Super-resolution via Convex Programming

Carlos Fernandez-Granda (Joint work with Emmanuel Candès)

Structure and Randomness in System Identification and Learning, IPAM

1/17/2013

Index

- 2 Sparsity is not enough
- 3 Exact recovery by convex optimization

- 5 Numerical algorithms
- 6 Related work and conclusion

- 2 Sparsity is not enough
 - 3 Exact recovery by convex optimization
 - 4 Stability
 - 5 Numerical algorithms
 - 6 Related work and conclusion

Frame 2

Frame 3

• Microscope receives light from fluorescent molecules

Frame 1 Frame 2 Frame 3

- Microscope receives light from fluorescent molecules
- Few molecules are active in each frame \Rightarrow sparsity

Frame 1 Frame 2 Frame 3

- Microscope receives light from fluorescent molecules
- Few molecules are active in each frame ⇒ sparsity
- ullet Multiple (\sim 10000) frames are recorded and processed individually

Frame 1 Frame 2 Frame 3

- Microscope receives light from fluorescent molecules
- Few molecules are active in each frame ⇒ sparsity
- ullet Multiple (\sim 10000) frames are recorded and processed individually
- Results from all frames are **combined** to reveal the underlying signal

• Bad news : the resolution of our measurements is too low

- Bad news : the resolution of our measurements is too low
- Good news : there is structure in the signal

Limits of resolution in imaging

In any optical imaging system **diffraction** imposes a fundamental limit on resolution

Limits of resolution in imaging

In any optical imaging system **diffraction** imposes a fundamental limit on resolution

Retrieving fine-scale structure from low-resolution data

Retrieving fine-scale structure from low-resolution data

Equivalently, extrapolating the high end of the spectrum

Super-resolution of structured signals from bandlimited data arises in many applications

Super-resolution of structured signals from bandlimited data arises in many applications

- Reconstruction of sub-wavelength structure in conventional imaging
- Reconstruction of sub-pixel structure in electronic imaging
- Spectral analysis of multitone signals
- Similar problems in signal processing, radar, spectroscopy, medical imaging, astronomy, geophysics, etc.

Super-resolution of structured signals from bandlimited data arises in many applications

- Reconstruction of sub-wavelength structure in conventional imaging
- Reconstruction of sub-pixel structure in electronic imaging
- Spectral analysis of multitone signals
- Similar problems in signal processing, radar, spectroscopy, medical imaging, astronomy, geophysics, etc.

The signal of interest is often modeled as a superposition of point sources

Super-resolution of structured signals from bandlimited data arises in many applications

- Reconstruction of sub-wavelength structure in conventional imaging
- Reconstruction of sub-pixel structure in electronic imaging
- Spectral analysis of multitone signals
- Similar problems in signal processing, radar, spectroscopy, medical imaging, astronomy, geophysics, etc.

The signal of interest is often modeled as a superposition of point sources

- Celestial bodies in astronomy
- Line spectra in speech analysis
- Fluorescent molecules in single-molecule microscopy

Mathematical model

• Signal : superposition of delta measures

$$x = \sum_{j} a_{j} \delta_{t_{j}}$$
 $a_{j} \in \mathbb{C}, \ t_{j} \in \mathcal{T} \subset [0, 1]$

Mathematical model

• Signal : superposition of delta measures

$$x = \sum_{j} a_{j} \delta_{t_{j}}$$
 $a_{j} \in \mathbb{C}, t_{j} \in \mathcal{T} \subset [0, 1]$

• Measurements : low-pass Fourier coefficients

$$y = \mathcal{F}_n x$$

$$y(k) = \int_0^1 e^{-i2\pi kt} x \, (\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \le f_c$$

Number of measurements : $n = 2 f_c + 1$

Mathematical model

• Signal : superposition of delta measures

$$x = \sum_{j} a_{j} \delta_{t_{j}}$$
 $a_{j} \in \mathbb{C}, t_{j} \in T \subset [0, 1]$

• Measurements : low-pass Fourier coefficients

$$y = \mathcal{F}_n x$$

$$y(k) = \int_0^1 e^{-i2\pi kt} x \, (\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \le f_c$$

Number of measurements : $n = 2 f_c + 1$

Under what conditions is it possible to recover x from y?

