (flo + 4)

3
.

This derivative is strictly negative between 0.1649λlo and 0.7559λlo, which implies

that L1 (t) is decreasing in this interval. Put

L2 (t) = α∞F0 (∆min, t) + β∞F1 (∆min, t) .

By Lemma 5.3.2, this function is increasing. With (5.3.19), this gives the crude bound

|q (t)| ≤ L1 (t) + L2 (t) ≤ L1 (t1) + L2 (t2) for all t ∈ [t1, t2]. (5.3.21)
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t1/λlo t2/λlo L1 (t1) L2 (t2)
0.1649 0.4269 0.9818 1.812 10−2

0.4269 0.7559 0.7929 0.2068

Table 5.2: Numerical quantities used in (5.3.21).

Table 5.2 shows that taking {t1, t2} = {0.1649λlo, 0.4269λlo} and then {t1, t2} =

{0.4269λlo, 0.7559λlo} proves that |q(t)| < 1 on [0.1649λlo, 0.7559λlo]. For 0.7559λlo ≤
t ≤ ∆/2, we apply Lemma 5.3.1 and obtain

|q(t)| ≤ α∞
[
B0 (t) +B0 (∆− t) +

∞∑
j=1

B0 (j∆min + ∆− t) +
∞∑
j=1

B0 (j∆min + t)
]

+ β∞
[
B1 (t) +B1 (∆− t) +

∞∑
j=1

B1 (j∆min + ∆− t) +
∞∑
j=1

B1 (j∆min + t)
]

≤ α∞
[
B0 (0.7559λlo) +

∞∑
j=1

B0 (j∆min − 0.7559λlo) +
∞∑
j=1

B0 (j∆min + 0.7559λlo)
]

+ β∞
[
B1 (0.7559λlo) +

∞∑
j=1

B1 (j∆min − 0.7559λlo) +
∞∑
j=1

B1 (j∆min + 0.7559λlo)
]

≤ 0.758;

here, the second step follows from the monotonicity of B0 and B1. Finally, for ∆/2 ≤
t ≤ t+/2, this last inequality applies as well. This completes the proof.

5.3.4 Proof of Lemma 5.2.5

Replacing ∆ = 1.98λlo by ∆ = 2.5λlo and going through exactly the same calculations

as in Sections 5.3.1 and 5.3.2 yields that for any t obeying 0 ≤ |t− τ | ≤ 0.1649λlo,

d2 |q|
dt2

(t) ≤ −0.6706 f 2
lo.
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t/λlo F0 (2.5λlo, t) F1 (2.5λlo, t) F2 (2.5λlo, t) F3 (2.5λlo, t)
0 5.175 10−3 6.839 10−2flo 0.8946 f 2

lo 7.644 f 3
lo

0.1649 5.182 10−3 6.849 10−2flo 0.9459 f 2
lo 7.647 f 3

lo

Table 5.3: Numerical upper bounds on F`(2.5λlo, t).

t/λlo F0 (1.87λlo, t) F1 (1.87λlo, t) F2 (1.87λlo, t) F3 (1.87λlo, t)
0 6.708 10−3 7.978 10−2flo 1.078 f 2

lo 16.01 f 3
lo

0.17 6.747 10−3 0.1053flo 1.081 f 2
lo 41.74 f 3

lo

Table 5.4: Numerical upper bounds on F`(1.87λlo, t).

For reference, we have computed in Table 5.3 numerical upper bounds on F`(2.5λlo, t)

at t = {0, 0.1649λ}. Since |q(0)| = 1 and q′(0) = 0, it follows that

|q (t)| ≤ |q (0)| − 1

2
0.6706 f 2

lot
2. (5.3.22)

At a distance of 0.1649λlo, the right-hand side is equal to 0.9909. The calculations

in Section 5.3.3 with ∆ = 2.5λlo imply that the magnitude of q(t) at locations at

least 0.1649λlo away from an element of T is bounded by 0.9843. This concludes the

proof.

5.3.5 Improvement for real-valued signals

The proof for real-valued signals is almost the same as the one we have discussed

for complex-valued signals—only simpler. The only modification to Lemmas 5.2.2

and 5.2.4 is that the minimum distance is reduced to 1.87λlo, and that the bound in

Lemma 5.2.4 is shown to hold starting at 0.17λlo instead of 0.1649λlo. For reference,

we provide upper bounds on F`(1.87λlo, t) at t ∈ {0, 0.17λlo} in Table 5.4. As to

Lemma 5.2.3, the only difference is that to bound |q| between the origin and 0.17λlo,

it is sufficient to show that the second derivative of q is negative and make sure

that q > −1. Computing (5.3.18) for ∆ = 1.87λlo for t ∈ [0, 0.17λlo], we obtain

q′′ < −0.1181. Finally, (5.3.17) yields q > 0.9113 in [0, 0.17λlo].
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5.3.6 Proof of Lemma 5.3.1

The first inequality in the lemma holds due to two lower bounds on the sine function:

|sin (πt)| ≥ 2 |t| , for all t ∈ [−1/2, 1/2] (5.3.23)

sin (πt) ≥ πt− π3t3

6
=

2t

a(t)
, for all t ≥ 0. (5.3.24)

The proof for these expressions, which we omit, is based on concavity of the sine

function and on a Taylor expansion around the origin. Put f = flo/2 + 1 for short.

Some simple calculations give K ′(0) = 0 and for t 6= 0,

K ′ (t) = 4π

(
sin (fπt)

f sin (πt)

)3(
cos (fπt)

sin (πt)
− sin (fπt) cos (πt)

f sin2 (πt)

)
. (5.3.25)

Further calculations show that the value of the second derivative of K at the origin

is −π2flo (flo + 4) /3, and for t 6= 0,

K ′′ (t) =
4π2 sin2 (fπt)

f 2 sin4 (πt)

[
3

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)2

− sin2 (fπt)− sin (2fπt)

f tan (πt)
+

sin2 (fπt)

f 2 tan2 (πt)
+

sin2 (fπt)

f 2 sin2 (πt)

]
. (5.3.26)

It is also possible to check that the third derivative of K is zero at the origin, and for

t 6= 0,

K ′′′ (t) =
4π3 sin (fπt)

f sin4 (πt)

(
6G1(t) + 9 sin (fπt)G2(t) + sin2 (fπt)G3(t)

)
(5.3.27)

with

G1(t) =

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)3

,
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G2(t) =

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)
(
− sin (fπt)− 2 cos (fπt)

f tan (πt)
+

sin (fπt)

f 2 tan2 (πt)
+

sin (fπt)

f 2 sin2 (πt)

)
,

G3(t) =
3 cos (fπt) (1 + cos2 (πt))

f 2 sin2 (πt)
− cos (fπt) +

3 sin (fπt)

f tan (πt)

− sin (fπt) (1 + 5 cos (πt))

f 3 sin3 (πt)
.

The remaining inequalities in the lemma are all almost direct consequences of plugging

(5.3.23) and (5.3.24) into (5.3.25), (5.3.26) and (5.3.27). The bounds are nonincreas-

ing in t because the derivative of b(t) is negative between zero and
√

2/π and one can

check that H`(
√

2/π) < H∞` for flo ≥ 128. Additionally, bk(t) is strictly convex for

positive t and k ∈ {1, 2, 3}, so the derivative with respect to τ of bk(∆−τ)+bk(∆+τ)

is positive for 0 ≤ τ < ∆/2, which implies that B̃`(∆− τ) + B̃`(∆ + τ) is increasing

in τ .



Chapter 6

Proof of exact recovery in 2D

This chapter provides the proof of Theorem 2.3.1, which establishes exact recovery

in two dimensions. Section 6.1 describes the main argument of the proof, using

several lemmas that are proved in Section 6.2. Throughout the chapter we write

∆ = ∆(T ) ≥ ∆min = 2.38λlo. Unless specified otherwise, |r − r′| is the ∞ distance.

6.1 Outline of proof

Note that Proposition 5.1.1 also holds in multiple dimensions. It states that if there

exists a low-pass polynomial that interpolates the sign pattern of a signal and has

a magnitude strictly smaller than one on the off-support, then total-variation norm

minimization achieves exact recovery. As a result, Theorem 2.3.1 follows from Propo-

sition 6.1.1 below, which guarantees the existence of such a dual certificate.

Proposition 6.1.1. Let T = {r1, r2, . . .} ⊂ T2 be any family of points obeying the

minimum distance condition

|rj − rk| ≥ 2.38λlo, rj 6= rk ∈ T.

Assume flo ≥ 512. Then for any vector v ∈ R|T | with |vj| = 1, there exists a

trigonometric polynomial q with Fourier series coefficients supported on {−fc,−flo +

97
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1, . . . , fc}2 with the property q(rj) = vj, tj ∈ T,
|q(r)| < 1, t ∈ T2 \ T.

(6.1.1)

The proof is similar to that of Proposition 5.2.1 in that we shall construct the dual

polynomial q by interpolation with a low-pass, yet rapidly decaying two-dimensional

kernel. Here, we consider

K2D (r) = K (x)K (y) ,

obtained by tensorizing the square of the Fejer kernel (5.2.1). (For reference, if we

had data in which y(k) is observed if ‖k‖2 ≤ fc, we would probably use a radial

kernel.) Just as before, we have fixed K somewhat arbitrarily, and it would probably

be possible to optimize this choice to improve the constant factor in the expression

for the minimum distance. We interpolate the sign pattern using K2D and its partial

derivatives, denoted by K2D
(1,0) and K2D

(0,1) respectively, as follows:

q (r) =
∑
rj∈T

[
αjK

2D (r − rj) + β1jK
2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

]
,

and we fit the coefficients so that for all tj ∈ T ,

q (tj) = vj,

∇q (tj) = 0.
(6.1.2)

The first intermediate result shows that the dual polynomial is well defined, and also

controls the magnitude of the interpolation coefficients.

Lemma 6.1.2. Under the hypotheses of Proposition 6.1.1, there are vectors α, β1

and β2 obeying (6.1.2) and

||α||∞ ≤ 1 + 5.577 10−2,

||β||∞ ≤ 2.930 10−2 λlo,
(6.1.3)
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where β = (β1, β2). Further, if v1 = 1,

α1 ≥ 1− 5.577 10−2. (6.1.4)

Proposition 6.1.1 is now a consequence of the two lemmas below which control

the size of q near a point r0 ∈ T . Without loss of generality, we can take r0 = 0.

