A Convex-Programming Framework for Super-Resolution

Carlos Fernandez-Granda

www.stanford.edu/~cfgranda/

March/February 2014
Acknowledgements

- This work was supported by a Fundación La Caixa Fellowship and a Fundación Caja Madrid Fellowship

- **Collaborator**: Emmanuel Candès (Department of Mathematics and of Statistics, Stanford)
Motivation: Limits of resolution in imaging

*The resolving power of lenses, however perfect, is limited* (Lord Rayleigh)

Diffraction imposes a **fundamental limit** on the resolution of optical systems.
Aim

Estimation from data that have limited resolution

- Microscopy
- Astronomy
- Electronic imaging
- Medical imaging
- Signal processing
- Radar
- Spectroscopy
- Geophysics
- ...
Super-resolution

- **Optics**: Data-acquisition techniques to overcome the diffraction limit

- **Image processing**: Methods to upsample images onto a finer grid while preserving edges and hallucinating textures

- **This talk**: Signal estimation from low-pass measurements
Spatial Super-resolution

Signal

Data

Spectrum
Spectral Super-resolution

Signal

Data

Spectrum
In many applications signals of interest are point sources:

- Celestial bodies (astronomy)
- Fluorescent molecules (microscopy)
- Line spectra (spectroscopy, signal processing)
Point sources

- In many applications signals of interest are **point sources**:
  - Celestial bodies (astronomy)
  - Fluorescent molecules (microscopy)
  - Line spectra (spectroscopy, signal processing)

- **Traditional approaches**
  1. Fitting point-spread function to each source (matched filtering)
     - Sensitive to noise and high dynamic ranges
  2. Algorithms based on Prony’s method: MUSIC, ESPRIT, ...  
     - Parametric (number of sources must be known)
     - Extension to 2D is very computationally intensive
     - Strong assumptions on noise (Gaussian, white), signal and measurement model
Statistical estimation via convex programming

- In the 70s and 80s, $\ell_1$-norm minimization proposed for deconvolution in seismography [Claerbout, Muir ’73], [Levy, Fullagar ’81], [Santosa, Symes ’86]

- Later, huge impact of convex-programming techniques in high-dimensional statistics
  1. Well-developed theory
  2. Robustness to noise, even in non-asymptotic regimes
  3. Flexibility

- Very little theory on estimation from low-resolution data (original problem tackled by geophysicists)
Super-resolution via convex programming

- Can we super-resolve using optimization? Under what conditions?
- Is the method stable to noise?
- How do we adapt to different signal, noise and measurement models?
Super-resolution via convex programming

- Can we super-resolve using optimization? Under what conditions?
- Is the method stable to noise?
- How do we adapt to different signal, noise and measurement models?

This talk: Framework for estimation from low-resolution data

1. Precise theoretical analysis
2. Non-asymptotic stability guarantees
3. Natural extensions handle
   - Piecewise-smooth functions
   - Clustered point sources
   - Demixing of sines and spikes
   - Super-resolution from multiple measurements
Outline of the talk

Basic model

Estimation from noisy data

A general framework
Basic model

Estimation from noisy data

A general framework
Mathematical model

- **Signal**: superposition of Dirac measures with support $T$

  $$x = \sum_{j} a_j \delta_{t_j} \quad a_j \in \mathbb{C}, \ t_j \in T \subset [0, 1]$$

- **Data**: low-pass Fourier coefficients with cut-off frequency $f_c$

  $$y = \mathcal{F}_c x$$

  $$y(k) = \int_0^1 e^{-i2\pi kt} x(\,dt) = \sum_{j} a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \ |k| \leq f_c$$
Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests connections to compressed sensing

Compressed sensing

Super-resolution

spectrum interpolation

spectrum extrapolation
Compressed sensing

- Compressed sensing: stable estimation from random Fourier coefficients [Candès, Tao, Romberg ’04]
- **Crucial insight**: measurement operator is well conditioned when acting upon sparse signals
- Equivalently, the energy of all sparse signals is preserved in the data (*restricted isometry property*)
- Most analyses of sparse-regression methods in high-dimensional statistics are based on similar conditions (*restricted-eigenvalue condition*, *restricted strong convexity*, *null-space property*)
Compressed sensing