Equivalent problem : line spectra estimation

Swapping time and frequency

Equivalent problem : line spectra estimation

Swapping time and frequency

• Signal : superposition of sinusoids

$$x(t) = \sum_{j} a_{j} e^{i 2 \pi \omega_{j} t}$$
 $a_{j} \in \mathbb{C}, \, \omega_{j} \in \mathcal{T} \subset [0, 1]$

Equivalent problem : line spectra estimation

Swapping time and frequency

• Signal : superposition of sinusoids

$$x(t) = \sum_{j} a_{j} e^{i 2 \pi \omega_{j} t}$$
 $a_{j} \in \mathbb{C}, \, \omega_{j} \in \mathcal{T} \subset [0, 1]$

• Measurements : equispaced samples

 $x(1), x(2), x(3), \ldots x(n)$

Can you find the spikes?

Can you find the spikes?

2 Sparsity is not enough

Exact recovery by convex optimization

- 4 Stability
- 5 Numerical algorithms
- 6 Related work and conclusion

• Compressed sensing theory establishes robust recovery of spikes from random Fourier measurements [Candès, Romberg & Tao 2004]

- Compressed sensing theory establishes robust recovery of spikes from random Fourier measurements [Candès, Romberg & Tao 2004]
- **Crucial insight** : measurement operator is well conditioned when acting upon sparse signals (restricted isometry property)

- Compressed sensing theory establishes robust recovery of spikes from random Fourier measurements [Candès, Romberg & Tao 2004]
- **Crucial insight** : measurement operator is well conditioned when acting upon sparse signals (restricted isometry property)
- Is this the case in the super-resolution setting?

- Compressed sensing theory establishes robust recovery of spikes from random Fourier measurements [Candès, Romberg & Tao 2004]
- **Crucial insight** : measurement operator is well conditioned when acting upon sparse signals (restricted isometry property)
- Is this the case in the super-resolution setting?
- Simple experiment :
 - discretize support to N = 4096 points
 - restrict signal to an interval of 48 contiguous points
 - measure *n* DFT coefficients \Rightarrow super-resolution factor (SRF) $= \frac{N}{n}$
 - how well conditioned is the inverse problem if we know the support?

Simple experiment

For SRF = 4 measuring any unit-normed vector in a subspace of dimension 24 results in a signal with norm less than 10^{-7}

Simple experiment

For SRF = 4 measuring any unit-normed vector in a subspace of dimension 24 results in a signal with norm less than 10^{-7}

At an SNR of 145 dB, recovery is impossible by any method

Prolate spheroidal sequences

There seems to be a sharp transition between signals that are preserved and signals that are completely suppressed.

Prolate spheroidal sequences

There seems to be a sharp transition between signals that are preserved and signals that are completely suppressed.

This phenomenon can be characterized asymptotically by using Slepian's prolate spheroidal sequences
Prolate spheroidal sequences

There seems to be a sharp transition between signals that are preserved and signals that are completely suppressed.

This phenomenon can be characterized asymptotically by using Slepian's **prolate spheroidal sequences**

These sequences are the eigenvectors of the concatenation of a time limiting \mathcal{P}_T and a frequency limiting operator \mathcal{P}_W , $0 < W \leq 1/2$

Prolate spheroidal sequences

There seems to be a sharp transition between signals that are preserved and signals that are completely suppressed.

This phenomenon can be characterized asymptotically by using Slepian's **prolate spheroidal sequences**

These sequences are the eigenvectors of the concatenation of a time limiting ${\cal P}_T$ and a frequency limiting operator ${\cal P}_W$, $0 < W \leq 1/2$

Asymptotically WT eigenvalues cluster near one while the rest are almost zero [Slepian 1978]

• For any value of SRF above one, there exist signals almost in the null-space of the measurement operator

- For any value of SRF above one, there exist signals almost in the null-space of the measurement operator
- The norm of the measurements corresponding to k-sparse signals for a fixed SRF decreases exponentially in k

- For any value of SRF above one, there exist signals almost in the null-space of the measurement operator
- The norm of the measurements corresponding to k-sparse signals for a fixed SRF decreases exponentially in k
- \bullet For SRF = 1.05 there is a 256-sparse signal such that $||y||_2 \leq 10^{-7}$