Lemma 6.1.3. Assume 0 ∈ T . Then under the hypotheses of Proposition 6.1.1,

|q (r)| < 1 for all 0 < |r| ≤ 0.2447λlo.

Lemma 6.1.4. Assume 0 ∈ T . Then under the conditions of Proposition 6.1.1,

|q (r)| < 1 for all r obeying 0.2447λlo ≤ |r| ≤ ∆/2. This also holds for all r that are

closer to 0 ∈ T (in the ∞ distance) than to any other element in T .

6.2 Proof of lemmas

6.2.1 Proof of Lemma 6.1.2

To express the interpolation constraints in matrix form, define

(D0)jk = K2D (rj − rk) ,
(
D(1,0)

)
jk

= K2D
(1,0) (rj − rk) ,(

D(0,1)

)
jk

= K2D
(0,1) (rj − rk) ,

(
D(1,1)

)
jk

= K2D
(1,1) (rj − rk) ,(

D(2,0)

)
jk

= K2D
(2,0) (rj − rk) ,

(
D(0,2)

)
jk

= K2D
(0,2) (rj − rk) .

To be clear, K2D
(`1,`2) means that we are taking `1 and `2 derivatives with respect to

the first and second variables. Note that D0, D(2,0), D(1,1) and D(0,2) are symmetric,

while D(1,0) and D(0,1) are antisymmetric, because K and K ′′ are even while K ′ is

odd. The interpolation coefficients are solutions to
D0 D(1,0) D(0,1)

D(1,0) D(2,0) D(1,1)

D(0,1) D(1,1) D(0,2)



α

β1

β2

 =


v

0

0

 ⇔
[
D0 −D̃T

1

D̃1 D̃2

][
α

β

]
=

[
v

0

]
, (6.2.1)
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where we have defined two new matrices D̃1 and D̃2. The norm of these matrices can

be bounded by leveraging 1D results. For instance, consider

||I−D0||∞ =
∑

rj∈T\{0}

∣∣K2D (rj)
∣∣ .

We split this sum into different regions corresponding to whether |xj| or |yj| ≤ ∆/2

and to min(|xj|, |yj|) ≥ ∆/2. First,

∑
rj 6=0 : |yj |<∆/2

∣∣K2D (rj)
∣∣ ≤ ∑

rj 6=0 : |yj |<∆/2

B0 (xj) ≤ 2
∑
j≥1

B0(j∆).

This holds because the xj’s must be at least ∆ apart, B0 is nonincreasing and the

absolute value of K2D is bounded by one. The region {rj 6= 0, |xj| < ∆/2} yields

the same bound. Now observe that Lemma 6.2.1 below combined with Lemma 5.3.1

gives

∑
rj 6=0 : min(xj ,yj)≥∆/2

∣∣K2D (rj)
∣∣ ≤ ∑

rj 6=0 : min(xj ,yj)≥∆/2

B0 (xj)B0 (yj) ≤
[∑
j1≥0

B0(∆/2+j1∆)
]2

.

To bound this expression, we apply the exact same technique as for (5.3.2) in Section

5.3, starting at j = 0 and setting j0 = 20. This gives

||I−D0||∞ ≤ 4
∑
j≥1

B0(j∆) + 4
[∑
j≥0

B0(∆/2 + j∆)
]2

≤ 4.854 10−2. (6.2.2)

Lemma 6.2.1. Suppose x ∈ R2
+ and f(x) = f1(x1)f2(x2) where both f1 and f2 are

nonincreasing. Consider any collection of points {xj} ⊂ R2
+ for which |xi − xj| ≥ 1.

Then ∑
j

f(xj) ≤
∑
j1≥0

f1(j1)
∑
j2≥0

f2(j2).

Proof. Consider the mapping x ∈ R2
+ 7→ (bx1c, bx2c). This mapping is injective over

our family of points. (Indeed, two points cannot be mapped to the same pair of

integers (j1, j2) as it would otherwise imply that they are both inside the square [j1 +

1)× [j2 + 1), hence violating the separation condition.) Therefore, the monotonicity
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assumption gives

∑
j

f(xj) ≤
∑
j

f1(bxj,1c)f2(bxj,2c) ≤
∑
j1,j2≥0

f1(j1)f2(j2),

which proves the claim.

Applying the same reasoning, we obtain

∣∣∣∣D(1,0)

∣∣∣∣
∞ ≤ 2

∑
j≥1

B1(j∆) + 2‖K ′‖∞
∑
j≥1

B0(j∆)

+ 4
[∑
j≥0

B0(∆/2 + j∆)
][∑

j≥0

B1(∆/2 + j∆)
]
.

In turn, the same upper-bounding technique yields

∣∣∣∣D(1,0)

∣∣∣∣
∞ ≤ 7.723 10−2 flo, (6.2.3)

where we have used the fact that ‖K ′‖∞ ≤ 2.08 (flo + 2), which follows from combin-

ing Lemma 5.3.1 with (5.3.12). Likewise,

∣∣∣∣D(1,1)

∣∣∣∣
∞ ≤ 4‖K ′‖∞

∑
j≥1

B1(j∆) + 4
[∑
j≥0

B1(∆/2 + j∆)
]2

≤ 0.1576 f 2
lo, (6.2.4)

and finally,

∣∣∣∣∣∣K2D
(2,0) (0)

∣∣ I−D(2,0)

∣∣∣∣
∞ ≤ 2

∑
j≥1

B2(j∆) + 2‖K ′′‖∞
∑
j≥1

B0(j∆)

+ 4
[∑
j≥0

B0(∆/2 + j∆)
][∑

j≥0

B2(∆/2 + j∆)
]
≤ 0.3539 f 2

lo, (6.2.5)

since ‖K ′′‖∞ = π2flo (flo + 4) /3, as |K ′′| reaches its global maximum at the origin.

We use these estimates to show that the system (6.2.1) is invertible and the
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coefficient sequences are bounded. To ease notation, set

S1 = D(2,0) −D(1,1)D
−1
(0,2)D(1,1),

S2 = D(1,0) −D(1,1)D
−1
(0,2)D(0,1),

S3 = D0 + ST2 S
−1
1 S2 −D(0,1)D

−1
(0,2)D(0,1).

Note that S1 is a Schur complement of D(0,2) and that a standard linear algebra

identity gives

D̃−1
2 =

[
S−1

1 −S−1
1 D(1,1)D

−1
(0,2)

−D−1
(0,2)D(1,1)S

−1
1 D−1

(0,2) +D−1
(0,2)D(1,1)S

−1
1 D(1,1)D

−1
(0,2)

]
.

Using this and taking the Schur complement of D̃2, which is equal to S3, the solution

to (6.2.1) can be written as[
α

β

]
=

[
I

−D̃−1
2 D̃1

](
D0 + D̃T

1 D̃
−1
2 D̃1

)−1

v

⇔


α

β1

β2

 =


I

−S−1
1 S2

D−1
(0,2)

(
D(1,1)S

−1
1 S2 −D(0,1)

)
S−1

3 v.

Applying (5.3.4) from Section 5.3.1, we obtain∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞
≤ 1∣∣∣K2D

(0,2) (0)
∣∣∣− ∣∣∣∣∣∣∣∣∣K2D

(0,2) (0)
∣∣∣ I−D(0,2)

∣∣∣∣∣∣
∞

≤ 0.3399

f 2
lo

, (6.2.6)

which together with K2D
(2,0) (0) = −π2flo (flo + 4) /3 and (6.2.4) imply

∣∣∣∣∣∣K2D
(2,0) (0)

∣∣ I− S1

∣∣∣∣
∞ ≤

∣∣∣∣∣∣K2D
(2,0) (0)

∣∣ I−D(2,0)

∣∣∣∣
∞ +

∣∣∣∣D(1,1)

∣∣∣∣2
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞

≤ 0.33624 f 2
lo.
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Another application of (5.3.4) then yields

∣∣∣∣S−1
1

∣∣∣∣
∞ ≤

1∣∣∣K2D
(2,0) (0)

∣∣∣− ∣∣∣∣∣∣∣∣∣K2D
(2,0) (0)

∣∣∣ I− S1

∣∣∣∣∣∣
∞

≤ 0.3408

f 2
lo

. (6.2.7)

Next, (6.2.3), (6.2.4) and (6.2.6) allow to bound S2,

||S2||∞ ≤
∣∣∣∣D(1,0)

∣∣∣∣
∞ +

∣∣∣∣D(1,1)

∣∣∣∣
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞

∣∣∣∣D(0,1)

∣∣∣∣
∞ ≤ 8.142 10−2 flo,

which combined with (6.2.2), (6.2.3), (6.2.6) and (6.2.7) implies

||I− S3||∞ ≤ ||I−D0||∞ + ||S2||2∞
∣∣∣∣S−1

1

∣∣∣∣
∞ +

∣∣∣∣D(0,1)

∣∣∣∣2
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞
≤ 5.283 10−2.

The results above allow us to derive bounds on the coefficient vectors by applying

(5.3.4) one last time, establishing

||α||∞ ≤
∣∣∣∣S−1

3

∣∣∣∣
∞ ≤ 1 + 5.577 10−2,

||β1||∞ ≤
∣∣∣∣S−1

1 S2S
−1
3

∣∣∣∣
∞ ≤

∣∣∣∣S−1
1

∣∣∣∣
∞ ||S2||∞

∣∣∣∣S−1
3

∣∣∣∣
∞ ≤ 2.930 10−2 λlo,

α1 = v1 −
((

I− S−1
3

)
v
)

1
≥ 1−

∣∣∣∣S−1
3

∣∣∣∣
∞ ||I− S3||∞ ≥ 1− 5.577 10−2,

where the last lower bound holds if v1 = 1. The derivation for ||β2||∞ is identical and

we omit it.