- Compressed sensing: stable estimation from random Fourier coefficients [Candès, Tao, Romberg '04]
- **Crucial insight**: measurement operator is well conditioned when acting upon sparse signals
- Equivalently, the energy of all sparse signals is preserved in the data (restricted isometry property)
- Most analyses of sparse-regression methods in high-dimensional statistics are based on similar conditions (restricted-eigenvalue condition, restricted strong convexity, null-space property)
- Do they hold in super-resolution?
Simple experiment

\[ \mathcal{F} \]

Discretize support to lie on a grid with \( N = 4096 \) points
Simple experiment

\[ \mathcal{F}_c x = y_c, \quad \text{Measure } n \text{ low-pass DFT coefficients, super-resolution factor (SRF) : } \frac{N}{n} \]
Simple experiment

\[ \mathcal{F}_C \]

Measure \( n \) low-pass DFT coefficients, super-resolution factor (SRF) : \( \frac{N}{n} \)
Simple experiment

Restrict support of the signal to an interval of 48 contiguous points.
Simple experiment

\[ \mathcal{F}_{c,T} x_T = y_c \]

Compute singular values of resulting linear operator
Sparsity is not enough

Most clustered sparse signals are suppressed by low-pass filtering

For SRF = 4, there is a subspace $S$ of dimension 24 where for all unit-normed $x \in S \ |\mathcal{F}_c x|_2 \leq 10^{-7}$

For such signals estimation is impossible by any method at signal-to-noise ratios below 145 dB

Theory: prolate spheroidal sequences [Slepian ’78]
Sparsity is not enough

More refined conditions are necessary to restrict our signal model
Minimum separation

Definition: The minimum separation $\Delta$ of a discrete set $T$ is

$$\Delta = \inf_{(t, t') \in T : t \neq t'} |t - t'|$$
Total-variation norm

- Continuous counterpart of the $\ell_1$ norm
- If $x = \sum_j a_j \delta_{t_j}$ then $\|x\|_{TV} = \sum_j |a_j|$  
- Not the total variation of a piecewise-constant function
Total-variation norm

- Continuous counterpart of the $\ell_1$ norm
- If $x = \sum_j a_j \delta_{t_j}$ then $\|x\|_{TV} = \sum_j |a_j|$ 
- Not the total variation of a piecewise-constant function
- **Formal definition**: For a complex measure $\nu$

$$\|\nu\|_{TV} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions $B_j$ of $[0, 1]$)
Estimation via convex programming

In a zero-noise limit, i.e. \( y = \mathcal{F}_c x \), we solve

\[
\min_{\tilde{x}} \| \tilde{x} \|_{TV} \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} = y,
\]

over all finite complex measures \( \tilde{x} \) supported on \([0, 1]\).
Estimation via convex programming

In a zero-noise limit, i.e. \( y = \mathcal{F}_c x \), we solve

\[
\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} = y,
\]

over all finite complex measures \( \tilde{x} \) supported on \([0, 1]\)

**Theorem [Candès, F. ’12]**

If the minimum separation of the signal support \( T \) obeys

\[
\Delta \geq 2/f_c := 2\lambda_c,
\]

then recovery is **exact**

Nonparametric approach (**no previous knowledge** of the number of spikes)
**Estimation via convex programming**

In a zero-noise limit, i.e. \( y = \mathcal{F}_c x \), we solve

\[
\min_{\tilde{x}} \| \tilde{x} \|_{TV} \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} = y,
\]

over all finite complex measures \( \tilde{x} \) supported on \([0, 1]\)

---

**Theorem [Candès, F. ’14]**

If the minimum separation of the signal support \( T \) obeys

\[
\Delta \geq 1.38 / f_c := 1.38 \lambda_c,
\]

then recovery is exact

Nonparametric approach (no previous knowledge of the number of spikes)
Minimum separation

Point-spread function

\[ \Delta = 1.38 \lambda_c \]

\( \lambda_c / 2 \) is the Rayleigh resolution limit
Minimum separation

Point-spread function

\[ \Delta = 1.38 \lambda_c \]

\[ \lambda_c / 2 \] is the Rayleigh resolution limit
Minimum separation

Point-spread function

$\Delta = 1.38 \lambda_c$

$\lambda_c / 2$ is the Rayleigh resolution limit
Numerical evaluation of minimum separation

