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Seismology



Reflection seismology

Geological section Acoustic impedance Reflection coefficients



Reflection seismology

Sensing Ref. coeff. Pulse Data

Data ≈ convolution of pulse and reflection coefficients



Sensing model for reflection seismology

Ref. coeff. Pulse Data

∗ =

Spectrum × =

Convolution in time = Pointwise multiplication in frequency

Ill-posed problem! How do we choose between signals consistent with data?



Geophysicists: Minimize `1 norm



Minimum `1-norm estimate

minimize ||estimate||1
subject to estimate ∗ pulse = data

Reflection coefficients Estimate

It works, but under what conditions?
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Magnetic resonance imaging



Images are sparse/compressible

Wavelet coefficients



Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, patient might move)

Images are compressible (≈ sparse)

Can we recover compressible signals from less data?



Compressed sensing

1. Undersample the spectrum randomly

1D 2D

Data



Compressed sensing

2. Solve the optimization problem

minimize ||estimate||1
subject to frequency samples of estimate = data

Signal Estimate
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Compressed sensing in MRI

x2 Undersampling



Theoretical questions

1. Is the problem well posed?

2. Does `1-norm minimization work?
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Restricted isometry property (RIP)

An m × n matrix A satisfy the restricted isometry property if there is
0 < δ < 1 such that for any s-sparse vector x

(1− δ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + δ) ||x ||2

Random Fourier matrices satisfy the RIP with high probability
if m ≥ O (s) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, x2

||y2 − y1||2 ≥ (1− δ) ||x2 − x1||2



Theoretical questions

1. Is the problem well posed?

2. Does `1-norm minimization work?



Characterizing the minimum `1-norm estimate

I Aim: Show that the original signal x is the solution of

minimize
∣∣∣∣x ′∣∣∣∣1

subject to A x ′ = y

I This is guaranteed by the existence of a dual certificate



Dual certificate

v ∈ Rm is a dual certificate associated to x if

q := AT v

satisfies

qi = sign (xi ) if xi 6= 0
|qi | < 1 if xi = 0



Dual certificate

q is a subgradient of the `1 norm at x

For any x + h such that Ah = 0

||x + h||1 ≥ ||x ||1 + qTh

= ||x ||1 + vTAh
= ||x ||1

If AT (where T is the support of x) is injective, x is the unique solution



Dual certificate for compressed sensing

Aim: Show that a dual certificate exists for any sparse support
and sign pattern



Certificate for compressed sensing

Idea: Minimum-energy interpolator has closed-form solution



Certificate for compressed sensing

Valid certificate if m ≥ O (s) up to log factors

(Candès, Romberg, Tao 2006)
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Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Fluorescence microscopy

Data

Point sources Low-pass blur

(Figures courtesy of V. Morgenshtern)



Super-resolution

I Optics: Data-acquisition techniques to overcome the diffraction limit

I Image processing: Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

I This talk: Estimation/deconvolution from low-pass measurements



Sensing model for super-resolution

Point sources
Point-spread
function

Data

∗ =

Spectrum × =

Deconvolution problem as in reflection seismology



Minimum `1-norm estimate

minimize ||estimate||1
subject to estimate ∗ psf = data

Point sources Estimate
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Mathematical model

I Signal: superposition of Dirac measures with support T

x =
∑

j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Data: low-pass Fourier coefficients with cut-off frequency fc

y = Fc x

y(k) =

∫ 1

0
e−i2πktx (dt) =

∑
j

aje−i2πktj , k ∈ Z, |k | ≤ fc



Compressed sensing vs super-resolution

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function

I Formal definition: For a complex measure ν

||ν||TV = sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])



Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?
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Is the problem well posed?
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Effect of measurement operator on sparse vectors?



Is the problem well posed?

=
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Spectrum
of x

Submatrix can be very ill conditioned!



Is the problem well posed?

=

=

Spectrum
of x

If support is spread out there is hope



Minimum separation

The minimum separation ∆ of the support of x is

∆ = inf
(t,t′) ∈ support(x) : t 6=t′

|t − t ′|



Conditioning of submatrix with respect to ∆

I If ∆ < 1/fc the problem is ill posed
I If ∆ > 1/fc the problem becomes well posed
I Proved asymptotically by Slepian and non-asymptotically by Moitra

1/fc is the diameter of the main lobe of the point-spread function
(twice the Rayleigh distance)



Lower bound on ∆

I Above what minimum distance ∆ is the problem well posed?

I Numerical lower bound on ∆:

1. Compute singular values of restricted operator for different values of
∆diff

2. Find ∆diff under which the restricted operator is ill conditioned

3. Then ∆ ≥ 2∆diff

Fc



Singular values of the restricted operator

Number of spikes = s, fc = 103
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc

The difference is almost in the null space of the measurement operator
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Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Estimation via convex programming

For data of the form y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]



Dual certificate of TV norm

A dual certificate of the TV norm at

x =
∑

j

ajδtj aj ∈ C, tj ∈ T

guarantees that x is the unique solution if

q := F∗c v =
∑

k≤|fc |
vke i2πkt

q (tj) = sign (aj) if tj ∈ T

|q (t)| < 1 if t /∈ T

Range of F∗c is spanned by low pass sinusoids instead of random sinusoids



Certificate for super-resolution

1

0

−1

Aim: Interpolate sign pattern



Certificate for super-resolution
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1st idea: Interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αj K (t − tj)
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Certificate for super-resolution

