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Motivation

Single-molecule imaging

Frame 1 Frame 2 Frame 3

Microscope receives light from �uorescent molecules

Few molecules are active in each frame ⇒ sparsity

Multiple (∼ 10000) frames are recorded and processed individually

Results from all frames are combined to reveal the underlying signal
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Motivation

Single-molecule imaging

Bad news : the resolution of our measurements is too low

Good news : there is structure in the signal
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Motivation

Limits of resolution in imaging

In any optical imaging system di�raction imposes a fundamental limit on
resolution
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Motivation

What is super-resolution ?

Retrieving �ne-scale structure from low-resolution data

Equivalently, extrapolating the high end of the spectrum
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Motivation

Super-resolution of point sources

Super-resolution of structured signals from bandlimited data arises in many
applications

Reconstruction of sub-wavelength structure in conventional imaging

Reconstruction of sub-pixel structure in electronic imaging

Spectral analysis of multitone signals

Similar problems in signal processing, radar, spectroscopy, medical
imaging, astronomy, geophysics, etc.

The signal of interest is often modeled as a superposition of point

sources

Celestial bodies in astronomy

Line spectra in speech analysis

Fluorescent molecules in single-molecule microscopy
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Motivation

Mathematical model

Signal : superposition of delta measures

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

Measurements : low-pass Fourier coe�cients

y = Fn x

y(k) =

∫
1

0

e−i2πktx (dt) =
∑
j

aje
−i2πktj , k ∈ Z, |k | ≤ fc

Number of measurements : n = 2 fc + 1

Under what conditions is it possible to recover x from y ?
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Motivation

Equivalent problem : line spectra estimation

Swapping time and frequency

Signal : superposition of sinusoids

x(t) =
∑
j

aje
i2πωj t aj ∈ C, ωj ∈ T ⊂ [0, 1]

Measurements : equispaced samples

x(1), x(2), x(3), . . . x(n)
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Motivation

Can you �nd the spikes ?
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Sparsity is not enough

Compressed sensing

Compressed sensing theory establishes robust recovery of spikes from
random Fourier measurements [Candès, Romberg & Tao 2004]

Crucial insight : measurement operator is well conditioned when
acting upon sparse signals (restricted isometry property)

Is this the case in the super-resolution setting ?

Simple experiment :

discretize support to N = 4096 points
restrict signal to an interval of 48 contiguous points
measure n DFT coe�cients ⇒ super-resolution factor (SRF) = N

n

how well conditioned is the inverse problem if we know the support ?
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Sparsity is not enough

Simple experiment
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For SRF = 4 measuring any unit-normed vector in a subspace of dimension
24 results in a signal with norm less than 10−7

At an SNR of 145 dB, recovery is impossible by any method
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Sparsity is not enough

Prolate spheroidal sequences

There seems to be a sharp transition between signals that are preserved
and signals that are completely suppressed.

This phenomenon can be characterized asymptotically by using Slepian's
prolate spheroidal sequences

These sequences are the eigenvectors of the concatenation of a time
limiting PT and a frequency limiting operator PW , 0 <W ≤ 1/2

Asymptotically WT eigenvalues cluster near one while the rest are almost
zero [Slepian 1978]
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Sparsity is not enough

Consequences of Slepian's work

For any value of SRF above one, there exist signals almost in the
null-space of the measurement operator

The norm of the measurements corresponding to k-sparse signals for a
�xed SRF decreases exponentially in k

For SRF = 1.05 there is a 256-sparse signal such that ||y ||
2
≤ 10−7

For SRF = 4 there is a 48-sparse signal such that ||y ||
2
≤ 10−33

For any interval T of length k , there is an irretrievable subspace of
dimension (1− 1/SRF) k supported on T

When SRF > 2 many clustered sparse signals are killed by the
measurement process
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Sparsity is not enough

Compressed sensing vs super-resolution

What is the di�erence ?

Compressed sensing : spectrum interpolation

Super-resolution : spectrum extrapolation
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Sparsity is not enough

Conclusion

Robust super-resolution of arbitrary sparse signals is impossible

We can only hope to recover signals that are not too clustered

In this work, this structural assumption is captured by introducing the
minimum separation of the support T of a signal

∆(T ) = inf
(t,t′)∈T : t 6=t′

|t − t ′|
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Exact recovery by convex optimization

Noiseless case

Recovery by solving

min
x̃
||x̃ ||

TV
subject to Fn x̃ = y ,

over all �nite complex measures x̃ supported on [0, 1]

Total-variation norm of a complex measure ν :

||ν||
TV

= sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all �nite partitions Bj of [0, 1])

not the total variation of a piecewise constant function

continuous counterpart of the `1 norm

if
∑

j ajδtj then ||x ||TV =
∑

j |aj |
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Exact recovery by convex optimization