- For any value of SRF above one, there exist signals almost in the null-space of the measurement operator
- The norm of the measurements corresponding to k-sparse signals for a fixed SRF decreases exponentially in k
- For SRF = 1.05 there is a 256-sparse signal such that $||y||_2 \le 10^{-7}$
- For SRF = 4 there is a 48-sparse signal such that $||y||_2 \le 10^{-33}$

- For any value of SRF above one, there exist signals almost in the null-space of the measurement operator
- The norm of the measurements corresponding to k-sparse signals for a fixed SRF decreases exponentially in k
- For SRF = 1.05 there is a 256-sparse signal such that $||y||_2 \le 10^{-7}$
- For SRF = 4 there is a 48-sparse signal such that $||y||_2 \le 10^{-33}$
- For any interval T of length k, there is an irretrievable subspace of dimension (1 1/SRF)k supported on T

- For any value of SRF above one, there exist signals almost in the null-space of the measurement operator
- The norm of the measurements corresponding to k-sparse signals for a fixed SRF decreases exponentially in k
- For SRF = 1.05 there is a 256-sparse signal such that $||y||_2 \le 10^{-7}$
- For SRF = 4 there is a 48-sparse signal such that $||y||_2 \le 10^{-33}$
- For any interval T of length k, there is an irretrievable subspace of dimension (1 1/SRF)k supported on T
- When SRF > 2 many clustered sparse signals are killed by the measurement process

Compressed sensing vs super-resolution

• Compressed sensing : spectrum interpolation

Compressed sensing vs super-resolution

- Compressed sensing : spectrum interpolation
- Super-resolution : spectrum extrapolation

Compressed sensing vs super-resolution

- Compressed sensing : spectrum interpolation
- Super-resolution : spectrum extrapolation

Conclusion

• Robust super-resolution of arbitrary sparse signals is impossible

Conclusion

- Robust super-resolution of arbitrary sparse signals is impossible
- We can only hope to recover signals that are not too clustered

Conclusion

- Robust super-resolution of arbitrary sparse signals is impossible
- We can only hope to recover signals that are not too clustered
- In this work, this structural assumption is captured by introducing the minimum separation of the support T of a signal

$$\Delta(T) = \inf_{(t,t')\in T: t\neq t'} |t-t'|$$

3 Exact recovery by convex optimization

- 4 Stability
- 5 Numerical algorithms
- 6 Related work and conclusion

Recovery by solving

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Recovery by solving

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Total-variation norm of a complex measure ν :

$$||
u||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |
u(B_j)|,$$

(supremum over all finite partitions B_j of [0, 1])

Recovery by solving

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Total-variation norm of a complex measure ν :

$$||\nu||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions B_j of [0, 1])

• not the total variation of a piecewise constant function

Recovery by solving

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Total-variation norm of a complex measure ν :

$$||\nu||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions B_j of [0, 1])

- not the total variation of a piecewise constant function
- ullet continuous counterpart of the ℓ_1 norm

Recovery by solving

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Total-variation norm of a complex measure ν :

$$||\nu||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions B_j of [0, 1])

- not the total variation of a piecewise constant function
- ullet continuous counterpart of the ℓ_1 norm

• if
$$\sum_j a_j \delta_{t_j}$$
 then $||x||_{\mathsf{TV}} = \sum_j |a_j|$

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Theorem [Candès, F. 2012]

If the minimum separation of the signal obeys

$$\Delta(T) \geq 2/f_c := 2\lambda_c,$$

then x is recovered exactly by total-variation norm minimization

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Theorem [Candès, F. 2012]

If the minimum separation of the signal obeys

$$\Delta(T) \geq 2/f_c := 2\lambda_c,$$

then x is recovered exactly by total-variation norm minimization

Infinite precision

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Theorem [Candès, F. 2012]

If the minimum separation of the signal obeys

$$\Delta(T) \geq 2/f_c := 2\lambda_c,$$

then x is recovered exactly by total-variation norm minimization

- Infinite precision
- Recovers $(2\lambda_c)^{-1} = f_c/2 = n/4$ spikes from *n* low-frequency measurements

$$y(k) = \int_0^1 e^{-i2\pi kt} x \left(\mathrm{d} t \right) = \sum_j a_j e^{-i2\pi kt_j}, \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Theorem [Candès, F. 2012]

