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Abstract

We present a framework to super-resolve planar regions
found in urban scenes and other man-made environments by
taking into account their 3D geometry. Such regions have
highly structured straight edges, but this prior is challeng-
ing to exploit due to deformations induced by the projection
onto the imaging plane. Our method factors out such de-
formations by using recently developed tools based on con-
vex optimization to learn a transform that maps the image
to a domain where its gradient has a simple group-sparse
structure. This allows to obtain a novel convex regularizer
that enforces global consistency constraints between the
edges of the image. Computational experiments with real
images show that this data-driven approach to the design
of regularizers promoting transform-invariant group spar-
sity is very effective at high super-resolution factors. We
view our approach as complementary to most recent super-
resolution methods, which tend to focus on hallucinating
high-frequency textures.

1. Introduction
A fundamental challenge in computer vision and image

processing is to increase the resolution of blurry images.
Multi-frame super-resolution consists of combining several
low-resolution images for this purpose [6]. Single-frame
super-resolution is even more challenging. The aim is to ob-
tain a higher-resolution image by upsampling a single im-
age. In general, it is of course impossible to recover fine
scale details that are absent from the low-resolution image.
We can only hope to reconstruct certain very specific struc-
tures (see [4] for theoretical results on the super-resolution
of pointwise objects) or to hallucinate high-frequency tex-
tures that are visually pleasing [1].

In this work we consider planar regions taken from 3D
scenes that have straight edges aligned in a few main direc-
tions, such as the one in Figure 1. This class of surfaces is
of great practical interest. They are ubiquitous in urban en-
vironments and recent large-scale urban 3D mapping efforts
(such as the Apple 3D map) make such data readily avail-

Figure 1. Image of a building façade (top left) and its gradient (top
right) along with their low-rank representation (bottom).

able. Existing super-resolution techniques can be applied to
this class of textures to obtain reasonably good upsampling
results up to factors of three or four. However, most of these
techniques are designed for generic images and do not take
into account what high-level structure may be present in the
data. In this work, we explore the possibility of attaining
higher upsampling factors by harnessing such prior knowl-
edge for images with structured edges.

Unfortunately, the non-uniform blur and deformations
induced by the projection of 3D surfaces onto the imaging
plane make it very challenging to exploit prior knowledge
about the structure of the data directly. In fact, in our quest
to super-resolve regions with structured edges we face two
fundamental questions that are at the core of many problems
in computer vision:

1. How should we leverage prior knowledge about global
features of the 3D geometry of a scene?

2. How can we deal with the camera projection, which
distorts these global features?

In our case, the global features include straight edges ori-
ented in a few main directions, which suggests promoting
structured sparsity of the image gradient, for example via
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Figure 2. Eight-fold super-resolved reconstruction obtained by our
method (bottom right) of an approximately low-rank region (top
right and white rectangle on left) in a low-resolution image of a
truck (left).

a group `1-norm penalty [18]. This provides a partial an-
swer to the first question. However, we must still tackle the
second. Indeed, if we only have access to a projected low-
resolution image, it is unclear how to design an appropriate
group-sparsity penalty for the image gradient. A solution in
the case of highly structured 3D scenes is to use recent ad-
vances in the recovery of low-rank textures [19], defined as
low-rank structures deformed by affine or projective trans-
formations. These techniques allow to obtain a transforma-
tion that reveals low-rank structure from the low-resolution
image. In the case of images with highly structured edges,
the sparsity pattern of the gradient tends to follow a low-
rank pattern, as illustrated by Figure 1. Our method com-
bines these insights by:

1. Learning the domain transform that reveals the low-
rank structure of the data.

2. Designing a nonparametric regularizer tailored to this
structure.

Under the assumptions that the edge structure of the 3D
scene is approximately low rank, this data-driven procedure
produces a convex regularizer that allows to super-resolve
the image very effectively. Figure 2 illustrates the power
of our approach with a simple example in which it decon-
volves lines that are almost merged together due to heavy
aliasing in the low-resolution data.

Our approach departs significantly from current state-of-
the-art methods for single-image super-resolution, which
infer the fine-scale details of the upsampled image from a
database of corresponding low and high-resolution patches.
Different options to perform this inference include fitting
a Markov random field model [8], learning a parametric
model for the edge profiles [13], or applying a sparse-
coding framework [17]. These example-based methods en-
force local consistency to produce sharp-looking edges and

are able to hallucinate high-frequency textures very effec-
tively at moderate upsampling factors, especially if prior
knowledge about these textures is available [9, 7, 14]. How-
ever, they are not well adapted to deal with global features,
such as the straight edges in Figure 1. Our work is designed
to exploit such features and is consequently complementary
to these methods. Merging both approaches is an interesting
direction for future research.