Noiseless recovery

y(k) =

∫
1

0

e−i2πktx (dt) =
∑
j

aje
−i2πktj , k ∈ Z, |k | ≤ fc

Theorem [Candès, F. 2012]

If the minimum separation of the signal obeys

∆(T ) ≥ 2 /fc := 2λc ,

then x is recovered exactly by total-variation norm minimization

In�nite precision
Recovers (2λc)−1 = fc/2 = n/4 spikes from n low-frequency
measurements
If x is real, then

∆(T ) ≥ 2 /fc := 1.87λc ,
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Exact recovery by convex optimization

Lower bound

Consider signals supported on a �nite grid of N points

We look for adversarial sign patterns
We plot the ratio N/n (x-axis) against the largest minimum distance
(y-axis) at which `1-norm minimization fails
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|T|=50
|T|=20
|T|=10
|T|=5
|T|=2

Red line corresponds to ∆(T ) = λc
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Exact recovery by convex optimization

Higher dimensions

Signal :

x =
∑
j

ajδtj aj ∈ R, tj ∈ T ⊂ [0, 1]2

Measurements : low-pass 2D Fourier coe�cients

y(k) =

∫
[0,1]2

e−i2π〈k,t〉x (dt) =
∑
j

aje
−i2π〈k,tj〉, k ∈ Z2, |k | ≤ fc

Theorem [Candès, F. 2012]

TV norm minimization yields exact recovery if

∆(T ) ≥ 2.38 /fc := 2.38λc ,

In dimension d , ∆(T ) ≥ Cd λc , where Cd only depends on d
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Exact recovery by convex optimization

Extensions

Signal : `− 1 times continuously di�erentiable piecewise smooth
function

x =
∑
tj∈T

1(tj−1,tj)pj(t), tj ∈ T ⊂ [0, 1]

where pj(t) is a polynomial of degree `

Measurements : low-pass Fourier coe�cients

y(k) =

∫
1

0

e−i2πktx (dt) , k ∈ Z, |k | ≤ fc

Recovery :
min ‖x̃ (`+1)‖TV subject to Fnx̃ = y

Corollary

TV norm minimization yields exact recovery if ∆(T ) ≥ 2λc
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Exact recovery by convex optimization

Sparse recovery

If we discretize the support :

Sparse recovery problem in an overcomplete Fourier dictionary

Previous theory based on dictionary incoherence is very weak, due to
high column correlation

If N = 20, 000 and n = 1, 000, [Dossal 2005] : recovery of 3 spikes,
our result : n/4 = 250 spikes

Additional structural assumptions allow for a more precise theoretical
analysis
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Exact recovery by convex optimization

Sketch of the proof

Su�cient condition for exact recovery of a signal supported on T :

For any v ∈ C|T | with |vj | = 1, there exists a low-frequency trigonometric
polynomial

q(t) =
fc∑

k=−fc

cke
i2πkt (1)

obeying {
q(tj) = vj , tj ∈ T ,

|q(t)| < 1, t ∈ [0, 1] \ T .
(2)
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Exact recovery by convex optimization

Sketch of the proof

Interpolating the sign pattern with a low frequency polynomial becomes
challenging if the minimum separation is small

+1

1

+1

1
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Exact recovery by convex optimization

Sketch of the proof

Interpolation with low-frequency kernel K

q(t) =
∑
tj∈T

αjK (t − tj),

where α is a vector of coe�cients, and q is constrained to satisfy

q(tk) =
∑
tj∈T

αjK (tk − tj) = vk , ∀tk ∈ T ,

If K is a sinc function this is equivalent to a least squares construction

Kernels with faster decay, such as the Fejér kernel or the Gaussian kernel
[Kahane 2011], yield better results

However, this does not allow to construct a valid continuous dual
polynomial
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Exact recovery by convex optimization

Sketch of the proof

Adding a correction term

q(t) =
∑
tj∈T

αjK (t − tj) + βjK
′(t − tj)

and an extra constraint

q(tk) = vk , q′(tk) = 0, ∀tk ∈ T

forces |q| to reach a local maximum at each element of T

Choosing K to be the square of a Fejér kernel allows to show that

there exist α and β satisfying the constraints

|q| is strictly bounded by one on the o�-support
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Stability

