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Deconvolution in seismology



Seismology




Reflection seismology

Geological section Acoustic impedance  Reflection coefficients
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Reflection seismology

Sensing Ref. coeft. Pulse Data

Data & convolution of pulse and reflection coefficients



Sensing model for reflection seismology

Ref. coeff. Pulse Data

Spectrum

Convolution in time = Pointwise multiplication in frequency

lll-posed problem! How do we choose between signals consistent with data?



Geophysicists: Minimize 1 norm

Deconvolution with the 81 norm GEOPHYSICS, VOL. 44, NO. 1 (JANUARY 1979)
Howard L. Taylor,* Stephen C. Banks,* and John F. McCoy§

LINEAR INVERSION OF BAND-LIMITED g\ 1 sci Srar. CoMpuT.
REFLECTION SEISMOGRAMS* Vol. 7, No. 4, October 1986

FADIL SANTOSAt AnpD WILLIAM W. SYMES#

Reconstruction of a sparse spike train from a portion of its
spectrum and application to high-resolution deconvolution

Shlomo Levy* and Peter K. Fullagar:

GEOPHYSICS, VOL. 46, NO, % (SEPTEMBER 1981

ROBUST MODELING WITH ERRATIC DATA{ GEOPHYSICS, VOL. 38, NO. 5 (OCTOBER 1973)

JON F. CLAERBOUT® AND FRANCIS MUIR}



Minimum /¢1-norm estimate

minimize ||estimate]|,

subject to estimate * pulse = data



Minimum /¢1-norm estimate

minimize ||estimate]|,
subject to estimate * pulse = data
Reflection coefficients Estimate

It works, but under what conditions?



Compressed sensing



Magnetic resonance imaging




Images are sparse/compressible

Wavelet coefficients




Magnetic resonance imaging

Data: Samples from spectrum
Problem: Sampling is time consuming (annoying, patient might move)
Images are compressible (= sparse)

Can we recover compressible signals from less data?



Compressed sensing

1. Undersample the spectrum randomly

1D 2D




Compressed sensing

2. Solve the optimization problem

minimize ||estimate]|,

subject to frequency samples of estimate = data



Compressed sensing

2. Solve the optimization problem

minimize ||estimate]|,

subject to frequency samples of estimate = data

Signal Estimate




Compressed sensing in MRI

x2 Undersampling




Theoretical questions

1. Is the problem well posed?

2. Does ¢1-norm minimization work?



Is the problem well posed?

_ Spectrum
of x




Is the problem well posed?

— Spectrum
of x

Measurement operator = random frequency samples



Is the problem well posed?




Is the problem well posed?

n

What is the effect of the measurement operator on sparse vectors?




Is the problem well posed?
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Are sparse submatrices always well conditioned?




Is the problem well posed?

........

Are sparse submatrices always well conditioned?



Restricted isometry property (RIP)

An m x n matrix A satisfy the restricted isometry property if there is
0 < 0 < 1 such that for any s-sparse vector x

(1 =0) [Ixll, < [lAx]ly < (1 +6) [Ix[l

Random Fourier matrices satisfy the RIP with high probability
if m> O (s) up to log factors (Candés, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, xo

ly2 =xlla 2 (1 = 9) lIx2 = xall



Theoretical questions

1. Is the problem well posed?

2. Does ¢1-norm minimization work?



Characterizing the minimum ¢;-norm estimate

» Aim: Show that the original signal x is the solution of

minimize ’ ‘x” ’1

subjectto  Ax' =y

» This is guaranteed by the existence of a dual certificate



Dual certificate

v € R™ is a dual certificate associated to x if
g =A"v
satisfies

qi = sign (x;) if x; 20
’C]," <1 if ;=0



Dual certificate

g is a subgradient of the ¢; norm at x

For any x + h such that Ah =0

.
[Ix+hlly 2 [Ix][, +q"h
=[xl + v Ah

= [IxIly

If AT (where T is the support of x) is injective, x is the unique solution



Dual certificate for compressed sensing

Aim: Show that a dual certificate exists for any sparse support
and sign pattern



Certificate for compressed sensing

Idea: Minimum-energy interpolator has closed-form solution



Certificate for compressed sensing

Valid certificate if m > O (s) up to log factors
(Candés, Romberg, Tao 2006)



Back to deconvolution: the super-resolution problem



Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

L

W

5(t—1) optical system h(t —7)

Diffraction imposes a fundamental limit on the resolution of optical systems



Fluorescence microscopy

Data

Point sources Low-pass blur

(Figures courtesy of V. Morgenshtern)



