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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Aim

Estimation from data that have limited resolution

I Microscopy
I Astronomy
I Electronic imaging
I Medical imaging
I Signal processing
I Radar
I Spectroscopy
I Geophysics
I ...



Super-resolution

I Optics : Data-acquisition techniques to overcome the diffraction limit

I Image processing : Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

I This talk : Signal estimation from low-pass measurements
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Point sources

I In many applications signals of interest are point sources :
I Celestial bodies (astronomy)
I Fluorescent molecules (microscopy)
I Line spectra (spectroscopy, signal processing)

I Traditional approaches

1. Fitting point-spread function to each source (matched filtering)

I Sensitive to noise and high dynamic ranges

2. Algorithms based on Prony’s method : MUSIC, ESPRIT, . . .

I Parametric (number of sources must be known)
I Extension to 2D is very computationally intensive
I Strong assumptions on noise (Gaussian, white), signal and

measurement model
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Statistical estimation via convex programming

I In the 70s and 80s, `1-norm minimization proposed for deconvolution
in seismography [Claerbout, Muir ’73],[Levy, Fullagar ’81], [Santosa,
Symes ’86]

I Later, huge impact of convex-programming techniques in
high-dimensional statistics

1. Well-developed theory
2. Robustness to noise, even in non-asymptotic regimes
3. Flexibility

I Very little theory on estimation from low-resolution data (original
problem tackled by geophysicists)



Super-resolution via convex programming

I Can we super-resolve using optimization ? Under what conditions ?
I Is the method stable to noise ?
I How do we adapt to different signal, noise and measurement models ?

I This talk : Framework for estimation from low-resolution data

1. Precise theoretical analysis
2. Non-asymptotic stability guarantees
3. Natural extensions handle

I Piecewise-smooth functions
I Clustered point sources
I Demixing of sines and spikes
I Super-resolution from multiple measurements
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Outline of the talk

Basic model

Estimation from noisy data

A general framework
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Mathematical model

I Signal : superposition of Dirac measures with support T

x =
∑

j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Data : low-pass Fourier coefficients with cut-off frequency fc

y = Fc x

y(k) =

∫ 1

0
e−i2πktx (dt) =

∑
j

aje−i2πktj , k ∈ Z, |k | ≤ fc



Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Compressed sensing

I Compressed sensing : stable estimation from random Fourier
coefficients [Candès, Tao, Romberg ’04]

I Crucial insight : measurement operator is well conditioned when
acting upon sparse signals

I Equivalently, the energy of all sparse signals is preserved in the data
(restricted isometry property)

I Most analyses of sparse-regression methods in high-dimensional
statistics are based on similar conditions (restricted-eigenvalue
condition, restricted strong convexity, null-space property)

I Do they hold in super-resolution ?
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Simple experiment

x =F y

Fc yc

=n

N

Fc ycFc ,T
xT

=
Fc ,T

xT

Discretize support to lie on a grid with N = 4096 points
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Simple experiment
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Restrict support of the signal to an interval of 48 contiguous points



Simple experiment
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Compute singular values of resulting linear operator



Sparsity is not enough

Most clustered sparse signals are suppressed by low-pass filtering
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For SRF = 4, there is a subspace S of dimension 24 where for all
unit-normed x ∈ S ||Fc x ||2 ≤ 10−7

For such signals estimation is impossible by any method at signal-to-noise
ratios below 145 dB

Theory : prolate spheroidal sequences [Slepian ’78]



Sparsity is not enough

Signal Spectrum
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More refined conditions are necessary to restrict our signal model



Minimum separation

Definition : The minimum separation ∆ of a discrete set T is

∆ = inf
(t,t′)∈T : t 6=t′

|t − t ′|



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function

I Formal definition : For a complex measure ν

||ν||TV = sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])
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Estimation via convex programming

In a zero-noise limit, i.e. y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem
If the minimum separation of the signal support T obeys then recovery is
exact

Nonparametric approach (no previous knowledge of the number of spikes)
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Estimation via convex programming

In a zero-noise limit, i.e. y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. ’14]