If the minimum separation of the signal obeys

$$\Delta(T) \geq 2/f_c := 2\lambda_c,$$

then x is recovered exactly by total-variation norm minimization

- Infinite precision
- Recovers $(2\lambda_c)^{-1} = f_c/2 = n/4$ spikes from n low-frequency measurements
- If x is real, then

$$\Delta(T) \geq 2/f_c := 1.87 \lambda_c,$$

• Consider signals supported on a finite grid of N points

- Consider signals supported on a finite grid of N points
- We look for adversarial sign patterns

- Consider signals supported on a finite grid of N points
- We look for adversarial sign patterns
- We plot the ratio N/n (x-axis) against the largest minimum distance (y-axis) at which ℓ_1 -norm minimization fails

- Consider signals supported on a finite grid of N points
- We look for adversarial sign patterns
- We plot the ratio N/n (x-axis) against the largest minimum distance (y-axis) at which ℓ_1 -norm minimization fails

• Red line corresponds to $\Delta(T) = \lambda_c$

Higher dimensions

• Signal :

$$x = \sum_{j} a_{j} \delta_{t_{j}}$$
 $a_{j} \in \mathbb{R}, t_{j} \in T \subset [0, 1]^{2}$

• Measurements : low-pass 2D Fourier coefficients

$$y(k) = \int_{[0,1]^2} e^{-i2\pi \langle k,t
angle} x\left(\mathsf{d} t
ight) = \sum_j a_j e^{-i2\pi \langle k,t_j
angle}, \quad k \in \mathbb{Z}^2, \, |k| \leq f_c$$

Higher dimensions

• Signal :

$$x = \sum_j a_j \delta_{t_j} \qquad a_j \in \mathbb{R}, \ t_j \in \mathcal{T} \subset [0,1]^2$$

• Measurements : low-pass 2D Fourier coefficients

$$y(k) = \int_{[0,1]^2} e^{-i2\pi \langle k,t
angle} x\left(\mathrm{d}t
ight) = \sum_j a_j e^{-i2\pi \langle k,t_j
angle}, \quad k\in\mathbb{Z}^2, \, |k|\leq f_c$$

Theorem [Candès, F. 2012]

TV norm minimization yields exact recovery if

$$\Delta(T) \geq 2.38 / f_c := 2.38 \lambda_c,$$

Higher dimensions

• Signal :

$$x = \sum_j a_j \delta_{t_j} \qquad a_j \in \mathbb{R}, \; t_j \in \mathcal{T} \subset [0,1]^2$$

• Measurements : low-pass 2D Fourier coefficients

$$y(k) = \int_{[0,1]^2} e^{-i2\pi \langle k,t
angle} x\left(\mathrm{d}t
ight) = \sum_j a_j e^{-i2\pi \langle k,t_j
angle}, \quad k\in\mathbb{Z}^2, \, |k|\leq f_c$$

Theorem [Candès, F. 2012]

TV norm minimization yields exact recovery if

$$\Delta(T) \geq 2.38 / f_c := 2.38 \lambda_c,$$

In dimension d, $\Delta(T) \geq C_d \lambda_c$, where C_d only depends on d

Extensions

 \bullet Signal : $\ell-1$ times continuously differentiable piecewise smooth function

$$x = \sum_{t_j \in \mathcal{T}} \mathbf{1}_{\left(t_{j-1}, t_j\right)} \rho_j(t), \ t_j \in \mathcal{T} \subset [0, 1]$$

where $p_j(t)$ is a polynomial of degree ℓ

• Measurements : low-pass Fourier coefficients

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Extensions

 \bullet Signal : $\ell-1$ times continuously differentiable piecewise smooth function

$$x = \sum_{t_j \in \mathcal{T}} \mathbf{1}_{\left(t_{j-1}, t_j\right)} \rho_j(t), \ t_j \in \mathcal{T} \subset [0, 1]$$

where $p_j(t)$ is a polynomial of degree ℓ

• Measurements : low-pass Fourier coefficients

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Recovery :

min
$$\|\tilde{x}^{(\ell+1)}\|_{\mathsf{TV}}$$
 subject to $\mathcal{F}_n \tilde{x} = y$