Conjecture: TV-norm minimization succeeds if $\Delta \geq \lambda_c$
Sparse estimation from correlated covariates

If we discretize the support

- Sparse recovery via $\ell_1$-norm minimization in an overcomplete Fourier dictionary

- Theory based on dictionary incoherence [Donoho, Stark ’89], [Tropp ’06] is very weak, due to high column correlation

- If the ambient dimension is 20,000 and we have 1,000 measurements, how many spikes can we recover?
Sparse estimation from correlated covariates

If we discretize the support

- Sparse recovery via $\ell_1$-norm minimization in an overcomplete Fourier dictionary

- Theory based on dictionary incoherence [Donoho, Stark ’89], [Tropp ’06] is very weak, due to high column correlation

- If the ambient dimension is 20,000 and we have 1,000 measurements, how many spikes can we recover?

Previous theory [Dossal, Mallat ’05]: 3 spikes
Sparse estimation from correlated covariates

If we discretize the support

- Sparse recovery via $\ell_1$-norm minimization in an overcomplete Fourier dictionary
- Theory based on dictionary incoherence [Donoho, Stark ’89], [Tropp ’06] is very weak, due to high column correlation
- If the ambient dimension is 20,000 and we have 1,000 measurements, how many spikes can we recover?

Previous theory [Dossal, Mallat ’05]: 3 spikes
Our result: 362 spikes
Piecewise-constant functions

- **Signal**: piecewise-constant function
- **Measurements**: low-pass Fourier coefficients

**Corollary**

Solving \( \min \| \tilde{x}^{(1)} \|_{TV} \) subject to \( \mathcal{F}_c \tilde{x} = y \)

yields exact recovery if \( \Delta \geq 1.38 \lambda_c \)

Similar result for cont. differentiable piecewise-smooth functions
Higher dimensions

- **Signal**: superposition of point sources (delta measures) in 2D
- **Measurements**: low-pass 2D Fourier coefficients

---

**Theorem [Candès, F. 2012]**

TV-norm minimization yields exact recovery if

$$\Delta \geq 2.38 \lambda_c$$

In dimension $d$, $\Delta \geq C_d \lambda_c$, where $C_d$ only depends on $d$
Sketch of proof: Dual polynomial

A sufficient condition for

\[ x = \sum_{j \in T} a_j \delta_{t_j} = \sum_{j \in T} |a_j| e^{i\phi_j} \delta_{t_j} \]

to be the unique solution is that there exists \( q \) such that

1. \( q(t) = \sum_{k=-f_c}^{f_c} b_k e^{i2\pi k t} \) (low pass polynomial)
2. \( q(t_j) = e^{i\phi_j}, \ t_j \in T \) (interpolates the sign of the signal on \( T \))
3. \( |q(t)| < 1, \ t \in T^c \)

\( q \) is a subgradient of the TV norm at the signal \( x \) that is orthogonal to the null space of the measurement operator.
Sketch of proof: Dual polynomial
Sketch of proof: Construction by interpolation

1st idea: Interpolation with a low-frequency fast-decaying kernel $K$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$
Sketch of proof: Construction by interpolation

1st idea: Interpolation with a low-frequency fast-decaying kernel $K$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$
1st idea: Interpolation with a low-frequency fast-decaying kernel $K$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$
Sketch of proof: Construction by interpolation

1st idea: Interpolation with a low-frequency fast-decaying kernel $K$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$
Sketch of proof: Construction by interpolation

1st idea: Interpolation with a low-frequency fast-decaying kernel $K$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$
Sketch of proof: Construction by interpolation

Problem: Magnitude of polynomial locally exceeds 1
Sketch of proof: Construction by interpolation

Problem: Magnitude of polynomial locally exceeds 1

Solution: Add correction term and force $q'(t_k) = 0$ for all $t_k \in T$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j) + \beta_j K'(t - t_j)$$
Sketch of proof: Construction by interpolation

