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Voting in the House of Representatives (1984)

Affiliation | Vote 1 | Vote 2 | Vote 3 Vote 16
Republican No Yes No Yes
Democrat Yes Yes Yes -
Republican No - No Yes
Democrat No Yes Yes No
Democrat Yes Yes Yes No
77 Yes Yes - No
"7 No Yes No No




Probabilistic modeling

Probability enables us to quantify uncertainty
How likely is someone to be a democrat?
How likely is someone to vote Yes in Vote 37

How likely is someone to vote Yes in Vote 3 if they are a republican?



Challenges

How to estimate probabilities from data

How to combine them to make predictions



Random variable

Mathematical objects that model uncertain quantities
A random variable X has a set of possible outcomes

Examples

» Affiliation. Outcomes: Democrat or Republican
» Vote 1. Outcomes: Yes or No



Probability

Maps outcomes to a number between 0 and 1

The probability of an outcome quantifies how likely it is



Estimating probabilities

P (Affiliation = Democrat) =



Estimating probabilities

: D .
P (Affiliation = Democrat) = #Democrats



Estimating probabilities

. D .
P (Affiliation = Democrat) = %



Estimating probabilities

#Democrats

Total

267
=0.614
T 435
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Estimating probabilities

P (Vote 1 = Yes) = ——



Estimating probabilities

Y
P (Vote 1 = Yes) = #Yes




Estimating probabilities

#Yes

P (Vote 1 = Yes) = Total



Estimating probabilities

Y
P (Vote 1 = Yes) = %

187
= 20 = 0.442
123~ 0



Properties of probability

Probability is nonnegative, like mass or length
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Properties of probability

The probability of all possible outcomes adds to one

Ye N
P (Vote 1 = Yes) + P (Vote 1 = No) = #I'o;sl z?fotZI
_ Total
~ Total
=1

Not like mass or length!




Multiple random variables

We can consider several random variables at the same time

P (Affiliation = R and Vote 1 = Yes) =



Multiple random variables

We can consider several random variables at the same time

R and Y
P (Affiliation = R and Vote 1 = Yes) = #R and Yes
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Multiple random variables

We can consider several random variables at the same time

P (Affiliation = R and Vote 1 = Yes) = W
31



Conditional probability

Quantifies uncertainty if we have partial information

P (Vote 1 = Yes | Affiliation =R ) =
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Conditional probability

Quantifies uncertainty if we have partial information

#Yes and R
# R
31

=—=01
168 0.185

P (Vote 1 = Yes | Affiliation =R ) =



Chain rule

P(X=Aand Y =B)=P(X=A)P(Y =B|X = A)
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Chain rule

P(X=Aand Y =B)=P(X=A)P(Y =B|X = A)

Proof:

P(X:A)P(Y:B|X:A):#X:A.#YZBandX:A

Total #X = A



Chain rule

P(X=Aand Y =B)=P(X=A)P(Y =B|X = A)

Proof:

#X=A #Y=Band X=A
PX=APY=58]X=4)= Total #X =A

_#Y=Band X =A
N Total




Chain rule

P(X=Aand Y =B)=P(X=A)P(Y =B|X = A)

Proof:

UX =A #Y=Band X =A
P(X=AP(Y=B|X=A)= Toral X = A
_#Y=Band X =A
N Total
=P(X=Aand Y =B)




Predicting affiliation

Affiliation | Vote 1 | Vote 2 | Vote 3 Vote 16
Republican No Yes No Yes
Democrat Yes Yes Yes -
Republican No - No Yes
Democrat No Yes Yes No
Democrat Yes Yes Yes No
77 Yes Yes - No
"7 No Yes No No




Predicting affiliation

Goal: Compute probability of Affiliation conditioned on Votes

By the chain rule

P(Aff=R|Vl=Yand V2=Y and...V16 = N)
_ P(Aff=RandVl=Yand V2=Y and ... V16 = N)

N P(Vl=Yand V2=Y and...V16 = N)



Predicting affiliation

Goal: Compute probability of Affiliation conditioned on Votes

By the chain rule

P(Aff=R|Vl=Yand V2=Y and...V16 = N)
_ P(Aff=RandVl=Yand V2=Y and ... V16 = N)

N P(Vl=Yand V2=Y and...V16 = N)

Problem: How do we estimate these probabilities?
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Predicting affiliation

P(Vli=Yand V2 =Y and...V16 = N)

_ #V1l=YandV2=Yand...Vi6 =N
B Total

= mostly 0...

Problem: Many different possibilities! (21° = 65,536)
There's only 435 politicians...

Most politicians have unique sequence of votes (304 out of 435)



Independence

If knowing that X = A happened does not affect how likely it is
that Y = B then X and Y are independent

P(Y=B|X=A)=P(Y =B)
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Independence

If knowing that X = A happened does not affect how likely it is
that Y = B then X and Y are independent

P(Y=B|X=A)=P(Y =B)

In that case

P(X=Aand Y =B) =P (X =A)P(Y = B|X = A)
=P(X=A)P(Y=8)



Independence

If votes are independent

P(Vli=Yand V2=Y and ...V16 = N)
—P(V1=Y)P(V2=Y)...P(V16 = N)



Are votes independent?