To recapitulate, our main contribution is a principled
methodology for the super-resolution of planar regions with
regular structures, which achieves high-quality results at up-
sampling factors that are problematic for other methods.
This is achieved by learning the geometric structure of the
3D scene and leveraging it within a variational framework.
We motivate and explain our technique in more detail in
Section 2. Experimental results are provided in Section 3.
In Section 4 we end the paper with some conclusions and
ideas for further work.

2. Proposed method
2.1. Directional total variation

Consider the problem of designing a regularizer adapted
to the problem of super-resolving images with sharp edges
oriented in a few main directions. The most common choice
in the literature is to penalize the `1 norm of the gradi-
ent [11], also known as the total variation (TV) of the im-
age, or related non-convex penalties [10] in order to obtain
an estimate with a sparse gradient (see also [15] for a recent
approach that takes discretization into account). Unfortu-
nately, minimizing the total variation often fails to super-
resolve two-dimensional edges, even in the case of very
simple piecewise-constant images such as the checkerboard
shown in Figure 3. This failure is largely due to the fact that
the regularizer is agnostic to the orientation of the edges in
the image, and in particular to the correlation between the
orientation of nearby edges. This suggests resorting to a
regularizer that is better adapted to the high-level structure
of the image gradient.

Let us assume that, as is the case for the checkerboard in
Figure 3, we happen to know the directions of most edges in
the image. In this case, the gradient in the image is not only
sparse, but group sparse [18], since its nonzero elements
are grouped along horizontal and vertical lines. As a result,
a more suitable regularizer is the directional total variation
(DTV) of the image, defined as

DTV (I) =

N1∑
x=1

√√√√N2−1∑
y=1

(I (x, y + 1)− I (x, y))2

+

N2∑
y=1

√√√√N1−1∑
x=1

(I (x+ 1, y)− I (x, y))2, (2.1)



for an image I ∈ RN1×N2 . In words, this cost function
is equal to the sum of the `2 norms of the difference be-
tween adjacent rows and columns. It is designed to favor
edges that are aligned horizontally and vertically. A simi-
lar regularizer has been proposed for multiple change-point
detection in time-series analysis [3]. The top of Figure 3
compares the results of minimizing the TV and DTV cost
functions to perform nonblind deblurring of a checkerboard
image. DTV minimization recovers the edge structure of
the image very precisely, whereas TV minimization pro-
duces significant artifacts.

Blurred TV DTV

Figure 3. Nonblind deblurring of a checkerboard using TV and
DTV minimization. The blurring kernel was a 21 × 21 Gaussian
kernel with standard deviation equal to 3.

2.2. Transform-invariant regularization

The DTV regularizer proposed in Section 2.1 is obvi-
ously of very limited applicability. We seldom encounter
images where the edges are perfectly aligned horizontally
and vertically. Because of this, we turn towards a more
general model, which applies to many man-made structures
such as building façades. We consider images such that
there exists an affine or projective transform τ for which
most of the edges of I ◦τ are aligned vertically and horizon-
tally. To be clear, I ◦ τ is a new image obtained by applying
τ to the domain of I and then resampling. In general it is
not straightforward to design a regularizer adapted to such
a model. The reason is that the gradient is no longer group
sparse along a few main directions. However, it is group
sparse modulo the transform τ . Following this insight, we
define

TI-DTV(I) = DTV(I ◦ τ), (2.2)

a cost function that promotes straight edges in the trans-
formed image, where TI-DTV stands for transform-
invariant directional total variation. Indeed, the cost func-
tion (2.2) is invariant to affine or projective transforms of
I , as long as we are able to estimate them a priori. As we
will see, this allows to factor out significant deformations
induced by the camera projection. At the bottom of Fig-
ure 4 we can see the results of minimizing the TI-DTV cost
function to perform nonblind deblurring of a tilted checker-
board. Unlike TV minimization, TI-DTV minimization
yields a sharp and aliasing-free result, almost identical to
the original.

Original Blurred

TV TI-DTV

Figure 4. Nonblind deblurring of a tilted checkerboard using TV
and TI-DTV minimization. The blurring kernel was a 21 × 21
Gaussian kernel with standard deviation equal to 3.