Super-resolution

» Optics: Data-acquisition techniques to overcome the diffraction limit

» Image processing: Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

» This talk: Estimation/deconvolution from low-pass measurements



Sensing model for super-resolution

Point-spread

. Data
function

Point sources

Spectrum X =

Deconvolution problem as in reflection seismology



Minimum /¢1-norm estimate

minimize ||estimate]|,

subject to estimate * psf = data



Minimum /¢1-norm estimate

minimize ||estimate]|,

subject to estimate * psf = data

Point sources Estimate




Mathematical model

» Signal: superposition of Dirac measures with support T

X:Zajétj aje(i, tJ'ETC[O,l]
J

» Data: low-pass Fourier coefficients with cut-off frequency f.
y=JFcx

1
y(k) = / e 2T (db) =) _aje ™, ke Z [k <K
0 .
J



Compressed sensing vs super-resolution

Compressed sensing Super-resolution

mn

spectrum interpolation spectrum extrapolation




Total-variation norm

v

Continuous counterpart of the £; norm

If x = ZJ- ajoy; then [|x||1, = Zj |3l

Not the total variation of a piecewise-constant function

v

v

v

Formal definition: For a complex measure v
o0
1llry =sup Y [v(B))l,
j=1

(supremum over all finite partitions B; of [0, 1])



Theoretical questions

1. Is the problem well posed?

2. Does TV-norm minimization work?



Is the problem well posed?

_ Spectrum
of x




Is the problem well posed?

Measurement operator = low-pass samples with cut-off frequency .



Is the problem well posed?

Measurement operator = low-pass samples with cut-off frequency .



Is the problem well posed?

Effect of measurement operator on sparse vectors?



Is the problem well posed?

.

Submatrix can be very ill conditioned!



Is the problem well posed?

..

If support is spread out there is hope



Minimum separation

The minimum separation A of the support of x is

A= |t —t']

inf
(t,t') € support(x): t#£t’




Conditioning of submatrix with respect to A

» If A < 1/f the problem is ill posed
» If A > 1/f. the problem becomes well posed
» Proved asymptotically by Slepian and non-asymptotically by Moitra

Rayleigh resolution distance

1/f. is the diameter of the main lobe of the point-spread function

(twice the Rayleigh distance)



Lower bound on A

» Above what minimum distance A is the problem well posed?
» Numerical lower bound on A:

1. Compute singular values of restricted operator for different values of
Agife

2. Find Agisr under which the restricted operator is ill conditioned

3. Then A > 2Aqis




Singular values of the restricted operator

Number of spikes = s, f. = 103
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Singular values of the restricted operator

Number of spikes = s, f. = 103
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Phase transition at Agis = 1/2f. — A = 1/f,




Example: 25 spikes, f. = 103, A = 0.8/,
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Example: 25 spikes, f. = 103, A = 0.8/,
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Example: 25 spikes, f. = 103, A = 0.8/,

The difference is almost in the null space of the measurement operator

100 |- )
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Difference Spectrum



Theoretical questions

1. Is the problem well posed?

2. Does TV-norm minimization work?



Estimation via convex programming

For data of the form y = F. x, we solve
min ||X||;y subject to Fcx =y,
X

over all finite complex measures X supported on [0, 1]



Dual certificate of TV norm

A dual certificate of the TV norm at
x:Zajétj aJ'E(C,tJ'ET
J

guarantees that x is the unique solution if

q:= ]:: v = Z Vkei27rkt
k<|fel

q (tj) = sign (a;) iftieT

g (8)] < 1 ifte T

Range of F} is spanned by low pass sinusoids instead of random sinusoids



Certificate for super-resolution

Aim: Interpolate sign pattern



Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

q(t) =Y ajK(t—1t)

tjET



Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

q(t) =Y ajK(t—1t)

tjET
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Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K
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Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

q(t) =Y ajK(t—1t)

tjET



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

ZO‘J 7)) + B K (t—t))

teT



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

ZO‘J 7)) + B K (t—t))

teT



Certificate for super-resolution

Similar construction for bandpass point-spread
functions relevant to reflection seismology



Sketch of proof: Interpolation kernel

Key step: Designing a good interpolation kernel

0.273 1. 0.36 1. 0.367 f. fe

Trade-off between spikiness at the origin and asymptotic decay




Sketch of proof: Non-asymptotic bounds on kernel

Kernel 1st derivative

2nd derivative 3rd derivative

= Kernel (f.=10%) ¢ Kernel (f.=510%) X Kernel (f.=10%)
we= Upper bound m Lower bound



Guarantees for super-resolution

Theorem [Candés, F. 2012]
If the minimum separation of the signal support obeys
A>2/f

then recovery via convex programming is exact

Theorem [Candés, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

A >238/f.

where f. is the cut-off frequency of the low-pass kernel



Guarantees for super-resolution

Theorem [F. 2016]
If the minimum separation of the signal support obeys
A > 1.26 /f,,

then recovery via convex programming is exact

Theorem [Candés, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

A >238/f.

