
Fig. 1. Reconstruction of brain data for an acceleration 
factor of 3.66 by GSENSE (a), JSENSE (b), l1 
regularization of the coil sensitivity Fourier transform 
without (c) and with (e) l1 regularization of the image 
norm in a wavelet domain, and l1 regularization of the 
coil sensitivity polynomial transform without (d) and 
with (f) l1 regularization of the image norm in a wavelet 
domain. 
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Introduction: In parallel MRI, accurate coil sensitivity estimates are required to reconstruct aliasing free images [1, 2]. A promising alternative to the common estimation 
methods based on a low resolution pre-scan or on a fully sampled central k-space area is to perform a joint reconstruction of image and coil sensitivities. Existing approaches 
exploit the a priori assumption that coil sensitivities are smooth functions to regularize the non-linear reconstruction problem either by using a polynomial model for the 
sensitivities, as in JSENSE [3], or by penalizing their Sobolev norm, as in the non-linear inverse algorithm of [4]. In this work, a method inspired by Compressed Sensing that 
constrains the coil sensitivities to be sparse in a certain transform domain is presented and evaluated with in vivo data. 

 
Theory: The acquisition of parallel MR data d can be modelled as the pixel-wise multiplication M(S,I) of an image I and coil sensitivities S, followed by an undersampled 
Fourier transform Fu. Under the assumption of Gaussian noise, image reconstruction can be performed by minimizing the cost function ||d-FuM(S,I)||2. In a non-linear joint 
reconstruction framework, the minimization is performed with respect to both the image and the coil sensitivities. The number of parameters to be estimated is hence much 
higher than the number of data samples, so that the resulting inverse problem is not well-posed. According to the theory of Compressed Sensing [5], highly undersampled 
signals can be accurately reconstructed by l1 norm minimization in a domain where they are sufficiently sparse. We propose to adapt this approach to the estimation of coil 
sensitivities by penalizing their l1 norm in a domain ΨS, which yields the following minimization problem: 
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where λS is a regularization parameter. This non-linear minimization problem can be solved by a two step greedy 
scheme, which iteratively updates image and coil sensitivities. During the sensitivity update, the minimization 
problem can be decoupled into subproblems of the form minSc ||d-FuMISc)||2

2
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representing the operator M for a fixed image estimate and Sc is the sensitivity of coil c. In this form, the problem is 
very close to the Compressed Sensing framework. Two sparsifying transforms ΨS were evaluated: a projection on a 
base of Chebyshev polynomials and the Fourier transform. Coil sensitivities are sparse in these two domains 
because of their smoothness. The image update can be carried out by Generalized SENSE (GSENSE) [6] using the 
current sensitivity estimate. In addition, regularization can be applied to penalize the l1 norm of the image in a 
certain transform domain in order to limit noise amplification and aliasing artefacts.  
 
Methods: The proposed method was implemented in Matlab. The maximal order for the Chebyshev polynomials 
was 12. The option to apply regularization on the l1 norm of the image was implemented for a Daubechies-4 
wavelet transform. The image and sensitivity updates were calculated with a non-linear conjugate gradient 
algorithm as in [7]. In addition, reconstructions with GSENSE and with JSENSE based on polynomials of order 12 
were computed for comparison. Spin-echo imaging was performed in the brain on a 1.5T scanner (Achieva, Philips 
Healthcare) with a custom-made six element head phased array coil (FOV= 250 mm, TE= 5 ms, TR= 1000 ms, 
slice thickness= 6 mm). A variable density undersampling scheme with outer undersampling factor of 4 and 6 
additional autocalibration profiles was applied off-line to yield an overall reduction factor of 3.66. A coil sensitivity 
estimate obtained from a low resolution scan was used in GSENSE and as initialization in the other algorithms. For 
JSENSE and for the two proposed methods, convergence was observed after about 10 image and sensitivity 
updates. 
 
Results: Reconstruction results for the human brain data are presented in Fig.1. The GSENSE reconstruction 
presents aliasing artefacts due to errors in the low resolution coil sensitivity estimate. JSENSE suppresses most of 
this aliasing, but is affected by noise. Reconstruction with an l1 norm constraint on the Fourier transform of the coil 
sensitivities partially eliminates the aliasing, whereas l1 norm regularization on the polynomial transform effectively 
suppresses almost all aliasing artefacts. However, in both cases the final image is also corrupted by noise. Finally, 
applying wavelet transform l1 norm regularization in the image update of the two proposed methods yields 
reconstructions with little traces of aliasing and a significantly reduced noise level. 
 
Discussion and Conclusion: The approach proposed in this work, which is motivated by Compressed Sensing 
theory, allows solving the ill-posed problem of jointly estimating image and coil sensitivities in parallel imaging. As 
demonstrated by the results obtained with the proposed method for Chebyshev polynomials and with JSENSE, coil 
sensitivities are well approximated by polynomial functions. However, methods based on a polynomial 
representation are very costly from a computational point of view. Applying l1 regularization on both the wavelet 
transform of the image and the Fourier transform of the coil sensitivity is a more computationally efficient 
alternative that also yields images with reduced aliasing and noise. In this case, even for a non-stochastic k-space 
trajectory such as the one used in Fig.1, some degree of incoherence between the sparsity and measurement 
domains is introduced by the convolution of the sensitivity and the image in k-space. This allows for a Compressed 
Sensing reconstruction, as high frequency components of the image shift part of the sensitivity information away 
from its original k-space location. 
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