Problem: Magnitude of polynomial locally exceeds 1

Solution: Add correction term and force $q'(t_k) = 0$ for all $t_k \in T$

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j) + \beta_j K'(t - t_j)$$
Sketch of proof: Interpolation kernel

Key step: Designing a good interpolation kernel

Trade-off between spikiness at the origin and asymptotic decay
Sketch of proof: Non-asymptotic bounds on kernel

Kernel

1st derivative

2nd derivative

3rd derivative

Figure 1: Upper and lower bounds on $K$ and its derivatives.
Dual polynomial as theoretical tool

Subsequent work builds on our construction to analyze

- Stability of super-resolution [Candès, F. ’13], [F. ’13], [Azais, De Castro, Gamboa ’13], [Duval, Peyré ’13]
- Denoising of line spectra [Tang, Bhaskar, Recht ’13]
- Compressed sensing off the grid [Tang, Bhaskar, Shah, Recht ’13]
- Recovery of splines from their projection onto spaces of algebraic polynomials [Bendory, Dekel, Feuer ’13], [De Castro, Mijoule ’14]
- Recovery of point sources from spherical harmonics [Bendory, Dekel, Feuer ’13]
Practical implementation

- **Primal problem:**

\[
\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} = y
\]

Infinite-dimensional variable \(\tilde{x}\) (measure in \([0, 1]\))

First option: Discretizing + \(\ell_1\)-norm minimization

- **Dual problem:**

\[
\max_{\tilde{u} \in C} \{y^* \tilde{u} \} \quad \text{subject to} \quad \|\mathcal{F}_c^* \tilde{u}\|_\infty \leq 1, \quad n := 2 f_c + 1
\]
Practical implementation

- **Primal problem**: 
  \[
  \min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} = y
  \]

  Infinite-dimensional variable \(\tilde{x}\) (measure in \([0, 1]\))

  First option: Discretizing + \(\ell_1\)-norm minimization

- **Dual problem**: 
  \[
  \max_{\tilde{u} \in \mathbb{C}^n} \text{Re} [y^* \tilde{u}] \quad \text{subject to} \quad \|\mathcal{F}_c^* \tilde{u}\|_{\infty} \leq 1, \quad n := 2f_c + 1
  \]

  Finite-dimensional variable \(\tilde{u}\), but infinite-dimensional constraint

  \[
  \mathcal{F}_c^* \tilde{u} = \sum_{k \leq |f_c|} \tilde{u}_k e^{i2\pi kt}
  \]

  Second option: Solving the dual problem
Lemma: Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial sums of squares imply that

\[ \left\| \mathcal{F}_c \hat{u} \right\|_{\infty} \leq 1 \]

is equivalent to

There exists a Hermitian matrix \( Q \in \mathbb{C}^{n \times n} \) such that

\[
\begin{bmatrix}
Q & \tilde{u} \\
\tilde{u}^* & 1
\end{bmatrix} \succeq 0, \quad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1, & j = 0, \\ 0, & j = 1, 2, \ldots, n-1. \end{cases}
\]

Consequence: The dual problem is a tractable semidefinite program
Support-locating polynomial

How do we obtain an estimator from the dual solution?

**Dual solution vector**: Fourier coefficients of low-pass polynomial that interpolates the sign of the primal solution (follows from strong duality)

**Idea**: Use the polynomial to locate the support of the signal
Super-resolution via semidefinite programming
Super-resolution via semidefinite programming
Super-resolution via semidefinite programming

1. Solve semidefinite program to obtain dual solution
2. Locate points at which corresponding polynomial has unit magnitude
Super-resolution via semidefinite programming

3. Estimate amplitudes via least squares
## Support-location accuracy

<table>
<thead>
<tr>
<th>$f_c$</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average error</td>
<td>$6.66 \times 10^{-9}$</td>
<td>$1.70 \times 10^{-9}$</td>
<td>$5.58 \times 10^{-10}$</td>
<td>$2.96 \times 10^{-10}$</td>
</tr>
<tr>
<td>Maximum error</td>
<td>$1.83 \times 10^{-7}$</td>
<td>$8.14 \times 10^{-8}$</td>
<td>$2.55 \times 10^{-8}$</td>
<td>$2.31 \times 10^{-8}$</td>
</tr>
</tbody>
</table>