1

0
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1
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−1

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

q(t) =
∑
tj∈T

αj K (t − tj) + βj K ′ (t − tj)
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Certificate for super-resolution
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Certificate for super-resolution

1
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1
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−1

Similar construction for bandpass point-spread
functions relevant to reflection seismology



Sketch of proof: Interpolation kernel

Key step: Designing a good interpolation kernel

· · =

0.273 fc 0.36 fc 0.367 fc fc

∗ ∗ =

Trade-off between spikiness at the origin and asymptotic decay



Sketch of proof: Non-asymptotic bounds on kernel

Kernel

Kernel

1st derivative

1st derivative

2nd derivative

2nd derivative
3rd derivative

3rd derivative

Kernel (fc = 103) Kernel (fc = 5 103) Kernel (fc = 104)
Upper bound Lower bound

Figure 1: Upper and lower bounds on K� and its derivatives.

1



Guarantees for super-resolution

Theorem [Candès, F. 2012]

If the minimum separation of the signal support obeys

∆ ≥ 2 /fc

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Guarantees for super-resolution

Theorem [F. 2016]

If the minimum separation of the signal support obeys

∆ ≥ 1.26 /fc ,

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Numerical evaluation of minimum separation
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Dual certificate as theoretical tool

Subsequent work builds on our construction to analyze
I Stability of super-resolution [Candès, F. 2013], [F. 2013], [Azais, De

Castro, Gamboa 2013], [Duval, Peyré 2013]
I Denoising of line spectra [Tang, Bhaskar, Recht 2013]
I Compressed sensing off the grid [Tang, Bhaskar, Shah, Recht 2013]
I Recovery of splines from their projection onto spaces of algebraic

polynomials [Bendory, Dekel, Feuer 2013], [De Castro, Mijoule 2014]
I Recovery of point sources from spherical harmonics [Bendory, Dekel,

Feuer 2013]



Deconvolution in seismology

Compressed sensing

Back to deconvolution: the super-resolution problem

Super-resolution via semidefinite programming

Demixing of sines and spikes



Practical implementation

I Primal problem:

min
x̃
||x̃ ||TV subject to Fc x̃ = y

Infinite-dimensional variable x̃ (measure in [0, 1])

First option: Discretizing + `1-norm minimization

I Dual problem:

max
ũ∈Cn

Re [y∗ũ] subject to ||F∗c ũ||∞ ≤ 1, n := 2fc + 1

Finite-dimensional variable ũ, but infinite-dimensional constraint

F∗c ũ =
∑

k≤|fc |
ũke i2πkt

Second option: Solving the dual problem
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∑

k≤|fc |
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Lemma: Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

||F∗c ũ||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q ũ
ũ∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,
0, j = 1, 2, . . . , n − 1.

Consequence: The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution?

Dual solution vector: Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea: Use the polynomial to locate the support of the signal



Super-resolution via semidefinite programming
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Super-resolution via semidefinite programming

1. Solve semidefinite program to obtain dual solution



Super-resolution via semidefinite programming

2. Locate points at which corresponding polynomial has unit magnitude



Super-resolution via semidefinite programming

Signal Estimate

3. Estimate amplitudes via least squares



Support-location accuracy

fc 25 50 75 100

Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

For each fc , 100 random signals with |T | = fc/4 and ∆(T ) ≥ 2/fc
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Spectral super-resolution

I Signal: Multisinusoidal signal

g (t) :=
∑
fj∈T

cje−i2πfj t

ĝ =
∑
fj∈T

cjδfj

I Data: n samples measured at Nyquist rate

g (k) :=
∑
fj∈T

cje−i2πkfj , 1 ≤ k ≤ n

Equivalent to our super-resolution model!



Spectral Super-resolution

Spectrum

Signal

Data



Demixing of sines and spikes

Aim: Super-resolving the spectrum of a multi-sinusoidal signal (sines)
in the presence of impulsive events (spikes)

y = Fc x + s



Demixing of sines and spikes

Sines

+ =

Spectrum

+ =

x

+ s = y
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Demixing of sines and spikes

Sines Spikes

+

=

Spectrum +

=

Fc x + s

= y



Demixing of sines and spikes

Sines Spikes Data

+ =

Spectrum + =

Fc x + s = y



Demixing of sines and spikes

Estimator: Solution to

min
x̃ , s̃
||x̃ ||TV + γ ||s̃||1 subject to Fc x̃ + s̃ = y

Dual problem:

max
ũ∈Cn

Re [y∗ũ] subject to ||F∗c ũ||∞ ≤ 1, ||ũ||∞ ≤ γ

Dual solution: û
I û interpolates the sign of the primal solution ŝ
I F∗c û interpolates the sign of the primal solution x̂
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Dual solution: û
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Conclusion

I Geophysicists pioneered the use of `1-norm regularization for
underdetermined inverse problems

I Mathematicians and statisticians developed theoretical tools to
understand compressed sensing

I Adapting these insights allows to analyze the potential and limitations
of convex programming for super-resolution



Deconvolution with the `1 norm (Taylor, Banks, McCoy ’79)

Data

Fit

Pulse

Estimate
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