1 Motivation

2 Sparsity is not enough

3 Exact recovery by convex optimization

4 Stability

5 Numerical algorithms

6 Related work and conclusion
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Stability

Super-resolution factor : spatial viewpoint

Super-resolution factor

SRF =
λc
λf
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Stability

Noise model

Fn x(k) =

∫
1

0

e−i2πktx (dt) , |k | ≤ fc

Noise can be modeled in the spectral domain

y = Fn x + w

or spatial domain
s = F∗ny = Pn x + z ,

Pn projection onto the �rst n Fourier modes

Assumption :

||z ||L1 ≤ δ

Recovery algorithm

min
x̃
||x̃ ||

TV
subject to ||Pnx̃ − s||L1 ≤ δ

1/17/2013 34 / 44



Stability

Noise model

Fn x(k) =

∫
1

0

e−i2πktx (dt) , |k | ≤ fc

Noise can be modeled in the spectral domain

y = Fn x + w

or spatial domain
s = F∗ny = Pn x + z ,

Pn projection onto the �rst n Fourier modes

Assumption :

||z ||L1 ≤ δ

Recovery algorithm

min
x̃
||x̃ ||

TV
subject to ||Pnx̃ − s||L1 ≤ δ

1/17/2013 34 / 44



Stability

Noise model

Fn x(k) =

∫
1

0

e−i2πktx (dt) , |k | ≤ fc

Noise can be modeled in the spectral domain

y = Fn x + w

or spatial domain
s = F∗ny = Pn x + z ,

Pn projection onto the �rst n Fourier modes

Assumption :

||z ||L1 ≤ δ

Recovery algorithm

min
x̃
||x̃ ||

TV
subject to ||Pnx̃ − s||L1 ≤ δ

1/17/2013 34 / 44



Stability

Noise model

Fn x(k) =

∫
1

0

e−i2πktx (dt) , |k | ≤ fc

Noise can be modeled in the spectral domain

y = Fn x + w

or spatial domain
s = F∗ny = Pn x + z ,

Pn projection onto the �rst n Fourier modes

Assumption :

||z ||L1 ≤ δ

Recovery algorithm

min
x̃
||x̃ ||

TV
subject to ||Pnx̃ − s||L1 ≤ δ

1/17/2013 34 / 44



Stability

Noise model

Fn x(k) =

∫
1

0

e−i2πktx (dt) , |k | ≤ fc

Noise can be modeled in the spectral domain

y = Fn x + w

or spatial domain
s = F∗ny = Pn x + z ,

Pn projection onto the �rst n Fourier modes

Assumption :

||z ||L1 ≤ δ

Recovery algorithm

min
x̃
||x̃ ||

TV
subject to ||Pnx̃ − s||L1 ≤ δ

1/17/2013 34 / 44



Stability

Robust recovery

Let φλc
be a kernel with width λc and cut-o� frequency fc

If ||z ||L1 ≤ δ, then

||φλc
∗ (xest − x)||L1 ≈ ||z ||L1 ≤ δ,

What can we expect for φλf
?

Theorem [Candès, F. 2012]

If ∆(T ) ≥ 2 /fc then the solution xest to the TV-norm minimization
problem satis�es ∣∣∣∣φλf

∗ (xest − x)
∣∣∣∣
L1

. SRF2 δ,
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Numerical algorithms

1 Motivation

2 Sparsity is not enough

3 Exact recovery by convex optimization

4 Stability

5 Numerical algorithms
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Numerical algorithms

Practical implementation

TV norm minimization is an in�nite-dimensional optimization problem

Primal :

min
x̃
||x̃ ||

TV
subject to Fn x̃ = y ,

First option : Discretize x ⇒ `1 norm minimization

Dual :

max
u∈Cn

Re [y∗u] subject to ||F∗n u||∞ ≤ 1,

Second option : Recast as semide�nite program
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Numerical algorithms

Semide�nite representation

||F∗n u||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q u

u∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,

0, j = 1, 2, . . . , n − 1.
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Numerical algorithms

Support detection

By strong duality, F∗n û interpolates the sign of x̂
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Numerical algorithms

Experiment

Support recovery by solving the SDP

fc 25 50 75 100

Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

For each fc , 100 random signals with |T | = fc/4 and ∆(T ) ≥ 2/fc
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Related work and conclusion
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Related work and conclusion

Related work

Super-resolution of spike trains by `1 norm minimization in seismic
prospecting [Claerbout, Muir 1973 ; Levy, Fullagar 1981 ; Santosa,
Symes 1986]

Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier
coe�cients by `1 norm minimization [Donoho, Tanner ; Fuchs 2005]

Recovery of lacunary Fourier series coe�cients [Kahane 2011]

Finite rate of innovation [Dragotti, Vetterli, Blu 2007]

Bounds on the modulus of continuity of super-resolution [Donoho
1992]

Super-resolution by greedy methods [Fannjiang, Liao 2012]

Random undersampling of low-frequency coe�cients [Tang et al 2012]
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Related work and conclusion

Conclusion

Stable super-resolution is possible via tractable non-parametric methods
based on convex optimization

Note on single-molecule imaging : Joint work with E. Candès, V.
Morgenshtern and the Moerner lab at Stanford
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Related work and conclusion

Thank you
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