For each $f_c$, 100 random signals with $|T| = f_c/4$ and $\Delta(T) \geq 2/f_c$
Basic model

Estimation from noisy data

A general framework
Estimation from noisy data

We assume additive noise with norm bounded by $\delta$

\[ y = F_c x + z \]

Our estimator is the solution to

\[ \min_{\tilde{x}} ||\tilde{x}||_{TV} \quad \text{subject to} \quad ||F_c \tilde{x} - y||_2 \leq \delta, \]
Estimation from noisy data

We assume additive noise with norm bounded by $\delta$

$$y = \mathcal{F}_c x + z$$

Our estimator is the solution to

$$\min_{\tilde{x}} \| \tilde{x} \|_{TV} \quad \text{subject to} \quad \| \mathcal{F}_c \tilde{x} - y \|_2 \leq \delta,$$

Metrics to quantify estimation accuracy:

1. Approximation error at a higher resolution
2. Support-detection error
Super-resolution factor: spectral viewpoint

Super-resolution factor

\[ \text{SRF} = \frac{f}{f_c} \]
Super-resolution factor: spatial viewpoint

Signal at a resolution $\lambda$ : convolution with a kernel $\phi_\lambda$ of width $\lambda$

Super-resolution factor

\[
\text{SRF} = \frac{\lambda_c}{\lambda_f}
\]
Approximation at a higher resolution

At the resolution of the measurements

\[ \| \phi_{\lambda_c} \ast (x_{\text{est}} - x) \|_{L_1} \leq \delta \]

How does the estimate degrade at a higher resolution?
Approximation at a higher resolution

At the resolution of the measurements

\[ \|\phi_{\lambda c} \ast (x_{\text{est}} - x)\|_{L_1} \leq \delta \]

How does the estimate degrade at a higher resolution?

**Theorem [Candès, F. 2012]**

If \( \Delta \geq 1.38 / f_c \) then the solution \( \hat{x} \) to

\[
\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|F_c \tilde{x} - y\|_2 \leq \delta, \]

satisfies

\[ \|\phi_{\lambda f} \ast (\hat{x} - x)\|_{L_1} \lesssim SRF^2 \delta \]
Practical implementation at a noise level $\delta$

- **Primal problem**:
  
  $$\min_{\tilde{x}} ||\tilde{x}||_{TV} \quad \text{subject to} \quad ||F_c \tilde{x} - y||_2 \leq \delta$$

  First option: Discretizing + $\ell_1$-norm minimization

- **Dual problem**:

  $$\max_{\tilde{u} \in \mathbb{C}^n} \Re [y^* \tilde{u}] - \delta ||\tilde{u}||_2 \quad \text{subject to} \quad ||F_c^* \tilde{u}||_{\infty} \leq 1, \quad n := 2f_c + 1$$

  Second option: Solving the dual problem
Practical implementation at a noise level $\delta$

- **Primal problem**:
  \[
  \min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|F_c \tilde{x} - y\|_2 \leq \delta
  \]

  First option: Discretizing + $\ell_1$-norm minimization

- **Dual problem**:
  \[
  \max_{\tilde{u} \in \mathbb{C}^n} \text{Re} \left[ y^* \tilde{u} \right] - \delta \|\tilde{u}\|_2 \quad \text{subject to} \quad \|F^*_c \tilde{u}\|_{\infty} \leq 1, \quad n := 2f_c + 1
  \]

  Second option: Solving the dual problem

- **Dual solution**:
  Coefficients of polynomial that interpolates sign of primal solution
Example

Minimum separation : $1.5 \lambda_c$
Example

SNR 20 dB

- Signal
- Estimate
Example

SNR 15 dB

Noisy Noiseless
Example

SNR 15 dB

- Signal
- Estimate
Example

SNR 5 dB

- Noisy
- Noiseless
SNR 5 dB

- Signal
- Estimate
Support-detection accuracy

- Original support: $T$
- Estimated support: $\hat{T}$

**Theorem [F. 2013]**

For any $t_i \in T$, if $|a_i| > C_1 \delta$ there exists $\hat{t}_i \in \hat{T}$ such that

$$|t_i - \hat{t}_i| \leq \frac{1}{f_c} \sqrt{\frac{C_2 \delta}{|a_i| - C_1 \delta}}$$