6.2.2 Proof of Lemma 6.1.3

Since v is real valued, α, β and q are all real valued. For |r| ≤ 0.2447λlo, we show

that the Hessian matrix of q,

H =

[
q(2,0) (r) q(1,1) (r)

q(1,1) (r) q(0,2) (r)

]
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is negative definite. In what follows, it will also be useful to establish bounds on the

kernel and its derivatives near the origin. Using (5.3.11)–(5.3.15), we obtain

K2D (x, y) ≥
(

1− π2flo (flo + 4)x2

6

)(
1− π2flo (flo + 4) y2

6

)
K2D

(2,0) (x, y) ≤
(
−π

2flo (flo + 4)

3
+

(flo + 2)4 π4x2

6

)(
1− π2flo (flo + 4) y2

6

)

and

∣∣K2D
(1,0) (x, y)

∣∣ ≤ π2flo (flo + 4)x

3
,

∣∣K2D
(1,1) (x, y)

∣∣ ≤ π4f 2
lo (flo + 4)2 xy

9
,∣∣K2D

(2,1) (x, y)
∣∣ ≤ π4f 2

lo (flo + 4)2 y

9
,

∣∣K2D
(3,0) (x, y)

∣∣ ≤ π4 (flo + 2)4 x

3
.

These bounds are all monotone in x and y so we can evaluate them at x = 0.2447λlo

and y = 0.2447λlo to show that for any |r| ≤ 0.2447λlo,

K2D (r) ≥ 0.8113
∣∣K2D

(1,0) (r)
∣∣ ≤ 0.8113 K2D

(2,0) (r) ≤ −2.097 f 2
lo,∣∣K2D

(1,1) (r)
∣∣ ≤ 0.6531 flo,

∣∣K2D
(2,1) (r)

∣∣ ≤ 2.669 f 2
lo,

∣∣K2D
(3,0) (r)

∣∣ ≤ 8.070 f 3
lo.

(6.2.8)

The bounds for K2D
(1,0), K

2D
(2,0), K

2D
(2,1) and K2D

(3,0) of course also hold for K2D
(0,1), K

2D
(0,2),

K2D
(1,2) and K2D

(0,3). Additionally, it will be necessary to bound sums of the form∑
rj∈T/{0}

∣∣∣K2D
(`1,`2) (r − rj)

∣∣∣ for r such that |r| ≤ ∆/2 and `1, `2 = 0, 1, 2, 3. Consider

the case (`1, `2) = (0, 0). Without loss of generality, let r = (x, y) ∈ R2
+. By Lemma

6.2.1, the contribution of those rj’s belonging to the three quadrants {|r| > ∆/2}\R2
+

obeys ∑
|rj |>∆/2,rj /∈R2

+

∣∣K2D (r − rj)
∣∣ ≤ 3

[∑
j≥0

B0(∆/2 + j∆)
]2

.

Similarly, the contribution from the bands where either |rj,1| or |rj,2| ≤ ∆/2 obeys

∑
|rj,1|≤∆/2 or |rj,2|≤∆/2

∣∣K2D (r − rj)
∣∣ ≤ 2

∑
j≥1

B0(j∆− |r|).
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It remains to bound the sum over rj’s lying in the positive quadrant {|r| > ∆/2}∩R2
+.

To do this, let f1 (t) be equal to one if |t| ≤ ∆ and to B0(∆t− |r|) otherwise. Taking

f2 = f1, Lemma 6.2.1 gives

∑
|rj |>∆/2,rj∈R2

+

∣∣K2D (r − rj)
∣∣ ≤∑

j≥1

B0(j∆− |r|) +
[∑
j≥1

B0(j∆− |r|)
]2

.

We can apply exactly the same reasoning to the summation of K2D
(`1,`2) for other values

of `1 and `2, and obtain that for any r such that |r| ≤ ∆/2,

∑
rj∈T\{0}

∣∣K2D
(`1,`2) (r − rj)

∣∣ ≤ Z(`1,`2) (|r|) ; (6.2.9)

here, for u ≥ 0,

Z(`1,`2) (u) = 2
∑
j≥1

K(`1)
∞ B`2(j∆− u) + 2K(`2)

∞ B`1(j∆− u) +K(`1)
∞
∑
j≥1

B`2(j∆)

+K(`2)
∞
∑
j≥1

B`1(j∆) + 3
[∑
j≥0

B`1(∆/2 + j∆)
][∑

j≥0

B`2(∆/2 + j∆− u)
]

+
[∑
j≥1

B`1(j∆− u)
][∑

j≥1

B`2(j∆)
]

in which K
(`1)
∞ is a bound on the global maximum of K(`1). The absolute value of

the kernel K and its second derivative reach their global maxima at the origin, so

K
(0)
∞ = 1 and K

(2)
∞ = π2flo (flo + 4) /3. Combining the bounds on |K ′| and |K ′′′| in

Lemma 5.3.1 with (5.3.12) and (5.3.15), we can show that K
(1)
∞ = 2.08 (flo + 2) and

K
(3)
∞ = 25.3 (flo + 2)3 if flo ≥ 512. Since Z(`1,`2) = Z(`2,`1), we shall replace Z(`1,`2) for

which `1 > `2 by Z(`2,`1).

Since

q(2,0) (r) =
∑
rj∈T

αjK
2D
(2,0) (r − rj) + β1jK

2D
(3,0) (r − rj) + β2jK

2D
(2,1) (r − rj)
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Z(0,0)(u) Z(0,1)(u) Z(1,1)(u) Z(0,2)(u) Z(1,2)(u) Z(0,3)(u)
6.405 10−2 0.1047 flo 0.1642 f 2

lo 0.4019 flo 0.6751 f 3
lo 1.574f 3

lo

Table 6.1: Upper bounds on Z(`1,`2)(u) at 0.2447λlo.

it follows from (6.2.8) and (6.2.9) that

q(2,0) (r) ≤ α1K
2D
(2,0) (r) + ||α||∞

∑
rj∈T\{0}

∣∣K2D
(2,0) (r − rj)

∣∣
+ ||β||∞

[∣∣K2D
(3,0) (r)

∣∣+
∑

rj∈T\{0}

∣∣K2D
(3,0) (r − rj)

∣∣
+
∣∣K2D

(2,1) (r)
∣∣+

∑
rj∈T\{0}

∣∣K2D
(2,1) (r − rj)

∣∣]
≤ α1K

2D
(2,0) (r) + ||α||∞ Z(0,2)(|r|) + ||β||∞

(∣∣K2D
(3,0) (r)

∣∣+ Z(0,3)(|r|)

+
∣∣K2D

(2,1) (r)
∣∣+ Z(1,2)(|r|)

)
≤ −1.175 f 2

lo.

The last inequality uses values of Z(`1,`2) (u) at u = 0.2447λlo reported in Table 6.1.

By symmetry, the same bound holds for q(0,2). Finally, similar computations yield

∣∣q(1,1)(r)
∣∣ =

∑
rj∈T

αjK
2D
(1,1) (r − rj) + β1jK

2D
(2,1) (r − rj) + β2jK

2D
(1,2) (r − rj)

≤ ||α||∞
[∣∣K2D

(1,1) (r)
∣∣+ Z(1,1)(|r|)

]
+ ||β||∞

[∣∣K2D
(2,1) (r)

∣∣+
∣∣K2D

(1,2) (r)
∣∣+ 2Z(1,2)(|r|)

]
≤ 1.059 f 2

lo.

Since Tr(H) = q(2,0) + q(0,2) < 0 and det(H) = |q(2,0)||q(0,2)| − |q(1,1)|2 > 0, both

eigenvalues of H are strictly negative.

We have shown that q decreases along any segment originating at 0. To complete
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the proof, we must establish that q > −1 in the square. Similar computations show

q (r) =
∑
rj∈T

αjK
2D (r − rj) + β1jK

2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

≥ α1K
2D (r)− ||α||∞ Z(0,0)(|r|)− ||β||∞

(∣∣K2D
(0,1) (r)

∣∣+
∣∣K2D

(1,0) (r)
∣∣+ 2Z(0,1)(|r|)

)
≥ 0.6447.

6.2.3 Proof of Lemma 6.1.4

For 0.2447λlo ≤ |r| ≤ ∆/2,

|q| ≤
∣∣∣∑
rj∈T

αjK
2D (r − rj) + β1jK

2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

∣∣∣
≤ ||α||∞

[∣∣K2D (r)
∣∣+ Z(0,0)(|r|)

]
+ ||β||∞

[∣∣K2D
(1,0) (r)

∣∣+
∣∣K2D

(0,1) (r)
∣∣+ 2Z(0,1)(|r|)

]
.

Using the series expansion around the origin of K and K ′ (5.3.20), we obtain that for

t1 ≤ |r| ≤ t2,

∣∣K2D (r)
∣∣ ≤ (1− π2flo (flo + 4)x2

6
+
π4 (flo + 2)4 x4

72

)
(

1− π2flo (flo + 4) y2

6
+
π4 (flo + 2)4 y4

72

)

≤

1−
π2
(

1 + 2
flo

)2

t21

6

1−
π2
(

1 + 2
flo

)2

t22

12




2

,

∣∣K2D
(1,0) (r)

∣∣ ≤ (π2flo (flo + 4) t2
3

)2

.

The same bound holds for K2D
(0,1). Now set

W (r) = α∞
∣∣K2D (r)

∣∣+ 2β∞
∣∣K2D

(1,0) (r)
∣∣
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t1/λlo t2/λlo Upper bound on W (r) Z(0,0) (t2) Z(0,1) (t2)
0.2447 0.27 0.9203 6.561 10−2 0.1074
0.27 0.36 0.9099 7.196 10−2 0.1184
0.36 0.56 0.8551 9.239 10−2 0.1540
0.56 0.84 0.8118 0.1490 0.2547

Table 6.2: Numerical quantities used to bound |q| between 0.2447λlo and 0.84λlo.

where α∞ and β∞ are the upper bounds from Lemma 6.1.2. The quantities reported

in Table 6.2 imply that setting {t1, t2} to {0.1649λlo, 0.27λlo}, {0.27λlo, 0.36λlo},
{0.36λlo, 0.56λlo} and {0.56λlo, 0.84λlo} yields |q| < 0.9958, |q| < 0.9929, |q| <
0.9617 and |q| < 0.9841 respectively in the corresponding intervals. Finally, for

|r| between 0.84λlo and ∆/2, applying Lemma (5.3.1) allows to show that W (r) ≤
0.5619, Z(0,0) (0.84λlo) ≤ 0.3646 and Z(0,1) (0.84λlo) ≤ 0.6502 flo , so that |q| ≤ 0.9850.