where f. is the cut-off frequency of the low-pass kernel



Numerical evaluation of minimum separation
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Conjecture: TV-norm minimization succeeds if A > %c



Dual certificate as theoretical tool

Subsequent work builds on our construction to analyze

>

Stability of super-resolution [Candes, F. 2013], [F. 2013], [Azais, De
Castro, Gamboa 2013], [Duval, Peyré 2013]

Denoising of line spectra [Tang, Bhaskar, Recht 2013]
Compressed sensing off the grid [Tang, Bhaskar, Shah, Recht 2013]

Recovery of splines from their projection onto spaces of algebraic
polynomials [Bendory, Dekel, Feuer 2013], [De Castro, Mijoule 2014]

Recovery of point sources from spherical harmonics [Bendory, Dekel,
Feuer 2013]



Super-resolution via semidefinite programming



Practical implementation

» Primal problem:

min ||X||ty subjectto Fcx =y
X

Infinite-dimensional variable X (measure in [0, 1])

First option: Discretizing + £1-norm minimization



Practical implementation

» Primal problem:
m;in ||X|[fy subjectto F.x=y
Infinite-dimensional variable X (measure in [0, 1])
First option: Discretizing + £1-norm minimization
» Dual problem:

max Re[y*0] subjectto [|Fld|| <1, n:=2f+1
oeCn

Finite-dimensional variable &, but infinite-dimensional constraint

f: - Z akel27Tkt
k<|fc|

Second option: Solving the dual problem



Lemma: Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

IF2 ]l <1
is equivalent to

There exists a Hermitian matrix Q@ € C"™*" such that
Q 1, j=o,
[a* 1| = 0, Zl Qiitj =
=

0, j=1,2,...,n—1.

Consequence: The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution?

Dual solution vector: Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea: Use the polynomial to locate the support of the signal



Super-resolution via semidefinite programming




Super-resolution via semidefinite programming
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Super-resolution via semidefinite programming

W

1. Solve semidefinite program to obtain dual solution




Super-resolution via semidefinite programming

2. Locate points at which corresponding polynomial has unit magnitude



Super-resolution via semidefinite programming

®
e Signal x Estimate

3. Estimate amplitudes via least squares



Support-location accuracy

fe 25 50 75 100

Average error | 6.66107° | 1.70107° | 55810719 | 2.9610~%°

Maximum error | 1.831077 | 8.1410°8 | 2.5510°8 | 2.3110°8

For each f., 100 random signals with | T| = f./4 and A(T) > 2/f.



Demixing of sines and spikes



Spectral super-resolution

» Signal: Multisinusoidal signal

g(t) — Z Cje—i27nf,-t

fieT

£=2_ 9%

fieT

» Data: n samples measured at Nyquist rate

g (k) = Z (:je_"2”k'5', 1<k<n
feT

Equivalent to our super-resolution model!



pppppp
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Demixing of sines and spikes

Aim: Super-resolving the spectrum of a multi-sinusoidal signal (sines)
in the presence of impulsive events (spikes)

y=Fcx+s



Demixing of sines and spikes

Sines

[\VV/\{\’\/\M[\ [\W/\
AN

Spectrum T'—L’—




Demixing of sines and spikes

Sines

Spectrum




Demixing of sines and spikes

Sines

iy

Spectrum




Demixing of sines and spikes

Spectrum

Sines

Spikes

iy




Demixing of sines and spikes

Spectrum

Sines

Spikes

Data

iy




Demixing of sines and spikes

Estimator: Solution to

min ||X||;y + 7 |[5]]; subjectto Fcx+5=y
%,3
Dual problem:

[n:?cx Re[y*@] subjectto ||F0||l <1, ||bfl, <~
ueCn



Demixing of sines and spikes

Estimator: Solution to

min ||X||1y + 7 |[5]]; subjectto Fex +5=y
%,3

Dual problem:

max Re[y*] subjectto |12l <1, 7]l <+
ueCn
Dual solution: &

> ii interpolates the sign of the primal solution §

» F} i interpolates the sign of the primal solution %



Demixing of sines and spikes

=)
K,.]

*
)

Dual
solution




Demixing of sines and spikes

Dual
solution

Estimate

=

B
[

® X x X

Sines (spectrum)



Conclusion

» Geophysicists pioneered the use of ¢1-norm regularization for
underdetermined inverse problems

» Mathematicians and statisticians developed theoretical tools to
understand compressed sensing

» Adapting these insights allows to analyze the potential and limitations
of convex programming for super-resolution



Deconvolution with the ¢1 norm (Taylor, Banks, McCoy '79)
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