No dependence on the amplitude of the signal at other locations
Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)
Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)
Some comments

- Non-asymptotic results, whereas most theory for Prony-based methods is asymptotic (convergence of sample autocorrelation matrices)
- Usual proof techniques from high-dimensional statistics do not apply
  1. Conditions (restricted-isometry property, restricted-eigenvalue condition, etc.) do not hold
  2. Estimation takes place over a continuous domain
- Proofs combine insights from harmonic analysis and convex optimization (generalization of dual polynomials)
Basic model

Estimation from noisy data

A general framework
A general framework

Incorporating different assumptions on the signal, the noise and the sensing process is important in applications.

We can do this by adapting the cost function and constraints of the optimization problem.

This section:

1. Super-resolution of clustered point sources
2. Demixing of sines and spikes
3. Super-resolution from multiple measurements
Super-resolution of clustered sources

**Aim**: Super-resolving signals structured in small clusters
Super-resolution of clustered sources

Clustered point sources
Minimum separation $= 0.6 \lambda_c$, SNR $= 25$ dB
Super-resolution of clustered sources

Clustered point sources
Minimum separation = 0.6 \lambda_c, SNR = 25 \text{ dB}
Super-resolution of clustered sources

Computing a coarse estimate $S$ of the support is easy
Super-resolution of clustered sources

Computing a coarse estimate \( S \) of the support is easy
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|\mathcal{F}_c \tilde{x} - y\|_2 \leq \delta$$
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|F_c \tilde{x} - y\|_2 \leq \delta$$
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|\mathcal{F}_c \tilde{x} - y\|_2 \leq \delta \quad x_{Sc} = 0$$

The magnitude of the polynomial is only constrained on $S$. 
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

\[
\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|\mathcal{F}_c \tilde{x} - y\|_2 \leq \delta \quad x_{Sc} = 0
\]

The magnitude of the polynomial is only constrained on \(S\)
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|\mathcal{F}_c \tilde{x} - y\|_2 \leq \delta \quad x_{Sc} = 0$$

The magnitude of the polynomial is only constrained on $S$
Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV} \quad \text{subject to} \quad \|\mathcal{F}_c \tilde{x} - y\|_2 \leq \delta \quad x_{Sc} = 0$$

Without noise, we have exact recovery.
Super-resolution of clustered sources

Joint work with Raf Mertens (Stanford)
Demixing of sines and spikes

**Aim**: Super-resolving the spectrum of a multi-sinusoidal signal (*sines*) in the presence of impulsive events (*spikes*)
Demixing of sines and spikes

Sines

Spectrum

\[ x \]
Demixing of sines and spikes

\[ S_\text{sines} + S_\text{spikes} = \text{Spectrum} \]

\[ F_c \times \]

\[ = y \]
Demixing of sines and spikes

\[ \mathcal{F}_c \times \]

Sines

Spectrum
Demixing of sines and spikes

\[ F_c \times + s \]
Demixing of sines and spikes

\[ \mathcal{F}_c x + s = y \]
Demixing of sines and spikes

**Estimator**: Solution to

\[
\min_{\tilde{x}, \tilde{s}} \|\tilde{x}\|_{TV} + \gamma \|\tilde{s}\|_1 \quad \text{subject to} \quad F_c \tilde{x} + \tilde{s} = y
\]

Dual problem:

\[
\max_{\tilde{u} \in \mathbb{C}^n} \text{Re} \left[ y^* \tilde{u} \right] \quad \text{subject to} \quad \|F^*_c \tilde{u}\|_\infty \leq 1, \quad \|\tilde{u}\|_\infty \leq \gamma
\]
Demixing of sines and spikes

**Estimator**: Solution to

$$\min_{\tilde{x}, \tilde{s}} \|\tilde{x}\|_{TV} + \gamma \|\tilde{s}\|_1 \quad \text{subject to} \quad \mathcal{F}_c \tilde{x} + \tilde{s} = y$$

Dual problem:

$$\max_{\tilde{u} \in \mathbb{C}^n} \text{Re}[y^*\tilde{u}] \quad \text{subject to} \quad \|\mathcal{F}_c^* \tilde{u}\|_{\infty} \leq 1, \quad \|\tilde{u}\|_{\infty} \leq \gamma$$