These last bounds also apply to any location beyond ∆/2 closer to 0 than to any other

element of T because of the monotonicity of B0 and B1. This concludes the proof.



Chapter 7

Proof of stability guarantees

This chapter contains the proof of Theorem 3.2.3. The main argument is laid out in

Section 7.1, while Section 7.2 provides proofs for all the supporting lemmas. Finally,

Section 7.3 discusses how to extend the result to a multidimensional setting.

7.1 Proof of Theorem 3.2.3

It is useful to first introduce various objects we shall need in the course of the proof.

We let T = {tj} be the support of x and define the disjoint subsets

Sλnear (j) := {t : |t− tj| ≤ 0.16λ} ,
Sλfar := {t : |t− tj| > 0.16λ, ∀tj ∈ T} ;

here, λ ∈ {λlo, λhi}, and j ranges from 1 to |T |. We write the union of the sets Sλnear (j)

as

Sλnear := ∪|T |j=1S
λ
near (j)

and observe that the pair (Sλnear, S
λ
far) forms a partition of T. The value of the constant

0.16 is not important and chosen merely to simplify the argument. We denote the

restriction of a measure µ with finite total variation on a set S by PSµ (note that in

109
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contrast we denote the low-pass projection in the frequency domain by Qlo). This

restriction is well defined for the above sets, as one can take the Lebesgue decompo-

sition of µ with respect to a positive σ-finite measure supported on any of them [87].

To keep some expressions in compact form, we set

ISλnear(j) (µ) :=
1

λ2
lo

∫
Sλnear(j)

(t− tj)2 |µ| (dt) ,

ISλnear (µ) :=
∑
tj∈T

ISλnear(j) (µ)

for any measure µ and λ ∈ {λlo, λhi}. Finally, we reserve the symbol C to denote a

numerical constant whose value may change at each occurrence.

Set h = x− xest. The error obeys

||Qloh||L1 ≤ ||Qlox− y||L1 + ||y −Qloxest||L1 ≤ 2δ,

and has bounded total-variation norm since ||h||TV ≤ ||x||TV + ||xest||TV ≤ 2 ||x||TV.

Our aim is to bound the L1 norm of the smoothed error e := Khi ∗ h,

||e||L1 =

∫
T

∣∣∣∣∫
T
Khi (t− τ)h (dτ)

∣∣∣∣ dt.
We begin with a lemma bounding the total-variation norm of h away from T .

Lemma 7.1.1. Under the conditions of Theorem 3.2.3, there exist positive constants

Ca and Cb such that ∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ I

S
λlo
near

(h) ≤ Ca δ,∣∣∣∣∣∣P
S
λhi
far

(h)
∣∣∣∣∣∣

TV
≤ Cb SRF2 δ.

This lemma is proved in Section 7.2.1 and relies on the existence of the dual cer-

tificate constructed in Chapter 5 to guarantee exact recovery in the noiseless setting.

To develop a bound about ‖e‖L1 , we begin by applying the triangle inequality to
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obtain

|e (t)| =
∣∣∣∣∫

T
Khi (t− τ)h (dτ)

∣∣∣∣
≤
∣∣∣∣∣
∫
S
λhi
far

Khi (t− τ)h (dτ)

∣∣∣∣∣+

∣∣∣∣∫
S
λhi
near

Khi (t− τ)h (dτ)

∣∣∣∣ . (7.1.1)

By a corollary of the Radon-Nykodim Theorem (see Theorem 6.12 in [87]), it is

possible to perform the polar decomposition P
S
λhi
far

(h) (dτ) = ei2πθ(τ)
∣∣∣P

S
λhi
far

(h)
∣∣∣ (dτ)

such that θ (τ) is a real function and
∣∣∣P

S
λhi
far

(h)
∣∣∣ is a positive measure. Then

∫
T

∣∣∣∣∣
∫
S
λhi
far

Khi (t− τ)h (dτ)

∣∣∣∣∣ dt ≤
∫
T

∫
S
λhi
far

|Khi (t− τ)|
∣∣∣P

S
λhi
far

(h)
∣∣∣ (dτ) dt

=

∫
S
λhi
far

(∫
T
|Khi (t− τ)| dt

) ∣∣∣P
S
λhi
far

(h)
∣∣∣ (dτ)

≤ C0

∣∣∣∣∣∣P
S
λhi
far

(h)
∣∣∣∣∣∣

TV
, (7.1.2)

where we have applied Fubini’s theorem and (3.2.20) (note that the total-variation

norm of
∣∣∣P

S
λhi
far

(h)
∣∣∣ is bounded by 2 ||x||TV <∞).

In order to control the second term in the right-hand side of (7.1.1), we use a

first-order approximation of the super-resolution kernel provided by the Taylor series

expansion of ψ (τ) = Khi (t− τ) around tj: for any τ such that |τ − tj| ≤ 0.16λhi, we

have

|Khi (t− τ)−Khi (t− tj)−K ′hi (t− tj) (tj − τ)| ≤ sup
u:|t−tj−u|≤0.16λhi

1

2
|K ′′hi(u)| (τ − tj)2.

Applying this together with the triangle inequality, and setting tj = 0 without loss of



CHAPTER 7. PROOF OF STABILITY GUARANTEES 112

generality, gives

∫
T

∣∣∣∣∫
S
λhi
near(j)

Khi (t− τ)h (dτ)

∣∣∣∣ dt ≤ ∫
T

∣∣∣∣∫
S
λhi
near(j)

Khi (t)h (dτ)

∣∣∣∣ dt
+

∫
T

∣∣∣∣∫
S
λhi
near(j)

K ′hi (t) τh (dτ)

∣∣∣∣ dt+
1

2

∫
T

∣∣∣∣∣
∫
S
λhi
near(j)

sup
|t−u|≤0.16λhi

|K ′′hi (u)| τ 2|h| (dτ)

∣∣∣∣∣ dt.
(7.1.3)

(To be clear, we do not lose generality by setting tj = 0 since the analysis is invariant

by translation; in particular by a translation placing tj at the origin. To keep things

as simple as possible, we shall make a frequent use of this argument.)

We then combine Fubini’s theorem with (3.2.20) to obtain∫
T

∣∣∣∣∫
S
λhi
near(j)

Khi (t)h (dτ)

∣∣∣∣ dt ≤ ∫
T
|Khi (t)| dt

∣∣∣∣∫
S
λhi
near(j)

h (dτ)

∣∣∣∣
≤ C0

∣∣∣∣∫
S
λhi
near(j)

h (dτ)

∣∣∣∣ (7.1.4)

and ∫
T

∣∣∣∣∫
S
λhi
near(j)

K ′hi (t) τh (dτ)

∣∣∣∣ dt ≤ ∫
T
|K ′hi (t)| dt

∣∣∣∣∫
S
λhi
near(j)

τh (dτ)

∣∣∣∣
≤ C1

λhi

∣∣∣∣∫
S
λhi
near(j)

τh (dτ)

∣∣∣∣ . (7.1.5)

Some simple calculations show that (3.2.20) and (3.2.21) imply∫
T

sup
|t−u|≤0.16λhi

|K ′′hi (u)| dt ≤ C4

λ2
hi

(7.1.6)
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for a positive constant C4. This together with Fubini’s theorem yield∫
T

∣∣∣∣∫
S
λhi
near(j)

|K ′′hi (u)| τ 2|h| (dτ)

∣∣∣∣ dt ≤ ∫
T

sup
|t−u|≤0.16λhi

|K ′′hi (t)| dt
∣∣∣∣∫
S
λhi
near(j)

τ 2|h| (dτ)

∣∣∣∣
≤ C4 SRF2 I

S
λhi
near(j)

(h) (7.1.7)

for any u. In order to make use of these bounds, it is necessary to control the local

action of the measure h on a constant and a linear function. The following two lemmas

are proved in Sections 7.2.2 and 7.2.3.

Lemma 7.1.2. Take T as in Theorem 3.2.3 and any measure h obeying ||Qloh||L1 ≤
2δ. Then ∑

tj∈T

∣∣∣∣∫
S
λhi
near(j)

h (dτ)

∣∣∣∣ ≤ 2δ +
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
+ C I

S
λhi
near

(h) .

Lemma 7.1.3. Take T as in Theorem 3.2.3 and any measure h obeying ||Qloh||L1 ≤
2δ. Then

∑
tj∈T

∣∣∣∣∫
S
λhi
near(j)

(τ − tj)h (dτ)

∣∣∣∣ ≤ C
(
λlo δ + λlo

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ λlo ISλlonear

(h)

+ λhi SRF2 I
S
λlo
near

(h)
)
.

We may now conclude the proof of our main theorem. Indeed, the inequalities

(7.1.2), (7.1.3), (7.1.4), (7.1.5) and (7.1.7) together with I
S
λhi
near

(h) ≤ I
S
λlo
near

(h) and

Lemmas 7.1.2 and 7.1.3 imply

||e||L1 ≤ C
(

SRF δ +
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
+ SRF

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ SRF2 I

S
λlo
near

(h)
)

≤ C SRF2δ,

where the second inequality follows from Lemma 7.1.1.
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7.2 Proof of lemmas

7.2.1 Proof of Lemma 7.1.1

The proof relies on the existence of a certain low-frequency polynomial, characterized

in the following lemma which recalls results from Proposition 5.2.1 and Lemma 5.2.5.

Lemma 7.2.1. Suppose T obeys the separation condition (3.2.14) and take any v ∈
C|T | with |vj| = 1. Then there exists a low-frequency trigonometric polynomial

q(t) =

flo∑
k=−flo

cke
i2πkt

obeying the following properties:

q(tj) = vj, tj ∈ T, (7.2.1)

|q(t)| ≤ 1− Ca (t− tj)2

λ2
lo

, t ∈ Sλlonear (j) , (7.2.2)

|q(t)| < 1− Cb, t ∈ Sλlofar , (7.2.3)

with 0 < Cb ≤ 0.162Ca < 1.

