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Voting in the House of Representatives (1984)

Affiliation Vote 1 Vote 2 Vote 3 . . . Vote 16

Republican No Yes No . . . Yes

Democrat Yes Yes Yes . . . –

Republican No – No . . . Yes

Democrat No Yes Yes . . . No

Democrat Yes Yes Yes . . . No

??? Yes Yes – . . . No

??? No Yes No . . . No



Probabilistic modeling

Probability enables us to quantify uncertainty

How likely is someone to be a democrat?

How likely is someone to vote Yes in Vote 3?

How likely is someone to vote Yes in Vote 3 if they are a republican?



Challenges

How to estimate probabilities from data

How to combine them to make predictions



Random variable

Mathematical objects that model uncertain quantities

A random variable X has a set of possible outcomes

Examples

I Affiliation. Outcomes: Democrat or Republican
I Vote 1. Outcomes: Yes or No



Probability

Maps outcomes to a number between 0 and 1

The probability of an outcome quantifies how likely it is



Estimating probabilities

P (Affiliation = Democrat) =

#Democrats
Total

=
267
435

= 0.614
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Properties of probability

Probability is nonnegative, like mass or length
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Multiple random variables

We can consider several random variables at the same time
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#R and Yes
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Chain rule

P (X = A and Y = B) = P (X = A)P (Y = B |X = A)

Proof:

P (X = A)P (Y = B |X = A) =
#X = A
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· # Y = B and X = A
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# Y = B and X = A
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Predicting affiliation

Affiliation Vote 1 Vote 2 Vote 3 . . . Vote 16
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Predicting affiliation

Goal: Compute probability of Affiliation conditioned on Votes

By the chain rule

P (Aff = R | V1 = Y and V2 = Y and . . . V16 = N)

=
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P (V1 = Y and V2 = Y and . . . V16 = N)

Problem: How do we estimate these probabilities?
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If knowing that X = A happened does not affect how likely it is
that Y = B then X and Y are independent

P (Y = B |X = A) = P (Y = B)
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Independence

If votes are independent

P (V1 = Y and V2 = Y and . . . V16 = N)
= P (V1 = Y )P (V2 = Y ) . . .P (V16 = N)
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P (Vote 4= Yes and Vote 11 = Yes) = 0.378
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Conditional probability of YES given affiliation

V1 V2 V3 V4 V5 V6 V7 V8

R 0.19 0.50 0.14 0.99 0.95 0.90 0.24 0.15

D 0.61 0.50 0.89 0.05 0.22 0.47 0.78 0.83

V9 V10 V11 V12 V13 V14 V15 V16

R 0.11 0.55 0.14 0.87 0.86 0.98 0.09 0.66

D 0.76 0.47 0.51 0.15 0.29 0.35 0.64 0.94
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Error

V1 V2 V3 V4 V5 V6 V7 V8

R 0.19 0.50 0.14 0.99 0.95 0.90 0.24 0.15

D 0.61 0.50 0.89 0.05 0.22 0.47 0.78 0.83

E Y Y – Y Y Y N N

V9 V10 V11 V12 V13 V14 V15 V16

R 0.11 0.55 0.14 0.87 0.86 0.98 0.09 0.66

D 0.76 0.47 0.51 0.15 0.29 0.35 0.64 0.94

E Y N Y – Y Y N N