**Dual solution**: \(\hat{u}\)

- \(\hat{u}\) interpolates the sign of the primal solution \(\hat{s}\)
- \(\mathcal{F}_c^* \hat{u}\) interpolates the sign of the primal solution \(\hat{x}\)
Demixing of sines and spikes

\[ \hat{u} \]

Dual solution

\[ \mathcal{F}_c^* \hat{u} \]
Demixing of sines and spikes

\[ \hat{u} \]

\[ \mathcal{F}_c^* \hat{u} \]

Dual solution

Spikes

Estimate

Sines (spectrum)
Aim: Super-resolving $K$ signals with the same support

Motivation: Fluorescence microscopy (PALM, STORM), astronomy and communications
Super-resolution from multiple measurements

Minimum separation = 0.7 \lambda_c
Super-resolution from multiple measurements

Dual sol. (signal 1)  Dual sol. (signal 2)  Dual sol. (signal 3)

Dual solutions obtained by solving separate problems
Estimator: Solution to minimizing group total-variation norm

- Continuous analog of $\ell_1 - \ell_2$ norm
- Promotes group sparsity
- If $X = \{x_1, x_2, x_3\}$, $a(t_j) \in \mathbb{C}^3$ for each $t_j \in T$ and

$$x_k = \sum_{t_j \in T} a(t_j)_k \delta_{t_j} \quad \text{then} \quad \|X\|_{GTV} = \sum_{t_j \in T} \|a(t_j)\|_2$$
Group total variation

**Estimator**: Solution to minimizing group total-variation norm

- Continuous analog of $\ell_1 - \ell_2$ norm
- Promotes group sparsity
- If $X = \{x_1, x_2, x_3\}$, $a(t_j) \in \mathbb{C}^3$ for each $t_j \in T$ and
  \[
  x_k = \sum_{t_j \in T} a(t_j)_k \delta_{t_j}
  \]
  then
  \[
  \|X\|_{\text{GTV}} = \sum_{t_j \in T} \|a(t_j)\|_2
  \]

**Dual solution**: $K$-dimensional low-pass polynomial with unit magnitude on the estimate of the common support
Super-resolution from multiple measurements

The estimator locates the support exactly
Super-resolution from multiple measurements
Minimum separation: As $K$ grows, $\Delta_{\text{min}} \to \frac{\lambda_c}{2}$

- $K = 1$ (real amplitudes)
- $K = 1$ (complex amplitudes)
- $K = 2$ (complex amplitudes)
- $K = 10$ (complex amplitudes)
Conclusion

Convex programming is a powerful tool for estimation from low-res data:

- Precise theoretical analysis
- Non-asymptotic stability guarantees
- Flexible framework

Lots of work to do:

- Developing fast SDP solvers exploiting the structure in the dual problem
- Deconvolution from irregular samples
- Super-resolution of 2D curves
- Blind deconvolution: joint estimation of signal + point-spread function
Conclusion

Convex programming is a powerful tool for estimation from low-res data:
- Precise theoretical analysis
- Non-asymptotic stability guarantees
- Flexible framework

Lots of work to do:
- Developing fast sdp solvers exploiting the structure in the dual problem
- Deconvolution from irregular samples
- Super-resolution of 2D curves
- *Blind deconvolution*: joint estimation of signal + point-spread function
Research directions

Generic goal in modern data processing:

Finding low-dimensional structure in high-dimensional data

This talk: Understanding the interaction between the data acquisition mechanism and the low-dimensional structure pays off!

Future directions:

- Sparse regression with highly-correlated design matrices
e.g. dictionary of decaying exponentials
- Statistical processing of projected data
e.g. dimensionality reduction in big-data
- Data-driven regularization:
e.g. transform-invariant regularizers in computer vision
Image upsampling via transform-invariant regularization

Input

Upsampled image

**Aim**: Achieving large upsampling factors through data-driven regularizers that are approximately invariant to the projection onto the imaging plane.
For more details


- **Super-resolution of point sources via convex programming.** C. Fernandez-Granda. Preprint.
Thank you