Invoking a corollary of the Radon-Nykodim Theorem (see Theorem 6.12 in [87]),

it is possible to perform a polar decomposition of PTh,

PTh = eiφ(t) |PTh| ,

such that φ (t) is a real function defined on T. To prove Lemma 7.1.1, we work with

vj = e−iφ(tj). Since q is low frequency,∣∣∣∣∫
T
q(t)dh(t)

∣∣∣∣ =

∣∣∣∣∫
T
q(t)Qloh (t) dt

∣∣∣∣ ≤ ||q||∞ ||Qloh||L1 ≤ 2δ. (7.2.4)
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Next, since q interpolates e−iφ(t) on T ,

||PTh||TV =

∫
T
q(t)PTh (dt)

≤
∣∣∣∣∫

T
q(t)h (dt)

∣∣∣∣+

∣∣∣∣∫
T c
q(t)h (dt)

∣∣∣∣
≤ 2δ +

∑
j∈T

∣∣∣∣∣
∫
S
λlo
near(j)\{tj}

q(t)h (dt)

∣∣∣∣∣+

∣∣∣∣∣
∫
S
λlo
far

q(t)h (dt)

∣∣∣∣∣ . (7.2.5)

Applying (7.2.3) in Lemma 7.2.1 and Hölder’s inequality, we obtain∣∣∣∣∣
∫
S
λlo
far

q(t)h (dt)

∣∣∣∣∣ ≤ ∣∣∣∣∣∣PSλlofar

q
∣∣∣∣∣∣
∞

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV

≤ (1− Cb)
∣∣∣∣∣∣P

S
λlo
far

(h)
∣∣∣∣∣∣

TV
. (7.2.6)

Set tj = 0 without loss of generality. The triangle inequality and (7.2.2) in Lemma 7.2.1

yield ∣∣∣∣∫
S
λlo
near(j)\{0}

q(t)h (dt)

∣∣∣∣ ≤ ∫
S
λlo
near(j)\{0}

|q(t)| |h| (dt)

≤
∫
S
λlo
near(j)\{0}

(
1− Cat

2

λ2
lo

)
|h| (dt)

≤
∫
S
λlo
near(j)\{0}

|h| (dt)− CaISλlonear(j)
(h) . (7.2.7)

Combining (7.2.5), (7.2.6) and (7.2.7) gives

||PTh||TV ≤ 2δ + ||PT ch||TV − Cb
∣∣∣∣∣∣P

S
λlo
far

(h)
∣∣∣∣∣∣

TV
− CaISλlonear

(h) .

Observe that we can substitute λlo with λhi in (7.2.5) and (7.2.7) and obtain

||PTh||TV ≤ 2δ + ||PT ch||TV − 0.162Ca SRF−2
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
− CaISλhinear

(h) .

This follows from using (7.2.2) instead of (7.2.3) to bound the magnitude of q on Sλhifar .

These inequalities can be interpreted as a generalization of the strong null-space
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property used to obtain stability guarantees for super-resolution on a discrete grid

(see Lemma 3.2.2). Combined with the fact that xest has minimal total-variation

norm among all feasible points, they yield

||x||TV ≥ ||x+ h||TV

≥ ||x||TV − ||PTh||TV + ||PT ch||TV

≥ ||x||TV − 2δ + Cb

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ CaISλlonear

(h) .

As a result, we conclude that

Cb

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ CaISλlonear

(h) ≤ 2δ,

and by the same argument,

0.162Ca SRF−2
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
+ CaISλhinear

(h) ≤ 2δ.

This finishes the proof.

7.2.2 Proof of Lemma 7.1.2

The proof of this lemma relies upon the low-frequency polynomial from Lemma 7.2.1

and the fact that q(t) is almost constant locally near the support of the signal of

interest, as illustrated by Figure 7.1. As a result the polynomial is a good approxi-

mation to the chosen sign pattern when we only take into account a neighborhood of

the support. This is shown by the following lemma, which we prove in Section 7.2.4.

Lemma 7.2.2. There is a polynomial q satisfying the properties from Lemma 7.2.1

and, additionally,

|q(t)− vj| ≤
C (t− tj)2

λ2
lo

, for all t ∈ Sλlonear (j) .
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1

0

−11

0

−1

Figure 7.1: The low-frequency polynomial from Lemma 7.2.1 is almost constant in a
neighborhood of the support of the signal.

Consider the polar form∫
S
λhi
near(j)

h (dτ) =

∣∣∣∣∫
S
λhi
near(j)

h (dτ)

∣∣∣∣ eiθj ,
where θj ∈ [0, 2π). We set vj = eiθj in Lemma 7.2.1 and apply the triangular inequal-

ity to obtain∣∣∣∣∫
S
λhi
near(j)

h (dτ)

∣∣∣∣ =

∫
S
λhi
near(j)

e−iθjh (dτ)

≤
∫
S
λhi
near(j)

q (τ)h (dτ) +

∣∣∣∣∫
S
λhi
near(j)

(
q (τ)− e−iθj

)
h (dτ)

∣∣∣∣ , (7.2.8)

for all tj ∈ T . By another application of the triangle inequality and (7.2.4)

∫
S
λhi
near

q (τ)h (dτ) ≤
∣∣∣∣∫

T
q (τ)h (dτ)

∣∣∣∣+

∣∣∣∣∣
∫
S
λhi
far

q (τ)h (dτ)

∣∣∣∣∣ ≤ 2δ +
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
.

(7.2.9)

To bound the remaining term in (7.2.8), we apply Lemma 7.2.2 with tj = 0 (this is
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no loss of generality),∣∣∣∣∫
S
λhi
near(j)

(
q(t)− e−iθj

)
h (dt)

∣∣∣∣ ≤ ∫
S
λhi
near(j)

∣∣q(t)− e−iθj ∣∣ |h| (dt)
≤
∫
S
λhi
near(j)

Ct2

λ2
lo

|h| (dt) = CI
S
λhi
near(j)

(h) .

It follows from this, (7.2.8) and (7.2.9) that∣∣∣∣∫
S
λhi
near

h (dτ)

∣∣∣∣ ≤ 2δ +
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
+ CI

S
λhi
near

(h) .

The proof is complete.

7.2.3 Proof of Lemma 7.1.3

We record a simple lemma.

Lemma 7.2.3. For any measure µ and tj = 0,∣∣∣∣∫ 0.16λlo

0.16λhi

τµ (dτ)

∣∣∣∣ ≤ 6.25λhi SRF2 I
S
λlo
near(j)

(µ) .

Proof. Note that in the interval [0.16λhi, 0.16λlo], t/0.16λhi ≥ 1, whence∣∣∣∣∫ 0.16λlo

0.16λhi

τµ (dτ)

∣∣∣∣ ≤ ∫ 0.16λlo

0.16λhi

τ |µ| (dτ)

≤
∫ 0.16λlo

0.16λhi

τ 2

0.16λhi

|µ| (dτ)

≤ λ2
lo

0.16λhi

I
S
λlo
near(j)

(µ) .
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Figure 7.2: The low-frequency polynomial from Lemma 7.2.4 is almost linear in a neigh-
borhood of the support of the signal.

We now turn our attention to the proof of Lemma 7.1.3. By the triangle inequality,

∑
tj∈T

∣∣∣∣∫
S
λhi
near(j)

(τ − tj)h (dτ)

∣∣∣∣ ≤
∑
tj∈T

∣∣∣∣∫
S
λlo
near(j)

(τ − tj)h (dτ)

∣∣∣∣+
∑
tj∈T

∣∣∣∣∣
∫

0.16λhi≤|τ−tj |≤0.16λlo

(τ − tj)h (dτ)

∣∣∣∣∣ . (7.2.10)

The second term is bounded via Lemma 7.2.3. For the first, we use an argument

very similar to the proof of Lemma 7.1.2. Here, we exploit the existence of a low-

frequency polynomial that is almost linear in the vicinity of the elements of T . The

result below, proved in Section 7.2.5, characterizes the polynomial, which is portrayed

in Figure 7.2.

Lemma 7.2.4. Suppose T obeys the separation condition (3.2.14) and take any v ∈
C|T | with |vj| = 1. Then there exists a low-frequency trigonometric polynomial

q1(t) =

flo∑
k=−flo

cke
i2πkt
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obeying

|q1(t)− vj (t− tj) | ≤
Ca (t− tj)2

λlo

, t ∈ Sλlonear (j) , (7.2.11)

|q1(t)| ≤ Cbλlo, t ∈ Sλlofar , (7.2.12)

for positive constants Ca, Cb.

Consider the polar decomposition of∫
S
λlo
near(j)

(τ − tj)h (dτ) =

∣∣∣∣∫
S
λlo
near(j)

(τ − tj)h (dτ)

∣∣∣∣ eiθj ,
where θj ∈ [0, 2π), tj ∈ T , and set vj = eiθj in Lemma 7.2.4. Again, suppose tj = 0.

Then∣∣∣∣∫
S
λlo
near(j)

τh (dτ)

∣∣∣∣ =

∫
S
λlo
near(j)

e−iθjτh (dτ)

≤
∣∣∣∣∫
S
λlo
near(j)

(
q1 (τ)− e−iθjτ

)
h (dτ)

∣∣∣∣+

∫
S
λlo
near(j)

q1 (τ)h (dτ) .

(7.2.13)

The inequality (7.2.11) and Hölder’s inequality allow to bound the first term in the

right-hand side of (7.2.13),∣∣∣∣∫
S
λlo
near(j)

(
q1 (τ)− e−iθjτ

)
h (dτ)

∣∣∣∣ ≤ ∫
S
λlo
near(j)

∣∣q1 (τ)− e−iθjτ
∣∣ |h| (dτ)

≤ Ca
λlo

∫
S
λlo
near(j)

τ 2 |h| (dτ)

≤ Ca λlo ISλlonear(j)
(h) . (7.2.14)

Another application of the triangular inequality yields∫
S
λlo
near

q1 (τ)h (dτ) ≤
∣∣∣∣∫

T
q1 (τ)h (dτ)

∣∣∣∣+

∫
S
λlo
far

q1 (τ)h (dτ) . (7.2.15)

We employ Hölder’s inequality, (7.2.4), (7.2.11) and (7.2.12) to bound each of the
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terms in the right-hand side. First,∣∣∣∣∫
T
q1 (τ)h (dτ)

∣∣∣∣ ≤ ||q1||∞ ||Qloh||L1 ≤ C λlo δ. (7.2.16)

Second,∫
S
λlo
far

q1 (τ)h (dτ) ≤
∣∣∣∣∣∣P

S
λlo
far

(q1)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
≤ Cb λlo

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
. (7.2.17)

Combining (7.2.10) with these estimates gives

∑
tj∈T

∣∣∣∣∫
S
λhi
near(j)

(τ − tj)h (dτ)

∣∣∣∣ ≤ C
(
λlo δ + λlo

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ λlo ISλlonear

(h)

+ λhi SRF2 I
S
λlo
near

(h)
)
,

as desired.