2.3. Transform-invariant low-rank textures

In order to use the cost function proposed in (2.2), it
is necessary to learn a transform “τ” mapping the image
to a domain where its edges are mostly aligned vertically
and horizontally. We propose doing this by exploiting the
fact that images with vertical and horizontal edges tend to
be approximately low rank when viewed as a matrix. This
is obviously the case for the checkerboard in Figure 4, but
holds much more broadly. For example, Figure 5 shows a
low-rank texture extracted from a blurry image. The main
edges are indeed aligned horizontally and vertically by the
transformation associated to the low-rank texture. An im-
age with low-rank structured edges might lose its sharpness
at low resolutions, but it remains an approximately low-rank
texture. This is crucial for our interests, since we can con-
sequently use TILT to learn the transform associated to the
edge structure and then apply the regularizer proposed in
Section 2.2.

Figure 5. Blurry image containing an approximately low-rank tex-
ture (left) together with the result of rectifying it using the trans-
form learnt by TILT (right).

The authors of [19] develop robust computational tools
that allow to extract low-rank textures distorted by affine
or projective transformations. With a slight abuse of termi-
nology, we refer to this method as TILT, which stands for
transform-invariant low-rank textures. In essence, TILT al-



lows to compute a transform τ from an image I such that
I ◦ τ = L + E, where L is a low-rank matrix and E ac-
counts for sparse deviations from the low-rank model. This
is achieved by solving

min
τ,L,E

‖L‖∗ + λ ||E||1 subject to I ◦ τ = L+ E, (2.3)

which is inspired by theoretical results on the recovery of
sparsely corrupted low-rank matrices [5]. Even though
Problem (2.3) is non-convex, it can often be tackled effi-
ciently by solving a sequence of convex programs. We refer
to [19] for more details on transform-invariant low-rank tex-
tures and on how to solve Problem (2.3), but we would like
to mention that the presence of the sparse term E is of vital
importance if we apply TILT to retrieve low-rank textures
from low-resolution inputs. The reason is that it accounts
for artifacts caused by blur and pixelation. This is illus-
trated by Figure 6, which shows the low-rank and sparse
components obtained from a blurry image.

Input Low-rank comp. Sparse comp.

Figure 6. Low-rank (center) and sparse (right) components ex-
tracted by TILT from the low-resolution image on the left.

2.4. Super-resolution via TI-DTV regularization

We finally have all the tools to tackle the problem of
super-resolving an image obtained from a 3D scene with
structured edges. We propose to leverage a data-driven con-
vex regularizer adapted to the 3D geometry revealed by
TILT. Given a low-resolution image ILR ∈ Rn1×n2 , we
aim to obtain a higher-resolution image IHR ∈ RN1×N2 ,
N1 > n1, N2 > n2 such that

ILR ≈ D (K ⊗ IHR) , (2.4)

for a downsampling operator D : RN1×N2 → Rn1×n2 and
a blurring kernel K ∈ RN1×N2 . In order to do this, we
suggest a two-step method.

1. We apply TILT to the low-resolution image ILR in or-
der to obtain a transform τ which reveals the low-rank
edge structure of the image. In practice, we upsam-
ple ILR using bicubic interpolation before learning the
transformation. To implement this step we use the
code for TILT available online.

2. We obtain a high-resolution image by solving

min
ĨHR

∣∣∣∣∣∣D (K ⊗ ĨHR

)
− ILR

∣∣∣∣∣∣
2

+ λ · DTV
(
Aτ ĨHR

)
+ β · TV

(
ĨHR

)
, (2.5)

where λ and β are regularization parameters,TV rep-
resents the usual total variation operator for discrete
images (i.e. the sum of the horizontal and vertical fi-
nite differences) and Aτ is a linear operator that maps
the image to the domain where we seek to penalize the
directional total variation.

For color images we apply this procedure to the illuminance
channel and upsample the chrominance components Cb and
Cr using bicubic interpolation.

The cost function in (2.5) combines a data fidelity term,
which enforces the model (2.4), with the convex regularizer
described in Section 2.2 and also with an extra term that pe-
nalizes the total variation of the image. The reason is that
the TI-DTV term is not enough to stabilize the reconstruc-
tion as Aτ is often rank defficient. Additionally, the careful
reader might remark that we assume that the low pass ker-
nel K is known. In practice, we use a Gaussian kernel with
a standard deviation σ slightly greater than the upsampling
factor divided by two. In general, the algorithm is quite ro-
bust to this choice and also to the values of λ and β. For the
results in Section 3 we used σ = 5.5 in all cases and λ = 3
and β = 0.1 in most cases. The Supplementary Material1

elaborates on the stability of our method to changes in the
parameters σ, λ and β.