If the minimum separation of the signal support T obeys

∆ ≥ 1.38 /fc := 1.38λc ,

then recovery is exact

Nonparametric approach (no previous knowledge of the number of spikes)



Minimum separation

Point-spread function ∆ = 1.38λc

λc/2 is the Rayleigh resolution limit
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Numerical evaluation of minimum separation

fc = 30 fc = 40 fc = 50
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Conjecture : TV-norm minimization succeeds if ∆ ≥ λc



Sparse estimation from correlated covariates

If we discretize the support
I Sparse recovery via `1-norm minimization in an overcomplete Fourier

dictionary

I Theory based on dictionary incoherence [Donoho, Stark ’89],
[Tropp ’06] is very weak, due to high column correlation

I If the ambient dimension is 20 000 and we have 1 000 measurements,
how many spikes can we recover ?

Previous theory [Dossal, Mallat ’05] : 3 spikes
Our result : 362 spikes
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Piecewise-constant functions

I Signal : piecewise-constant function
I Measurements : low-pass Fourier coefficients

Corollary

Solving min ‖x̃ (1)‖TV subject to Fc x̃ = y

yields exact recovery if ∆ ≥ 1.38λc

Similar result for cont. differentiable piecewise-smooth functions



Higher dimensions

I Signal : superposition of point sources (delta measures) in 2D

I Measurements : low-pass 2D Fourier coefficients

Theorem [Candès, F. 2012]

TV-norm minimization yields exact recovery if

∆ ≥ 2.38λc

In dimension d , ∆ ≥ Cd λc , where Cd only depends on d



Sketch of proof : Dual polynomial

A sufficient condition for

x =
∑
j∈T

ajδtj =
∑
j∈T

|aj | e iφj δtj

to be the unique solution is that there exists q such that

1. q(t) =
∑fc

k=−fc bke i2πkt (low pass polynomial)

2. q(tj) = e iφj , tj ∈ T (interpolates the sign of the signal on T )

3. |q(t)| < 1, t ∈ T c

q is a subgradient of the TV norm at the signal x that is orthogonal to the
null space of the measurement operator



Sketch of proof : Dual polynomial
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Sketch of proof : Construction by interpolation
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1st idea : Interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αj K (t − tj),
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Sketch of proof : Construction by interpolation
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Problem : Magnitude of polynomial locally exceeds 1

Solution : Add correction term and force q′(tk) = 0 for all tk ∈ T

q(t) =
∑
tj∈T

αj K (t − tj) + βj K ′(t − tj)
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Sketch of proof : Interpolation kernel

Key step : Designing a good interpolation kernel

· · =

0.273 fc 0.36 fc 0.367 fc fc

∗ ∗ =

Trade-off between spikiness at the origin and asymptotic decay



Sketch of proof : Non-asymptotic bounds on kernel

Kernel

Kernel

1st derivative

1st derivative

2nd derivative

2nd derivative
3rd derivative

3rd derivative

Kernel (fc = 103) Kernel (fc = 5 103) Kernel (fc = 104)
Upper bound Lower bound

Figure 1: Upper and lower bounds on K� and its derivatives.
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Dual polynomial as theoretical tool

Subsequent work builds on our construction to analyze
I Stability of super-resolution [Candès, F. ’13], [F. ’13], [Azais, De

Castro, Gamboa ’13], [Duval, Peyré ’13]
I Denoising of line spectra [Tang, Bhaskar, Recht ’13]
I Compressed sensing off the grid [Tang, Bhaskar, Shah, Recht ’13]
I Recovery of splines from their projection onto spaces of algebraic

polynomials [Bendory, Dekel, Feuer ’13], [De Castro, Mijoule ’14]
I Recovery of point sources from spherical harmonics [Bendory, Dekel,

Feuer ’13]



Practical implementation

I Primal problem :

min
x̃
||x̃ ||TV subject to Fc x̃ = y

Infinite-dimensional variable x̃ (measure in [0, 1])

First option : Discretizing + `1-norm minimization

I Dual problem :

max
ũ∈Cn

Re [y∗ũ] subject to ||F∗c ũ||∞ ≤ 1, n := 2fc + 1

Finite-dimensional variable ũ, but infinite-dimensional constraint

F∗c ũ =
∑

k≤|fc |

ũke i2πkt

Second option : Solving the dual problem
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Lemma : Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

||F∗c ũ||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q ũ
ũ∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,
0, j = 1, 2, . . . , n − 1.