7.2.4 Proof of Lemma 7.2.2

We use the construction described in Section 5.2. In more detail,

q(t) =
∑
tk∈T

αkK(t− tk) + βkK
(1)(t− tk),

where α, β ∈ C|T | are coefficient vectors, and K is defined in (5.2.1). Recall that we

denote here, the `th derivative of K by K(`). By construction, the coefficients α and

β are selected such that for all tj ∈ T ,

q(tj) = vj

q′(tj) = 0.

Without loss of generality we consider tj = 0 and bound q (t) − vj in the interval

[0, 0.16λlo]. To ease notation, we define w(t) = q (t) − vj = wR(t) + i wI(t), where

wR is the real part of w and wI the imaginary part. Leveraging different results from
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Section 5.1 (in particular the equations in (5.3.16) and Lemmas 5.2.2 and 5.3.2), we

have

|w′′R (t)| =
∣∣∣∣∣∑
tk∈T

Re (αk)K
(2) (t− tk) +

∑
tk∈T

Re (βk)K
(3) (t− tk)

∣∣∣∣∣
≤ ||α||∞

∑
tk∈T

∣∣K(2) (t− tk)
∣∣+ ||β||∞

∑
tk∈T

∣∣K(3) (t− tk)
∣∣

≤ Cα

∣∣K(2) (t)
∣∣+

∑
tk∈T\{0}

∣∣K(2) (t− tk)
∣∣

+ Cβλlo

∣∣K(3) (t)
∣∣+

∑
tk∈T\{0}

∣∣K(3) (t− tk)
∣∣

≤ C f 2
lo.

The same bound holds for w′′I . Since wR(0), w′R(0), wI(0) and w′I(0) are all equal to

zero, this implies |wR(t)| ≤ C ′f 2
lot

2 and |wI(t)| ≤ C ′f 2
lot

2 in the interval of interest,

which allows the conclusion

|w(t)| ≤ C f 2
lot

2.

7.2.5 Proof of Lemma 7.2.4

The proof is similar to the technique proposed in Section 5.2, where a low-frequency

kernel and its derivative are used to interpolate an arbitrary sign pattern on a support

satisfying the minimum-distance condition. More precisely, we set

q1(t) =
∑
tk∈T

αkK(t− tk) + βkK
(1)(t− tk), (7.2.18)

where α, β ∈ C|T | are coefficient vectors, and K is defined by (5.2.1). Note that K,

K(1) and, consequently, q1 are trigonometric polynomials with cut-off frequency flo.
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By Lemma 5.3.2, it holds that for any t0 ∈ T and t ∈ T obeying |t− t0| ≤ 0.16λlo,

∑
tk∈T\{t0}

∣∣K(`) (t− tk)
∣∣ ≤ C`f

`
lo, (7.2.19)

where C` is a positive constant for ` = 0, 1, 2, 3; in particular, C0 ≤ 0.007, C1 ≤ 0.08

and C2 ≤ 1.06. In addition, there exist other positive constants C ′0 and C ′1, such that

for all t0 ∈ T and t ∈ T with |t− t0| ≤ ∆/2,

∑
tk∈T\{t0}

∣∣K(`) (t− tk)
∣∣ ≤ C ′`f

`
lo (7.2.20)

for ` = 0, 1.

In order to satisfy (7.2.11) and (7.2.12), we constrain q1 as follows: for each tj ∈ T ,

q1(tj) = 0,

q′1(tj) = vj.

Intuitively, this forces q1 to approximate the linear function vj (t− tj) around tj.

These constraints can be expressed in matrix form,[
D0 D1

D1 D2

][
α

β

]
=

[
0

v

]
,

where

(D0)jk = K (tj − tk) , (D1)jk = K(1) (tj − tk) , (D2)jk = K(2) (tj − tk) ,

and j and k range from 1 to |T |. Lemma 5.2.2 establishes that under the minimum-

separation condition this system is invertible, so that α and β are well defined. These

coefficient vectors can consequently be expressed as[
α

β

]
=

[
−D−1

0 D1

I

]
S−1v, S := D2 −D1D

−1
0 D1,
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where S is the Schur complement. Inequality (7.2.19) implies

||I−D0||∞ ≤ C0, (7.2.21)

||D1||∞ ≤ C1flo, (7.2.22)

||κI−D2||∞ ≤ C2f
2
lo, (7.2.23)

where κ =
∣∣K(2)(0)

∣∣ = π2flo(flo + 4)/3.

Recall that if ||I −M ||∞ < 1, the seriesM−1 = (I − (I −M))−1 =
∑

k≥0 (I −M)k

is convergent and we have

∣∣∣∣M−1
∣∣∣∣
∞ ≤

1

1− ||I−M ||∞
.

This, together with (7.2.21), (7.2.22) and (7.2.23) implies

∣∣∣∣D−1
0

∣∣∣∣
∞ ≤

1

1− ||I−D0||∞
≤ 1

1− C0

,

||κI− S||∞ ≤ ||κI−D2||∞ + ||D1||∞
∣∣∣∣D−1

0

∣∣∣∣
∞ ||D1||∞

≤
(
C2 +

C2
1

1− C0

)
f 2

lo,

∣∣∣∣S−1
∣∣∣∣
∞ = κ−1

∣∣∣∣∣
∣∣∣∣∣
(
S

κ

)−1
∣∣∣∣∣
∣∣∣∣∣
∞

≤ 1

κ− ||κI− S||∞

≤
(
κ−

(
C2 +

C2
1

1− C0

)
f 2

lo

)−1

≤ Cκλ
2
lo,

for a certain positive constant Cκ. Note that due to the numeric upper bounds on
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the constants in (7.2.19) Cκ is indeed a positive constant as long as flo ≥ 1. Finally,

we obtain a bound on the magnitude of the entries of α

||α||∞ =
∣∣∣∣D−1

0 D1S
−1v
∣∣∣∣
∞

≤
∣∣∣∣D−1

0 D1S
−1
∣∣∣∣
∞

≤
∣∣∣∣D−1

0

∣∣∣∣
∞ ||D1||∞

∣∣∣∣S−1
∣∣∣∣
∞

≤ Cαλlo, (7.2.24)

where Cα = CκC1/ (1− C0), and on the entries of β

||β||∞ =
∣∣∣∣S−1v

∣∣∣∣
∞

≤
∣∣∣∣S−1

∣∣∣∣
∞

≤ Cβλ
2
lo, (7.2.25)

for a positive constant Cβ = Cκ. Combining these inequalities with (7.2.20) and

the fact that the absolute values of K(t) and K(1)(t) are bounded by one and 7flo

respectively (see also Section 6.2.1), we obtain the bound below, valid for any t. We

use ti to denote the element in T nearest to t (note that all other elements are at

least ∆/2 away). This establishes (7.2.12).

|q1(t)| =
∣∣∣∣∣∑
tk∈T

αkK (t− tk) +
∑
tk∈T

βkK
(1) (t− tk)

∣∣∣∣∣
≤ ||α||∞

∑
tk∈T
|K (t− tk)|+ ||β||∞

∑
tk∈T

∣∣K(1) (t− tk)
∣∣

≤ Cαλlo

|K (t)|+
∑

tk∈T\{ti}
|K (t− tk)|


+ Cβλ

2
lo

∣∣K(1) (t)
∣∣+

∑
tk∈T\{ti}

∣∣K(1) (t− tk)
∣∣

≤ Cλlo. (7.2.26)
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The proof is completed by the following lemma, which proves (7.2.11).

Lemma 7.2.5. For any tj ∈ T and t ∈ T obeying |t− tj| ≤ 0.16λlo, we have

|q1(t)− vj (t− tj) | ≤
C (t− tj)2

λlo

.

Proof. We assume without loss of generality that tj = 0. By symmetry, it suffices to

show the claim for t ∈ (0, 0.16λlo]. To ease notation, we define w(t) = vjt − q1(t) =

wR(t)+ i wI(t), where wR is the real part of w and wI the imaginary part. Leveraging

(7.2.24), (7.2.25) and (7.2.19) together with the fact that K(2)(t) and K(3)(t) are

bounded by 4f 2
lo and 6f 3

lo respectively if |t| ≤ 0.16λlo (see Section 5.3.2), we obtain

|w′′R (t)| =
∣∣∣∣∣∑
tk∈T

Re (αk)K
(2) (t− tk) +

∑
tk∈T

Re (βk)K
(3) (t− tk)

∣∣∣∣∣
≤ ||α||∞

∑
tk∈T

∣∣K(2) (t− tk)
∣∣+ ||β||∞

∑
tk∈T

∣∣K(3) (t− tk)
∣∣

≤ Cαλlo

∣∣K(2) (t)
∣∣+

∑
tk∈T\{0}

∣∣K(2) (t− tk)
∣∣

+ Cβλ
2
lo

∣∣K(3) (t)
∣∣+

∑
tk∈T\{0}

∣∣K(3) (t− tk)
∣∣

≤ C flo.

The same bound applies to wI . Since wR(0), w′R(0), wI(0) and w′I(0) are all equal

to zero, this implies |wR(t)| ≤ Cflot
2—and similarly for |wI(t)|—in the interval of

interest. Whence, |w(t)| ≤ Cflot
2.