P (Vote 4= Yes) = 0.505
P (Vote 11 = Yes) = 0.423

P (Vote 4= Yes and Vote 11 = Yes) = 0.378
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Are votes independent?

P (Vote 4= Yes) = 0.505
P (Vote 11 = Yes) = 0.423
P (Vote 4= Yes and Vote 11 = Yes) = 0.378

P (Vote 4= Yes) P (Vote 11 = Yes) = 0.214



Chain rule

P(X=AandY=B|Z=C)=P(X=A|Z=C)P(Y =B |X=A and Z=()



Chain rule

PX=AandY =B |Z=C)=P(X=A|Z=C)P(Y =B | X=A and Z=C)
Proof:
P(X=A|Z=C)P(Y =B | X=A and Z=()
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Chain rule
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Proof:
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Chain rule

PX=AandY =B |Z=C)=P(X=A|Z=C)P(Y =B | X=A and Z=C)
Proof:

P(X=A|Z=C)P(Y =B | X=A and Z=()
_ #X=AandZ=C #Y=BandX=Aand Z=C

#Z=C #X=Aand Z=C
_#Y=BadX=AandZ=C
- #Z=C

—P(X=AandY=B|Z=0()



Conditional independence

If knowing that X = A happened does not affect how likely it is
that Y = B if Z = C, then X and Y are independent
conditioned on Z = C

P(Y=B|X=AandZ=C)=P(Y=B|Z=C)
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Conditional independence

If knowing that X = A happened does not affect how likely it is
that Y = B if Z = C, then X and Y are independent
conditioned on Z = C

P(Y=B|X=AandZ=C)=P(Y=B|Z=C)

In that case

P (X=A and Y=B | Z=C) =P (X = A| Z = C)P (Y=B | X=A and Z=C)
—P(X=A|Z=C)P(Y=B|Z=0()



Conditional independence

If votes are conditionally independent given affiliation

P(Vl1=Yand V2=Y and ...V16 = N | Aff = R)
=P(Vl1=Y|Aff=R)P(V2 =Y | Aff=R)...P (V16 = N | Aff = R)

P(Vli=Yand V2 =Y and ...V16 = N | Aff = D)
=P(V1i=Y|Aff=D)P(V2=Y | Aff=D)...P(V16 = N | Aff = D)
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P (Vote 4= Yes and Vote 11 = Yes| Aff = R) = 0.851
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Are votes conditionally independent?

P (Vote 4= Yes | Aff = D) = 0.216
P (Vote 11 = Yes| Aff = D) = 0.145
P (Vote 4= Yes and Vote 11 = Yes| Aff = D) = 0.075

P (Vote 4= Yes | Aff = D) P (Vote 11 = Yes | Aff = D) = 0.031



Conditional probability of YES given affiliation

V1

V2

V3

Va4

V5

Vo6

V7

V8

0.19
D | 0.61

0.50
0.50

0.14
0.89

0.99
0.05

0.95
0.22

0.90
0.47

0.24
0.78

0.15
0.83

V9

V10

V11

V12

V13

V14

V15

V16

0.11
D | 0.76

0.55
0.47

0.14
0.51

0.87
0.15

0.86
0.29

0.98
0.35

0.09
0.64

0.66
0.94




Predicting affiliation

By the chain rule

P(Aff=R|Vl=Yand V2=Y and...V16 = N)
_ P(Aff=RandVl=VYand V2=Yand...V16 = N)
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P(Aff=RandVl=Yand V2 =Y and ...V16 = N)
=P(Aff=R)P(Vl=Yand V2=Y and ...V16 = N | Aff = R)
~P(Aff=R)P(V1=Y |Aff = R)P (V2 = Y | Aff = R)...P (V16 = N | Aff = R)



Approximation
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=P(Aff=R)P(Vl=Yand V2=Y and ...V16 = N | Aff = R)
~P(Aff=R)P(V1=Y |Aff = R)P (V2 = Y | Aff = R)...P (V16 = N | Aff = R)

What about
P(VI=YandV2=Yand...V16 =N) ?
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P(Y=C)=P(Y=Cand X=A)+P(Y = Cand X = B)

Proof:

P(Y=Cand X=A)+P(Y =Cand X =B)
#Y =Cand X=A #Y =Cand X=B
= +
Total Total
_#Y=C
~ Total
=P(Y=0C)
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Results

v

We approximate probabilities from 425 politicians

v

We predict affiliation of 10 other politicians

v

For 3, probability of republican ~ 0 (truth: all are democrats)

v

For 7, probability of republican ~ 1 (truth: one is a democrat!)



Error
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