Consequence : The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution ?

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea : Use the polynomial to locate the support of the signal



Super-resolution via semidefinite programming
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Super-resolution via semidefinite programming

1. Solve semidefinite program to obtain dual solution



Super-resolution via semidefinite programming

2. Locate points at which corresponding polynomial has unit magnitude



Super-resolution via semidefinite programming

Signal Estimate

3. Estimate amplitudes via least squares



Support-location accuracy

fc 25 50 75 100

Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

For each fc , 100 random signals with |T | = fc/4 and ∆(T ) ≥ 2/fc



Basic model

Estimation from noisy data

A general framework



Estimation from noisy data

We assume additive noise with norm bounded by δ

y = Fcx + z

Our estimator is the solution to

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ,

Metrics to quantify estimation accuracy :

1. Approximation error at a higher resolution
2. Support-detection error
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Super-resolution factor : spectral viewpoint

Super-resolution factor

SRF =
f
fc



Super-resolution factor : spatial viewpoint

Signal at a resolution λ : convolution with a kernel φλ of width λ

Super-resolution factor

SRF =
λc

λf



Approximation at a higher resolution

At the resolution of the measurements

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?

Theorem [Candès, F. 2012]

If ∆ ≥ 1.38 /fc then the solution x̂ to

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ,

satisfies
∣∣∣∣φλf ∗ (x̂ − x)

∣∣∣∣
L1

. SRF2 δ
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Practical implementation at a noise level δ

I Primal problem :

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ

First option : Discretizing + `1-norm minimization

I Dual problem :

max
ũ∈Cn

Re [y∗ũ]− δ ||ũ||2 subject to ||F∗c ũ||∞ ≤ 1, n := 2fc + 1

Second option : Solving the dual problem

I Dual solution :

Coefficients of polynomial that interpolates sign of primal solution
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Example

Minimum separation : 1.5λc
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Example

SNR 5 dB

Noisy Noiseless
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SNR 5 dB

Signal Estimate



Support-detection accuracy

I Original support : T

I Estimated support : T̂

Theorem [F. 2013]

For any ti ∈ T , if |ai | > C1δ there exists t̂i ∈ T̂ such that

∣∣ti − t̂i
∣∣ ≤ 1

fc

√
C2δ

|ai | − C1δ

No dependence on the amplitude of the signal at other locations



Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)
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Signal Estimate

SNR 20 dB (15 dB without the large spike)



Some comments

I Non-asymptotic results, whereas most theory for Prony-based methods
is asymptotic (convergence of sample autocorrelation matrices)

I Usual proof techniques from high-dimensional statistics do not apply

1. Conditions (restricted-isometry property, restricted-eigenvalue
condition, etc.) do not hold

2. Estimation takes place over a continuous domain

I Proofs combine insights from harmonic analysis and convex
optimization (generalization of dual polynomials)



Basic model

Estimation from noisy data

A general framework



A general framework

Incorporating different assumptions on the signal, the noise and the sensing
process is important in applications

We can do this by adapting the cost function and constraints of the
optimization problem

This section :
1. Super-resolution of clustered point sources
2. Demixing of sines and spikes
3. Super-resolution from multiple measurements



Super-resolution of clustered sources

Aim : Super-resolving signals structured in small clusters



Super-resolution of clustered sources

Clustered point sources
Minimum separation = 0.6λc , SNR = 25 dB
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Super-resolution of clustered sources

Computing a coarse estimate S of the support is easy
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Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

min
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||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ
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The magnitude of the polynomial is only constrained on S
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Super-resolution of clustered sources

Support-locating polynomial obtained from solving the dual of

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ xSC = 0

Without noise, we have exact recovery



Super-resolution of clustered sources

Signal Estimate

Joint work with Raf Mertens (Stanford)