Extensions

 \bullet Signal : $\ell-1$ times continuously differentiable piecewise smooth function

$$x = \sum_{t_j \in \mathcal{T}} \mathbf{1}_{\left(t_{j-1}, t_j\right)} \rho_j(t), \ t_j \in \mathcal{T} \subset [0, 1]$$

where $p_j(t)$ is a polynomial of degree ℓ

• Measurements : low-pass Fourier coefficients

$$y(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad k \in \mathbb{Z}, \, |k| \leq f_c$$

Recovery :

min
$$\|\tilde{x}^{(\ell+1)}\|_{\mathsf{TV}}$$
 subject to $\mathcal{F}_n \tilde{x} = y$

Corollary

TV norm minimization yields exact recovery if $\Delta(T) \geq 2 \lambda_c$

Sparse recovery

If we discretize the support :

• Sparse recovery problem in an overcomplete Fourier dictionary

Sparse recovery

If we discretize the support :

- Sparse recovery problem in an overcomplete Fourier dictionary
- Previous theory based on dictionary incoherence is very weak, due to high column correlation
Sparse recovery

If we discretize the support :

- Sparse recovery problem in an overcomplete Fourier dictionary
- Previous theory based on dictionary incoherence is very weak, due to high column correlation
- If N = 20,000 and n = 1,000, [Dossal 2005] : recovery of 3 spikes, our result : n/4 = 250 spikes

Sparse recovery

If we discretize the support :

- Sparse recovery problem in an overcomplete Fourier dictionary
- Previous theory based on dictionary incoherence is very weak, due to high column correlation
- If N = 20,000 and n = 1,000, [Dossal 2005] : recovery of 3 spikes, our result : n/4 = 250 spikes

Additional structural assumptions allow for a more precise theoretical analysis

Sufficient condition for exact recovery of a signal supported on T :

For any $v \in \mathbb{C}^{|\mathcal{T}|}$ with $|v_j| = 1$, there exists a low-frequency trigonometric polynomial

$$q(t) = \sum_{k=-f_c}^{f_c} c_k e^{i2\pi kt}$$
 (1)

obeying

$$\begin{cases} q(t_j) = v_j, & t_j \in \mathcal{T}, \\ |q(t)| < 1, & t \in [0, 1] \setminus \mathcal{T}. \end{cases}$$

$$(2)$$

Interpolating the sign pattern with a low frequency polynomial becomes challenging if the minimum separation is small

Interpolation with low-frequency kernel K

$$q(t) = \sum_{t_j \in \mathcal{T}} \alpha_j \mathcal{K}(t - t_j),$$

where α is a vector of coefficients, and q is constrained to satisfy

$$q(t_k) = \sum_{t_j \in T} \alpha_j K(t_k - t_j) = v_k, \quad \forall t_k \in T,$$

Interpolation with low-frequency kernel K

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$

where α is a vector of coefficients, and q is constrained to satisfy

$$q(t_k) = \sum_{t_j \in \mathcal{T}} \alpha_j K(t_k - t_j) = v_k, \quad \forall t_k \in \mathcal{T},$$

If K is a sinc function this is equivalent to a least squares construction

Interpolation with low-frequency kernel K

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$

where α is a vector of coefficients, and q is constrained to satisfy

$$q(t_k) = \sum_{t_j \in T} \alpha_j K(t_k - t_j) = v_k, \quad \forall t_k \in T,$$

If K is a sinc function this is equivalent to a least squares construction

Kernels with faster decay, such as the Fejér kernel or the Gaussian kernel [Kahane 2011], yield better results

Interpolation with low-frequency kernel K

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j),$$

where α is a vector of coefficients, and q is constrained to satisfy

$$q(t_k) = \sum_{t_j \in T} \alpha_j K(t_k - t_j) = v_k, \quad \forall t_k \in T,$$

If K is a sinc function this is equivalent to a least squares construction

Kernels with faster decay, such as the Fejér kernel or the Gaussian kernel [Kahane 2011], yield better results

However, this does **not** allow to construct a valid **continuous** dual polynomial