7.3 Extension to multiple dimensions

The extension of the proof hinges on establishing versions of Lemmas 7.2.1, 7.2.2

and 7.2.4 for multiple dimensions. These lemmas construct bounded low-frequency

polynomials which interpolate a sign pattern on a well-separated set of points S and
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have bounded second derivatives in a neighborhood of S. In the multidimensional

case, we need the directional derivative of the polynomials to be bounded in any

direction, which can be ensured by bounding the eigenvalues of their Hessian ma-

trix evaluated on the support of the signal. To construct such polynomials one can

proceed in a way similar to the proof of Lemmas 7.2.1 and 7.2.4, namely, by using

a low-frequency kernel constructed by tensorizing several squared Fejér kernels to

interpolate the sign pattern, while constraining the first-order derivatives to either

vanish or have a fixed value. As in the one-dimensional case, one can set up a system

of equations and prove that it is well conditioned using the rapid decay of the inter-

polation kernel away from the origin. Finally, one can verify that the construction

satisfies the required conditions by exploiting the fact that the interpolation kernel

and its derivatives are locally quadratic and rapidly decaying. This is spelled out in

Section 6.1 to prove a version of Lemma 7.2.1 in two dimensions. In order to clarify

further how to adapt our techniques to a multidimensional setting we provide below

a sketch of the proof of the analog of Lemma 7.1.1 in two dimensions. In particular,

this illustrates how the increase in dimension does not change the exponent of the

SRF in our recovery guarantees.

7.3.1 Proof of an extension of Lemma 7.1.1 to two dimensions

We now have t ∈ T2. As a result, we redefine

Sλnear (j) :=
{
t : ||t− tj||∞ ≤ w λ

}
,

Sλfar :=
{
t : ||t− tj||∞ > wλ, ∀tj ∈ T

}
,

ISλnear(j) (µ) :=
1

λ2
lo

∫
Sλnear(j)

||t− tj||22 |µ| (dt) ,

where w is a constant.

The proof relies on the existence of a low-frequency polynomial

q(t) =

flo∑
k1=−flo

flo∑
k2=−flo

ck1,k2e
i2π(k1t1+k2t2)



CHAPTER 7. PROOF OF STABILITY GUARANTEES 128

satisfying

q(tj) = vj, tj ∈ T, (7.3.1)

|q(t)| ≤ 1− C ′a ||t− tj||22
λ2

lo

, t ∈ Sλlonear (j) , (7.3.2)

|q(t)| < 1− C ′b, t ∈ Sλlofar , (7.3.3)

where C ′a and C ′b are constants. Proposition 6.1.1 establishes the existence of such

a polynomial. Under a minimum distance condition, which constrains the elements

of T to be separated by 2.38λlo in infinity norm (as mentioned before this choice of

norm is arbitrary and could be changed to the `2 norm), in Section 6.1 we show that q

satisfies (7.3.1) and (7.3.3) and that both eigenvalues of its Hessian matrix evaluated

on T are of order f 2
lo, which implies (7.3.2).

As in one dimension, we perform a polar decomposition of PTh,

PTh = eiφ(t) |PTh| ,

and work with vj = e−iφ(tj). The rest of the proof is almost identical to the 1D case.

Since q is low frequency, ∣∣∣∣∫
T2

q(t)dh(t)

∣∣∣∣ ≤ 2δ. (7.3.4)

Next, since q interpolates e−iφ(t) on T ,

||PTh||TV =

∫
T2

q(t)PTh (dt) ≤ 2δ +
∑
j∈T

∣∣∣∣∣
∫
S
λlo
near(j)\{tj}

q(t)h (dt)

∣∣∣∣∣+

∣∣∣∣∣
∫
S
λlo
far

q(t)h (dt)

∣∣∣∣∣ .
(7.3.5)

Applying (7.3.3) and Hölder’s inequality, we obtain∣∣∣∣∣
∫
S
λlo
far

q(t)h (dt)

∣∣∣∣∣ ≤ (1− C ′b)
∣∣∣∣∣∣P

S
λlo
far

(h)
∣∣∣∣∣∣

TV
. (7.3.6)
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Setting tj = (0, 0) without loss of generality, the triangle inequality and (7.3.2) yield∣∣∣∣∫
S
λlo
near(j)\{(0,0)}

q(t)h (dt)

∣∣∣∣ ≤ ∫
S
λlo
near(j)\{(0,0)}

|h| (dt)− C ′aISλlonear(j)
(h) . (7.3.7)

Combining (7.3.5), (7.3.6) and (7.3.7) gives

||PTh||TV ≤2δ + ||PT ch||TV − C ′b
∣∣∣∣∣∣P

S
λlo
far

(h)
∣∣∣∣∣∣

TV
− C ′aISλlonear

(h)

and similarly

||PTh||TV ≤ 2δ + ||PT ch||TV − w2C ′a SRF−2
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
− C ′aISλhinear

(h) .

By the same argument as in the 1D case, the fact that xest has minimal total-variation

norm is now sufficient to establish

C ′b

∣∣∣∣∣∣P
S
λlo
far

(h)
∣∣∣∣∣∣

TV
+ C ′aISλlonear

(h) ≤ 2δ,

and

w2C ′a SRF−2
∣∣∣∣∣∣P

S
λhi
far

(h)
∣∣∣∣∣∣

TV
+ C ′aISλhinear

(h) ≤ 2δ.



Chapter 8

Proof of support-detection

guarantees

In this chapter we prove Theorem 3.3.1. Section 8.1 provides the outline of the proof

and Sections 8.2 and 8.3 contain the proofs of the two main lemmas used to establish

the result.

8.1 Main argument

We begin with an intermediate result proved in Section 8.2.

Lemma 8.1.1. Under the assumptions of Theorem 3.3.1

∑
testk ∈Test

∣∣cest
k

∣∣min

{
Ca,

Cb d (test
k , T )

λ2
lo

}
≤ 2δ,

where Ca and Cb are positive numerical constants and

d (t, T ) := min
ti∈T

(t− ti)2 .

Properties (3.3.4) and (3.3.5) are direct corollaries of Lemma (8.1.1). To establish

Property (3.3.3) we need the following key lemma, proved in Section 8.3.

130
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Lemma 8.1.2. Suppose T obeys condition (3.2.14) and flo ≥ 10. Then for any tj ∈ T
there exists a low-pass polynomial

qtj(t) =

flo∑
k=−flo

bke
i2πkt,

b ∈ Cn, such that |qtj(t)| < 1 for all t 6= tj and

qtj(tj) = 1,

qtj(tl) = 0 tl ∈ T \ {tj} ,

|1− qtj(t)| ≤
C ′1 (t− tj)2

λ2
lo

for |t− tj| ≤ cλlo, (8.1.1)

|qtj(t)| ≤
C ′1 (t− tl)2

λ2
lo

for tl ∈ T \ {tj} , |t− tl| ≤ cλlo, (8.1.2)

|qtj(t)| < C ′2 if |t− tl| > cλlo ∀ tl ∈ T, (8.1.3)

where 0 < c2C ′2 ≤ C ′1 < 1.

The polynomial qtj provided by this lemma is designed to satisfy
∫
T qtj(t)x(dt) = cj

and vanish on the rest of the support of the signal. This allows to decouple the

estimation error at tj from the amplitude of the rest of the spikes. Since x and xest

are feasible for (3.2.12), we can apply Parseval’s Theorem and the Cauchy-Schwarz

inequality to obtain

∣∣∣∣∫
T
qtj(t)x(dt)−

∫
T
qtj(t)xest(dt)

∣∣∣∣ =
∣∣∣ flo∑
k=−flo

bkFn(x− xest)k

∣∣∣
≤
∣∣∣∣qtj ∣∣∣∣L2 ||Fn(x− xest)||2

≤ 2δ, (8.1.4)

where we have used that the absolute value and consequently the L2 norm of qtj is
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bounded by one. In addition, by Lemmas 8.1.2 and 8.1.1 we have∣∣∣ ∑
{k: |testk −tj|>cλlo}

cest
k qtj(t

est
k ) +

∑
{k: |testk −tj|≤cλlo}

cest
k

(
qtj(t

est
k )− 1

) ∣∣∣
≤

∑
{k: |testk −tj|>cλlo}

∣∣cest
k

∣∣ ∣∣qtj(test
k )
∣∣+

∑
{k: |testk −tj|≤cλlo}

∣∣cest
k

∣∣ ∣∣1− qtj(test
k )
∣∣

≤
∑

testk ∈Test

∣∣cest
k

∣∣min

{
C ′2,

C ′1d (test
k , T )

λ2
lo

}
≤ Cδ, (8.1.5)

for a positive numerical constant C. Finally, Lemma 8.1.2, the triangle inequality,

(8.1.4) and (8.1.5) yield

∣∣∣cj − ∑
{k: |testk −tj|≤cλlo}

cest
k

∣∣∣ =

∣∣∣∣∣
∫
T
qtj(t)x(dt)−

∫
T
qtj(t)xest(dt)

+
∑

{k: |testk −tj|>cλlo}
cest
k qtj(t

est
k )

+
∑

{k: |testk −tj|≤cλlo}
cest
k

(
qtj(t

est
k )− 1

) ∣∣∣∣∣
≤ C ′δ,

for a positive numerical constant C ′.

8.2 Proof of Lemma 8.1.1

The proof relies on the dual certificate constructed in Chapter 5. Recall that Propo-

sition 5.2.1 implies that if T obeys Condition (3.2.14), for any v ∈ C|T | such that



CHAPTER 8. PROOF OF SUPPORT-DETECTION GUARANTEES 133

|vj| = 1 for all entries vj there exists a low-pass polynomial

q(t) =

flo∑
k=−flo

dke
i2πkt,

where d ∈ Cn that satisfies

q(tj) = vj, tj ∈ T,
|q(t)| < 1− Ca, |t− tj| > cλlo ∀tj ∈ T,

|q(t)| ≤ 1− Cb (t− tj)2

λ2
lo

, |t− tj| ≤ cλlo, tj ∈ T,

with 0 < c2Cb ≤ Ca < 1.

We set vj = cj/ |cj|. The proposition implies that∫
T
q(t)xest (dt) ≤

∑
k

∣∣cest
k

∣∣ ∣∣q(test
k )
∣∣

≤
∑
k

(
1−min

{
Ca,

Cb d (test
k , T )

λ2
lo

}) ∣∣cest
k

∣∣ . (8.2.1)

The same argument used to prove (8.1.4) yields∣∣∣∣∫
T
q(t)xest(dt)−

∫
T
q(t)x(dt)

∣∣∣∣ ≤ 2δ.