In order to solve Problem (2.5) we apply the Templates
for First-Order Conic Solvers (TFOCS) framework pro-
posed in [2], code for which is provided online. This
framework consists in casting the problem as a conic pro-
gram, determining the dual problem and applying a first-
order method, such as accelerated gradient descent, to solve
a smoothed version of the dual. The main advantage of
TFOCS over other solvers is that it allows to minimize func-
tions of the form ‖Wx‖ for an arbitrary linear operator W ,
a vector x and any norm for which we can compute the cor-
responding dual norm efficiently. We can apply TFOCS al-
most off the shelf to solve (2.5) by implementing functions
to apply the operator Aτ and to compute the dual of the
mixed `1/`2 norm, equal to the mixed `∞/`2 norm. Some
care is needed in the implementation of Aτ for the solver to
run quickly. The optimization algorithm applies the adjoint
A∗τ repeatedly, so it is important to make this efficient. This
can be done by implementing Aτ with a sparse matrix that
samples the transformed image on a new grid using bilinear
interpolation. We refer to [2] for further relevant details on
TFOCS, in particular Sections 4.4, 4.5 and 4.6.

1www.stanford.edu/˜cfgranda/TI_DTV_supp_mat.pdf

www.stanford.edu/~cfgranda/TI_DTV_supp_mat.pdf


Finally, we would like to point out that (2.5) is a convex
cost function. As a result, the algorithm is robust to the
choice of initialization and converges to the same solution
even if we use the optimum for TV or other cost functions
such as (2.6) as a starting point.

2.5. An alternative approach

Instead of solving Problem (2.5), another option to
super-resolve our class of images of interest is to work
directly in the rectified domain penalizing the DTV
norm. More precisely, one can compute the rectified low-
resolution image IτLR = ILR ◦τ and then solve the optimiza-
tion problem

min
ĨτHR

∣∣∣∣∣∣D (K ⊗ ĨτHR

)
− IτLR

∣∣∣∣∣∣
2
+ α · DTV

(
ĨτHR

)
, (2.6)

where α is an optimization parameter. The super-resolved
image in the original domain can then be obtained from the
solution by inverting τ . This simplifies the optimization
problem that we must solve, but yields worse results than
the method proposed in Section 2.4. The reason is that we
are implicitly assuming that the kernel acts on the rectified
domain, a model which is inaccurate and does not account
for the uneven blur caused by the camera projection. Ade-
quate modeling of the downsampling operator is crucial to
super-resolve effectively [12], so it not surprising that the
results for this alternative method are not as sharp as those
obtained with TI-DTV regularization, as shown in Figure 7.

TI-DTV

Alternative

Figure 7. Comparison between solving Problems (2.5) and (2.6) to
super-resolve at an upsampling factor of 8 using geometric infor-
mation obtained from the low-resolution image. TI-DTV produces
superior results.

3. Experiments
The code used for the experiments is available at www.

stanford.edu/˜cfgranda/TI_DTV_code.zip.

3.1. Super-resolution of real images

In this section we provide some experimental results to
evaluate the performance of our method. We focus on qual-
itative comparisons, since there is no clear metric capable
of quantifying the quality of super-resolved images (for in-
stance, at high upsampling factors the mean-square error
can be better for blurry images that do not enhance any fea-
tures of interest). Further experiments are reported in the
Supplementary Material. In our first example, we take large
planar regions from five images in the SUN database [16],
shown in Figure 8, and compare our method with other rep-
resentative super-resolution methods developed in the liter-
ature. Although we apply the algorithms to the whole planar
region, zoomed-in areas are shown due to space limitations.
Interpolation algorithms are represented by bicubic interpo-
lation, which we compute using the Matlab function imre-
size. To compare with classical variational techniques we
use TFOCS to solve the optimization problem

min
ĨHR

∣∣∣∣∣∣D (K ⊗ ĨHR

)
− ILR

∣∣∣∣∣∣
2
+ γ TV

(
ĨHR

)
, (3.1)

where γ is a regularization parameter, since TV regulariza-
tion is usually the method of choice to promote sharp edges
in image processing. Finally, we choose the sparse-coding
super-resolution algorithm of Yang et al [17] as a repre-
sentative of exemplar-based algorithms using patches. In
the literature, this method is competitive with most other
exemplar-based techniques. It is actually noted in [17]
that exemplar-based methods have difficulties dealing with
highly structured textures such as building facades, because
it is difficult to build a dictionary that can exhaust edges in
all directions and scales. Nevertheless, it serves as a base-
line to compare with our method. We use the code available

Figure 8. Planar regions with structured edges extracted from im-
ages in the SUN database [16]. A white rectangle highlights the
areas shown in Figure 12.

www.stanford.edu/~cfgranda/TI_DTV_code.zip
www.stanford.edu/~cfgranda/TI_DTV_code.zip


online for this algorithm, which allows to apply an upsam-
pling factor of 4. For the rest of the methods, including ours,
we apply an upsampling factor of 8.