Adding a correction term

$$q(t) = \sum_{t_j \in T} \alpha_j K(t-t_j) + \beta_j K'(t-t_j)$$

and an extra constraint

$$q(t_k) = v_k, \qquad q'(t_k) = 0, \quad \forall t_k \in T$$

forces |q| to reach a local maximum at each element of T

Adding a correction term

$$q(t) = \sum_{t_j \in T} \alpha_j K(t - t_j) + \beta_j K'(t - t_j)$$

and an extra constraint

$$q(t_k) = v_k, \qquad q'(t_k) = 0, \quad \forall t_k \in T$$

forces |q| to reach a local maximum at each element of T

Choosing K to be the square of a Fejér kernel allows to show that

- ullet there exist lpha and eta satisfying the constraints
- |q| is strictly bounded by one on the off-support

Motivation

- 2 Sparsity is not enough
 - 3 Exact recovery by convex optimization

- 5 Numerical algorithms
- 6 Related work and conclusion

Super-resolution factor : spatial viewpoint

Super-resolution factor : spectral viewpoint

Super-resolution factor

$$SRF = rac{f}{f_c}$$

Noise model

$$\mathcal{F}_n x(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad |k| \le f_c$$

Noise model

$$\mathcal{F}_n x(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad |k| \le f_c$$

Noise can be modeled in the spectral domain

$$y = \mathcal{F}_n x + w$$

Noise model

$$\mathcal{F}_n x(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d}t), \quad |k| \le f_c$$

Noise can be modeled in the spectral domain

$$y = \mathcal{F}_n x + w$$

or spatial domain

$$s = \mathcal{F}_n^* y = \mathcal{P}_n x + z,$$

 \mathcal{P}_n projection onto the first *n* Fourier modes

Noise model

$$\mathcal{F}_n x(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d} t), \quad |k| \le f_c$$

Noise can be modeled in the spectral domain

$$y = \mathcal{F}_n x + w$$

or spatial domain

$$s = \mathcal{F}_n^* y = \mathcal{P}_n x + z,$$

 \mathcal{P}_n projection onto the first *n* Fourier modes Assumption :

$$||z||_{L_1} \le \delta$$

Noise model

$$\mathcal{F}_n x(k) = \int_0^1 e^{-i2\pi kt} x(\mathrm{d} t), \quad |k| \le f_c$$

Noise can be modeled in the spectral domain

$$y = \mathcal{F}_n x + w$$

or spatial domain

$$s = \mathcal{F}_n^* y = \mathcal{P}_n x + z,$$

 \mathcal{P}_n projection onto the first *n* Fourier modes Assumption :

$$||z||_{L_1} \le \delta$$

Recovery algorithm

$$\min_{\tilde{x}} \ ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad ||\mathcal{P}_n \tilde{x} - s||_{L_1} \leq \delta$$

Robust recovery

Let ϕ_{λ_c} be a kernel with width λ_c and cut-off frequency f_c If $||z||_{L_1} \leq \delta$, then

$$||\phi_{\lambda_{c}} * (x_{\mathsf{est}} - x)||_{L_{1}} \approx ||z||_{L_{1}} \leq \delta,$$

Robust recovery

Let ϕ_{λ_c} be a kernel with width λ_c and cut-off frequency f_c If $||z||_{L_1} \leq \delta$, then

$$||\phi_{\lambda_{c}} * (x_{\mathsf{est}} - x)||_{L_{1}} \approx ||z||_{L_{1}} \leq \delta,$$

What can we expect for ϕ_{λ_f} ?

Robust recovery

Let ϕ_{λ_c} be a kernel with width λ_c and cut-off frequency f_c If $||z||_{L_1} \leq \delta$, then

$$||\phi_{\lambda_c} * (x_{\mathsf{est}} - x)||_{L_1} \approx ||z||_{L_1} \leq \delta,$$

What can we expect for ϕ_{λ_f} ?