Now, taking into account that
∫
T q(t)x (dt) = ||x||TV by construction and ||xest||TV ≤

||x||TV, we have∫
T
q(t)xest (dt) =

∫
T
q(t)x (dt) +

∫
T
q(t)xest(dt)−

∫
T
q(t)x(dt)

≥ ||x||TV − 2δ ≥ ||xest||TV − 2δ

=
∑
k

∣∣cest
k

∣∣− 2δ.

Combining this with (8.2.1) completes the proof.
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8.3 Proof of Lemma 8.1.2

The proof is similar to the technique proposed in Section 5.2, where a low-frequency

kernel and its derivative are used to interpolate an arbitrary sign pattern on a support

satisfying the minimum-distance condition (3.2.14). More precisely, we set

qtj(t) =
∑
tk∈T

αkK(t− tk) + βkK
(1)(t− tk), (8.3.1)

where α, β ∈ C|T | are coefficient vectors, and K is defined in (5.2.1). Recall that we

denote the `th derivative of K by K(`). Note that K, K(1) and, consequently, qtj are

trigonometric polynomials of the required degree.

We impose

qtj(tj) = 1,

qtj(tl) = 0, tl ∈ T/ {tj} ,
q′tj(tk) = 0, tk ∈ T.

We express these constraints in matrix form. Let etj ∈ R|T | denote the one-sparse

vector with one nonzero entry at the position corresponding to tj. Then,[
D0 D1

D1 D2

][
α

β

]
=

[
etj

0

]
,

where

(D0)lk = K (tl − tk) , (D1)lk = K(1) (tl − tk) ,
(D2)lk = K(2) (tl − tk) ,

and l and k range from 1 to |T |. Lemma 5.2.2 establishes that under the minimum-

separation condition this system is invertible. As a result α and β are well defined

and qtj satisfies qtj(tj) = 1 and qtj(tl) = 0 for tl ∈ T/ {tj}. The coefficient vectors can
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be expressed as [
α

β

]
=

[
I

−D−1
2 D1

]
S−1etj , S := D0 −D1D

−1
2 D1,

where S is the Schur complement. We borrow some results from Section 5.3.1,

||I− S||∞ ≤ 8.747 10−3,∣∣∣∣S−1
∣∣∣∣
∞ ≤ 1 + 8.824 10−3,∣∣∣∣I − S−1
∣∣∣∣
∞ ≤

∣∣∣∣S−1
∣∣∣∣
∞ ||S − I||∞ ≤ 8.825 10−3,∣∣∣∣α− etj ∣∣∣∣∞ ≤ ∣∣∣∣I − S−1
∣∣∣∣
∞
∣∣∣∣etj ∣∣∣∣∞

≤ 8.825 10−3, (8.3.2)

||β||∞ ≤ 3.294 10−2λlo. (8.3.3)

Lemma 5.3.1 allows to obtain

K (t) ≤ 1

(flot)
4 ≤ 0.333, K ′ (t) ≤ 4π

f 3
lot

4
≤ 4.18 flo,

for |t| > cλlo as long flo ≥ 10. By the same lemma, if we set the minimum separation

∆min to 2/fc

∑
tk∈T\{ta,tb}

|K (t− tk)| ≤
∞∑
l=0

1(
flo∆min(1

2
+ l)

)4 +
∞∑
l=0

1

(flo∆minl)
4

≤ 1.083,

∑
tk∈T\{ta,tb}

∣∣K(1) (t− tk)
∣∣ ≤ ∞∑

l=0

4π

f 3
lo

(
∆min(1

2
+ l)

)4 +
∞∑
j=0

4π

f 3
lo (∆minl)

4

≤ 1.75 flo,

where ta and tb are the two spikes nearest to t. Let ti be the element of T/ {tj} that
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is nearest to t. Combining these inequalities with (8.3.2) and (8.3.3) proves that

|qtj(t)| =
∣∣∣∑
tk∈T

αkK (t− tk) +
∑
tk∈T

βkK
(1) (t− tk)

∣∣∣
≤ |K (t− tj)|+

∣∣∣∣α− etj ∣∣∣∣∞ ( |K (t− tj)|

+ |K (t− ti)|+
∑

tk∈T\{ti,tj}
|K (t− tk)|

)
+ ||β||∞

( ∣∣K(1) (t− tj)
∣∣+
∣∣K(1) (t− ti)

∣∣
+

∑
tk∈T\{ti,tj}

∣∣K(1) (t− tk)
∣∣ )

≤ 0.69,

if |t− tk| > cλlo for all tk ∈ T so that (8.1.3) holds. The proof is completed by two

lemmas which prove (8.1.1) and (8.1.2) and |qtj(t)| < 1 for any t. They rely on the

following bounds borrowed from equation (5.3.16),

K (t) ≥ 0.9539, K(2) (t) ≤ −2.923 f 2
lo,∣∣K(1) (t)

∣∣ ≤ 0.5595 flo,
∣∣K(2) (t)

∣∣ ≤ 3.393 f 2
lo,∣∣K(3) (t)

∣∣ ≤ 5.697 f 3
lo,

(8.3.4)

and on the fact that, due to Lemma 5.3.2, for any t0 ∈ T and t ∈ T obeying |t− t0| ≤
cλlo,

∑
tk∈T\{t0}

∣∣K(2) (t− tk)
∣∣ ≤ 1.06 f 2

lo (8.3.5)

∑
tk∈T\{t0}

∣∣K(3) (t− tk)
∣∣ ≤ 18.6 f 3

lo. (8.3.6)

Lemma 8.3.1. For any t such that |t− tj| ≤ cλlo,

1− 4.07 (t− tj)2 f 2
lo ≤ qtj(t) ≤ 1− 2.30 (t− tj)2 f 2

lo.

Proof. We assume without loss of generality that tj = 0. By symmetry, it suffices to
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show the claim for t ∈ (0, c λlo]. By (8.3.2), (8.3.3), (8.3.4), (8.3.5) and (8.3.6),

q′′0 (t) =
∑
tk∈T

αkK
(2) (t− tk) +

∑
tk∈T

βkK
(3) (t− tk)

≤
(
1 +

∣∣∣∣α− etj ∣∣∣∣∞)K(2) (t)

+
∣∣∣∣α− etj ∣∣∣∣∞ ∑

tk∈T\{0}

∣∣K(2) (t− tk)
∣∣

+ ||β||∞
( ∣∣K(3) (t)

∣∣+
∑

tk∈T\{0}

∣∣K(3) (t− tk)
∣∣ )

≤ −2.30 f 2
lo.

Similar computations yield |q′′0 (t)| ≤ 4.07 f 2
lo. This together with q0(0) = 1 and

q′0(0) = 0 implies the desired result.

Lemma 8.3.2. For any tl ∈ T \ {tj} and t obeying |t− tl| ≤ cλlo, we have

|qtj(t)| ≤ 16.64 (t− tl)2 f 2
lo.

Proof. We assume without loss of generality that tl = 0 and prove the claim for

t ∈ (0, c λlo]. By (8.3.2), (8.3.3), (8.3.4), (8.3.5) and (8.3.6)

∣∣∣q′′tj (t)
∣∣∣ =

∣∣∣∣∣∑
tk∈T

αkK
(2) (t− tk) +

∑
tk∈T

βkK
(3) (t− tk)

∣∣∣∣∣
≤
(
1 +

∣∣∣∣α− etj ∣∣∣∣∞) ∣∣K(2) (t− tj)
∣∣

+
∣∣∣∣α− etj ∣∣∣∣∞

∣∣K(2) (t)
∣∣+

∑
tk∈T\{0,tj}

∣∣K(2) (t− tk)
∣∣

+ ||β||∞

∣∣K(3) (t)
∣∣+

∑
tk∈T\{0}

∣∣K(3) (t− tk)
∣∣

≤ 16.64 f 2
lo,

since in the interval of interest
∣∣K(2) (t− tj)

∣∣ ≤ 18π2

f2lo(∆min−0.16flo)4
≤ 15.67 f 2

lo due to

Lemma 5.3.1. This together with qtj(0) = 0 and q′tj(0) = 0 implies the desired
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result.



Chapter 9

Conclusion

In this thesis, we have developed a framework to perform super-resolution based

on convex programming. In particular, we have shown that we can super-resolve

events such as point sources, discontinuity points, and so on with infinite precision

from just a few low-frequency samples. This holds in any dimension provided that

the distance between events is proportional to 1/flo = λlo, where flo is the highest

observed frequency; for instance, in one dimension, a sufficient condition is that the

distance between events is at least 2λlo. Furthermore, we have proved that when

such condition holds, stable recovery is possible in the sense that we can (1) bound

the approximation error at resolutions beyond λlo and (2) obtain guarantees on the

accuracy of the recovered support.

Many interesting open questions on super-resolution via convex programming re-

main. We finish by listing some interesting research directions.

• Conditions beyond minimum separation: For signals that consist of small clus-

ters of point sources, the minimum-separation condition is somewhat too strict,

as convex-programming can often still be used to obtain an accurate estimate,

even if the condition is violated. Because of this, it would be useful to derive

recovery guarantees based on alternative conditions that limit the density of

point sources, rather than just the minimum separation between them.

• Minimum separation in multi-dimensional settings: As discussed in Chapter 2,

139



CHAPTER 9. CONCLUSION 140

in one dimension it seems clear that the minimum separation at which convex

programming begins to fail to achieve exact recovery is the inverse of the cut-off

frequency of the data. We can apply our techniques to prove that in multiple

dimensions it is sufficient for the minimum separation to be proportional to the

inverse of the cut-off frequency for exact recovery to take place, but the exact

value of the constant is yet to be determined.

• Super-resolution of curves: Super-resolving curves or equivalently sharp edges is

a fundamental problem in computer vision and signal processing. Unfortunately,

it is more challenging than point-source super-resolution. For instance, it is

unclear how to even define a condition in the spirit of minimum-separation

under which to prove exact recovery.

• Blind deconvolution: Joint estimation of the signal of interest and the point-

spread function of the sensing process is of great interest in applications where

motion blur might be present. In computer vision, a common approach to this

problem is to locate edges and then determine their orientation and the shape of

the point-spread function simultaneously, so this problem is very much related

to edge super-resolution.
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