Demixing of sines and spikes

Aim : Super-resolving the spectrum of a multi-sinusoidal signal (sines) in
the presence of impulsive events (spikes)
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Demixing of sines and spikes
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Demixing of sines and spikes

Sines Spikes Data

+ =

Spectrum + =

Fc x + s = y



Demixing of sines and spikes

Estimator : Solution to

min
x̃ , s̃
||x̃ ||TV + γ ||s̃||1 subject to Fc x̃ + s̃ = y

Dual problem :

max
ũ∈Cn

Re [y∗ũ] subject to ||F∗c ũ||∞ ≤ 1, ||ũ||∞ ≤ γ

Dual solution : û
I û interpolates the sign of the primal solution ŝ
I F∗c û interpolates the sign of the primal solution x̂
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û F∗c û

Dual
solution

Estimate

s ŝ x x̂

Spikes Sines (spectrum)
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Super-resolution from multiple measurements

Aim : Super-resolving K signals with the same support

Motivation : Fluorescence microscopy (PALM, STORM), astronomy and
communications



Super-resolution from multiple measurements

Data (signal 1) Data (signal 2) Data (signal 3)

Minimum separation = 0.7λc



Super-resolution from multiple measurements

Dual sol. (signal 1) Dual sol. (signal 2) Dual sol. (signal 3)

Dual solutions obtained by solving separate problems



Group total variation

Estimator : Solution to minimizing group total-variation norm
I Continuous analog of `1 − `2 norm
I Promotes group sparsity
I If X = {x1, x2, x3}, a (tj) ∈ C3 for each tj ∈ T and

xk =
∑
tj∈T

a (tj)k δtj then ||X ||GTV =
∑
tj∈T

||a (tj)||2

Dual solution :

K -dimensional low-pass polynomial with unit magnitude on the
estimate of the common support
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Super-resolution from multiple measurements

The estimator locates the support exactly



Super-resolution from multiple measurements

Signal 1
Signal 2
Signal 3
Estimate 1
Estimate 2
Estimate 3



Minimum separation : As K grows, ∆min → λc/2

K = 1 (real amplitudes) K = 1 (complex amplitudes)

0.2 0.4 0.6 0.8 1

10

20

30

Minimum separation ∆min/λc

N
u
m

b
er

of
sp

ik
es

0.2 0.4 0.6 0.8 1

10

20

30

Minimum separation ∆min/λc

N
u

m
b

er
o
f

sp
ik

es

0

0.2

0.4

0.6

0.8

1

K = 2 (complex amplitudes) K = 10 (complex amplitudes)
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Conclusion

Convex programming is a powerful tool for estimation from low-res data :
I Precise theoretical analysis
I Non-asymptotic stability guarantees
I Flexible framework

Lots of work to do :
I Developing fast sdp solvers exploiting the structure in the dual problem
I Deconvolution from irregular samples
I Super-resolution of 2D curves
I Blind deconvolution : joint estimation of signal + point-spread function
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Research directions

Generic goal in modern data processing :

Finding low-dimensional structure in high-dimensional data

This talk : Understanding the interaction between the data acquisition
mechanism and the low-dimensional structure pays off !

Future directions :

I Sparse regression with highly-correlated design matrices
e.g. dictionary of decaying exponentials

I Statistical processing of projected data
e.g. dimensionality reduction in big-data

I Data-driven regularization :
e.g. transform-invariant regularizers in computer vision



Image upsampling via transform-invariant regularization

Input

Upsampled
image

Aim : Achieving large upsampling factors through data-driven regularizers
that are approximately invariant to the projection onto the imaging plane



For more details

I Towards a mathematical theory of super-resolution. E. J. Candès and
C. Fernandez-Granda. Communications on Pure and Applied Math.

I Super-resolution from noisy data. E. J. Candès and C. Fernandez-Granda.
Journal of Fourier Analysis and Applications 19 (6), 1229-1254.

I Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013, 145-148.

I Super-resolution of point sources via convex programming.
C. Fernandez-Granda. Preprint.
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