Theorem [Candès, F. 2012]

If $\Delta(T) \ge 2/f_c$ then the solution x_{est} to the TV-norm minimization problem satisfies

$$\left|\left|\phi_{\lambda_f} * (x_{\mathsf{est}} - x)\right|\right|_{L_1} \lesssim \operatorname{SRF}^2 \delta,$$

Motivation

- 2 Sparsity is not enough
 - 3 Exact recovery by convex optimization
- 4 Stability

6 Numerical algorithms

6 Related work and conclusion

Practical implementation

• TV norm minimization is an infinite-dimensional optimization problem

Practical implementation

TV norm minimization is an infinite-dimensional optimization problem
Primal :

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

First option : Discretize $x \Rightarrow \ell_1$ norm minimization

Practical implementation

TV norm minimization is an infinite-dimensional optimization problem
Primal :

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{x} = y,$$

First option : Discretize $x \Rightarrow \ell_1$ norm minimization • Dual :

$$\max_{u\in\mathbb{C}^n} \, \operatorname{\mathsf{Re}}\left[y^*u\right] \quad \text{subject to} \quad \left|\left|\mathcal{F}_n^*\,u\right|\right|_\infty \leq 1,$$

Second option : Recast as semidefinite program

Semidefinite representation

$$||\mathcal{F}_n^* u||_{\infty} \leq 1$$

is equivalent to

There exists a Hermitian matrix $Q \in \mathbb{C}^{n imes n}$ such that

$$\begin{bmatrix} Q & u \\ u^* & 1 \end{bmatrix} \succeq 0, \qquad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1, & j = 0, \\ 0, & j = 1, 2, \dots, n-1. \end{cases}$$

Support detection

By strong duality, $\mathcal{F}_n^* \hat{u}$ interpolates the sign of \hat{x}

Experiment

Support recovery by solving the SDP

f _c	25	50	75	100
Average error	6.6610^{-9}	$1.70 \ 10^{-9}$	5.5810^{-10}	$2.96 \ 10^{-10}$
Maximum error	1.8310^{-7}	$8.14\ 10^{-8}$	$2.55 \ 10^{-8}$	2.3110^{-8}

For each f_c , 100 random signals with $|T| = f_c/4$ and $\Delta(T) \ge 2/f_c$

Motivation

- 2 Sparsity is not enough
 - 3 Exact recovery by convex optimization
 - 4 Stability
- 5 Numerical algorithms
- 6 Related work and conclusion

• Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by l₁ norm minimization [Donoho, Tanner; Fuchs 2005]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by l₁ norm minimization [Donoho, Tanner; Fuchs 2005]
- Recovery of lacunary Fourier series coefficients [Kahane 2011]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by ℓ_1 norm minimization [Donoho, Tanner; Fuchs 2005]
- Recovery of lacunary Fourier series coefficients [Kahane 2011]
- Finite rate of innovation [Dragotti, Vetterli, Blu 2007]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by ℓ_1 norm minimization [Donoho, Tanner; Fuchs 2005]
- Recovery of lacunary Fourier series coefficients [Kahane 2011]
- Finite rate of innovation [Dragotti, Vetterli, Blu 2007]
- Bounds on the modulus of continuity of super-resolution [Donoho 1992]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by ℓ_1 norm minimization [Donoho, Tanner; Fuchs 2005]
- Recovery of lacunary Fourier series coefficients [Kahane 2011]
- Finite rate of innovation [Dragotti, Vetterli, Blu 2007]
- Bounds on the modulus of continuity of super-resolution [Donoho 1992]
- Super-resolution by greedy methods [Fannjiang, Liao 2012]

- Super-resolution of spike trains by ℓ_1 norm minimization in seismic prospecting [Claerbout, Muir 1973; Levy, Fullagar 1981; Santosa, Symes 1986]
- Guarantees on recovery of positive k-sparse signals from 2k + 1 Fourier coefficients by ℓ_1 norm minimization [Donoho, Tanner; Fuchs 2005]
- Recovery of lacunary Fourier series coefficients [Kahane 2011]
- Finite rate of innovation [Dragotti, Vetterli, Blu 2007]
- Bounds on the modulus of continuity of super-resolution [Donoho 1992]
- Super-resolution by greedy methods [Fannjiang, Liao 2012]
- Random undersampling of low-frequency coefficients [Tang et al 2012]
Conclusion

Stable super-resolution is possible via tractable non-parametric methods based on convex optimization

Note on single-molecule imaging : Joint work with E. Candès, V. Morgenshtern and the Moerner lab at Stanford

Thank you

