

Early-Learning Regularization Prevents Memorization of Noisy Labels

Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda

Research partially supported by NSF awards NRT-HDR 1922658, DMS 2009752, and HDR 1940097

Joint work with Sheng Liu (NYU), Jon Niles-Weed (NYU), Narges Razavian (NYU School of Medicine), and Chhavi Yadav (UC San Diego)

Classification with noisy labels

Early-learning regularization (ELR)

Classification with noisy labels

Early-learning regularization (ELR)

Important to provide treatment, and populate clinical trials

Positron-emission tomography is effective, but invasive and very costly

Structural MRI (T1) is less costly, but not so accurate

Goal: Use deep learning to increase accuracy

Structural MRI of cognitively-normal patient

Structural MRI of mildly cognitively impaired patient (MCI)

Structural MRI of Alzheimer's patient

Early diagnostics of Alzheimer's disease

- Goal: Distinguish between three classes
 - 1. Cognitively normal (CN)
 - 2. Mild cognitive impairment (MCI)
 - 3. Mild Alzheimer's disease (AD)

Dataset: Alzheimer's Disease Neuroimaging Initiative (ADNI)

Demographics

Split	Class	Num. subjects	Num. Scans	Mean Age (std)
	CN	140	567	77.0 (5.4)
Train	MCI	248	840	75.9 (7.3)
	AD	193	527	76.7 (7.4)
	CN	33	126	77.2 (5.6)
Val	MCI	39	138	73.3 (7.2)
	AD	41	124	76.1 (8.3)
Test	CN	24	105	79.0 (6.1)
	MCI	43	140	76.7 (6.5)
	AD	45	135	76.4 (5.1)

Entorhinal cortex and hippocampus

Image source: https://blog.edvotek.com/2020/04/09/insights-into-alzheimers-disease/

Simple biomarker (normalized volumes)

Accuracy: around 62%

Proposed methodology

Register images to common template

Train 3D convolutional neural network

Performance is improved by:

- ▶ Using small (1×1) filter sizes in first layer
- Widening the network (as opposed to deepening)
- Using instance normalization instead of batch normalization
- Encoding age using a sinusoidal embedding

Results

Method	Accuracy	Balanced Acc	Micro-AUC	Macro-AUC
Volume-based	61.9%	62.1%	78.0 %	76.1%
ResNet-18 3D AlexNet 3D Proposed Proposed + Age	50.1% 57.2% 66.9% 68.2%	51.3% 56.2% 67.9% 70.0%	71.2% 75.1% 82.0% 82.0%	72.4% 74.2% 78.5% 80.0%

Independent dataset (National Alzheimer's Coordinating Center)

Method	Accuracy	Balanced Acc	Micro-AUC	Macro-AUC
Volume-based	56.3%	53.2%	72.0%	74.0%
Proposed	74.2%	60.1%	87.0%	80.0%

Main obstacle for improvement: Limited data

Visualization of gradient with respect to input (axial view)

MCI example

AD example

Visualization of gradient with respect to input (sagittal view)

CN example

MCI example

AD example

Challenge

Labeling is highly subjective and noisy

For example, MCI diagnosis criteria are:

- 1. Subjective memory complaints
- 2. Objective memory loss (scoring below education-adjusted cut-off on Logical Memory Test)
- 3. Global Clinical Dementia Rating (interview-based rating) of 0.5
- 4. Diagnosis of dementia could not be made by physician

For more information

On the Design of Convolutional Neural Networks for Automatic Detection of Alzheimer's Disease S. Liu, C. Yadav, C. Fernandez-Granda, N. Razavian NeurIPS Machine Learning for Healthcare (ML4H) workshop 2019 Proceedings of Machine Learning Research, PMLR 116 171-183

Classification with noisy labels

Early-learning regularization (ELR)

Noisy labels

Idealized setting (definitely not what is happening in Alzheimer's data)

Train ResNet-18 on CIFAR10, with 40% of labels flipped at random

Predictions on training examples with clean labels

Predictions on training examples with incorrect labels

Two stages: Early learning and then memorization

Early learning + Memorization

Well known phenomenon in deep learning

But is it unique to deep learning?