Zoomed-in areas of the results are shown in Figure 12.
In all cases bicubic interpolation produces images that are
very blurry. The results for TV regularization are sharper,
but they contain significant artifacts which make edges ap-
pear wobbly instead of straight. Despite its reduced upsam-
pling factor, the sparse-coding algorithm is also not capable
of super-resolving edges effectively and its results are only
slightly better than those of bicubic interpolation. In con-
trast, TI-DTV regularization produces clear straight edges
that correspond to the global geometry of the planar surface,
yielding upsampled images that are significantly sharper
than the rest. Figure 13 shows the effect of applying the
transform learnt from the low-resolution images to the high-
resolution images obtained by TI-DTV regularization. As
expected the edges align mostly horizontally and vertically
following the low-rank structure.

For the top example in Figure 12, where the low-
resolution image has size 120x136, the running time re-
quired by TI-DTV regularization is of 123.0 s (SRF=2),
417.8 s (SRF=4) and 1713.5 s (SRF=8) on a desktop com-
puter with a 3.2 GHz processor and 4 GB of RAM.

3.2. Super-resolution of text

Text follows the model that we consider to some ex-
tent, since most letters contain horizontal or vertical edges.
As a result, TI-DTV regularization is capable of effectively
super-resolving letter or characters printed on distorted sur-
faces. To demonstrate this, Figure 11 shows four such ex-
amples and compares the results obtained from bicubic in-
terpolation and our method. Comparisons to other methods
are included in the Supplementary Material. TI-DTV reg-
ularization is clearly superior in all cases, despite the fact
that some letters have edges that are not aligned with the
low-rank structure (see the following section).

3.3. Limitations

As we have made clear throughout this paper, our
method is geared to the super-resolution of planar surfaces
that are approximately low-rank and have straight edges that
are oriented following the low-rank structure. If these con-
ditions are not met, the algorithm might produce artifacts
in regions that resemble horizontal or vertical edges. In
Figure 9 such artifacts can be seen along the jagged diag-
onal line. A way to overcome this would be to incorporate
other orientations into the transform-invariant group-sparse
penalty, or introduce a more sophisticated group-sparsity
prior adapted to such features. In any case, the method of-
ten degrades gracefully in regions that do not have straight
edges with the right orientation. In Figure 10, for example,
TI-DTV does not produce any artifacts around the arc and

at the same time super-resolves sharply the edges in the rest
of the image. In comparison, TV makes the arc look sharper
but generates obvious artifacts.

Figure 9. Eight-fold upsampled detail (right) of a shop sign (left)
showing the kind of artifact that might be produced by TI-DTV
regularization.

Bicubic TV TI-DTV

Figure 10. Comparison of the results of super-resolving an image
that does not completely conform to the transform-invariant low-
rank model using bicubic interpolation, TV regularization and TI-
DTV regularization. The upsampling factor is 8.

4. Conclusion and extensions
We believe that developing tools capable of constraining

non-local image structure is a crucial step towards achiev-
ing high-quality super-resolution at large upsampling fac-
tors. Our contributions are the introduction of a princi-
pled methodology in which such constraints are imposed
through data-driven non-parametric regularizers and a ro-
bust implementation of this methodology for a particular
class of images, which yields state-of-the-art results. Fu-
ture research directions include combining our framework
with patch-based methods, designing group-sparsity pat-
terns adapted to other classes of images and developing al-
ternative approaches to learn the parametric transformations
that make our regularizers approximately invariant to the
camera projection.
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Figure 11. Eight-fold upsampling of surfaces containing text taken from the SUN database [16]. The input is shown on the left with the
right scaling for reference.
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Input Bicubic (x8) TV (x8) Sparse Coding (x4) TI-DTV (x8)

Figure 12. Results from super-resolving the images in Figure 8 using bicubic interpolation, total-variation regularization, sparse coding [17]
and our proposed algorithm. The upsampling factor was 4 for sparse coding and 8 for the rest of the methods.

Figure 13. Super-resolved examples from Figure 12 obtained by TI-DTV regularization rectified by the transformation learnt by TILT from
the low-resolution images.