Let's see what happens for a separable 2-class problem

We flip 40% of the labels and fit linear model

Predictions on training examples with clean labels

Predictions on training examples with incorrect labels

Two stages: Early learning and then memorization

Analysis of linear model

Cross-entropy loss function for a single example

$$\begin{aligned} \mathsf{CE} &:= -\sum_{c=0}^{1} \mathsf{y}_c \log \mathsf{p}_c \\ \mathsf{p}_c &:= \frac{\exp(\Theta_c^T \mathsf{x})}{\exp(\Theta_0^T \mathsf{x}) + \exp(\Theta_1^T \mathsf{x})} \end{aligned}$$

- ▶ y: label
- p: model estimate
- \blacktriangleright Θ_0 , Θ_1 : model parameters
- x: feature vector

Gradient of linear model

Gradient of cross-entropy loss function for a single example

$$abla_{\Theta_c} \mathsf{CE} = \mathsf{x} \left(\mathsf{p}_c - \mathsf{y}_c
ight)$$

Separable model:

▶ Label 0: $\mathbf{x}^{[i]} := -\mathbf{v} + \text{random vector}$

Ideally, we would learn $\Theta_1 = +\mathbf{v}$

But some labels are flipped

Early learning

Gradient of cross-entropy loss function for n examples

$$abla_{\Theta_1} \mathsf{CE} = \sum_{i=1}^n \mathsf{x}^{[i]} \left(\mathsf{p}_1^{[i]} - \mathsf{y}_1^{[i]} \right)$$

Sum of all examples with label 1 weighted by $\mathbf{p}_1^{[i]} - 1$ and examples with label 0 weighted by $\mathbf{p}_0^{[i]}$

During gradient descent correct labels push Θ_1 towards **v** (random vectors cancel out)

Majority (60%) are correct so early learning occurs

Memorization

Gradient of cross-entropy loss function for n examples

$$abla_{\Theta_1} \mathsf{CE} = \sum_{i=1}^n \mathsf{x}^{[i]} \left(\mathsf{p}_1^{[i]} - \mathsf{y}_1^{[i]} \right)$$

After some time Θ_1 aligns with \mathbf{v}

Good news: Correct labels are well classified!

Bad news: Their influence on the gradient vanishes

Incorrectly labeled data dominate gradient

In high dimensions we can find a hyperplane that fits any set of labels

Eventually we find it and memorization occurs

Gradient of linear model

Gradient of linear model

Analysis of deep-learning model

Cross-entropy loss function for a single example

$$\mathsf{CE} := -\sum_{c=1}^{C} \mathsf{y}_c \log \mathsf{p}_c$$

$$\mathbf{p}_c := \frac{\exp(f_{\Theta}(\mathbf{x})_c)}{\sum_{k=1}^{C} \exp(f_{\Theta}(\mathbf{x})_k)}$$

- ▶ y: label
- p: model estimate
- Θ: model parameters
- ► f_{Θ} : deep neural network
- x: feature vector

Gradient of deep-learning model

Gradient of cross-entropy loss function for a single example

 $abla_{\Theta} CE = J(\mathbf{x}) \left(\mathbf{p} - \mathbf{y} \right)$

 $J(\mathbf{x})$ is the Jacobian of $f_{\Theta}(\mathbf{x})$ with respect to Θ

Same as linear model except that $J(\mathbf{x})$ replaces \mathbf{x}

Intuition from linear model:

- At first, correct labels dominate \rightarrow early learning
- ► Then, their contribution to gradient vanishes and incorrect labels dominate → memorization
Gradient of deep-learning model

Gradient of deep-learning model

Early detection of Alzheimer's disease

Classification with noisy labels

Early-learning regularization (ELR)

Use early learning model to neutralize effect of incorrect labels and avoid memorization

ELR loss function

For each example *i*, target $\mathbf{q}^{[i]}$ is a *corrected* label estimate based on past model outputs

$$\mathsf{ELR} := \mathsf{CE} + rac{\lambda}{n} \sum_{i=1}^{n} \log\left(1 - \langle \mathbf{p}^{[i]}, \mathbf{q}^{[i]} \rangle\right)$$

Regularization tries to align model

Crucial insight: Targets don't need to be right, they just need to neutralize gradient from incorrect labels

Gradient of ELR loss function

$$abla_{\Theta}\mathsf{CE} = J(\mathbf{x}) \left(\mathbf{p} - \mathbf{y} + \lambda \mathbf{g} \right)$$

After early learning, regularization term neutralizes incorrect labels and boosts influence of correct labels

Train ResNet-18 on CIFAR10, with 40% of labels flipped at random

Gradient for examples with correct labels

Gradient for examples with incorrect labels

Gradient of ELR loss function

Gradient of cross-entropy loss function

ELR predictions on training examples with clean labels

ELR predictions on training examples with incorrect labels

After early learning no memorization

CE predictions on training examples with incorrect labels

Two stages: Early learning and then memorization

How do we estimate the targets

Using ideas from semi-supervised learning

- Temporal averaging of model output
- Temporal averaging of model weights
- Training two models (targets of one estimated from output of the other)

Results

State of the art results on CIFAR-10, CIFAR-100, and two real-world datasets (Clothing-1M and WebVision)

Future work

- ► Theoretical analysis for deep learning models
- Other choices of regularization?
- Focus on more realistic noise models

For more information

Early-Learning Regularization Prevents Memorization of Noisy Labels S. Liu, J. Niles-Weed, N. Razavian, C. Fernandez-Granda. NeurIPS 2020