
Lecture notes 6 March 21, 2016

Super-resolution

1 Super-resolution of point sources

The word super-resolution has different meanings in different disciplines. In optics it is
usually used to describe data-acquisition techniques designed to overcome the diffraction
limit [8]. In image-processing and computer-vision applications the term tends to refer to the
problem of obtaining a high-resolution image either from several low-resolution images [10]
or by upsampling a single image while preserving its edges and hallucinating textures in a
reasonable way [5]. In this lecture, super-resolution denotes the inverse problem of estimating
a signal from low-pass measurements. In contrast to the previous definitions, we assume that
the data-acquisition mechanism is fixed and we aim to recover rather than hallucinate the
lost high-resolution information.

1.1 Spatial super-resolution

As Lord Rayleigh pointed out in his seminal 1891 paper On Pin-hole Photography, it has
long been known that the resolving power of lenses, however perfect, is limited. Diffraction
imposes an inflexible limit on the resolution of any optical system. However we are often in-
terested in information that is only apparent beyond this limit. For instance, in microscopy,
astronomy or medical imaging it may be challenging to discern cellular structures, celestial
bodies or incipient tumors from the available data. This is illustrated by the image on the
left of Figure 1, which shows measurements of the interior of a cell obtained by fluorescence
microscopy. The limited resolution of the microscope produces aliasing artifacts that com-
pletely obscure the fine-scale details of the image. The aim of super-resolution is to uncover
such fine-scale structure from coarse-scale measurements.

Let x be a high-resolution representation of an object of interest. Mathematically, a reason-
able model for the data in many of the applications mentioned in the previous paragraph
is

xLR := φ ∗ x. (1)

The signal x is convolved with a low-pass point spread function (PSF) φ that depends on
the sensing mechanism. This convolution smooths out the fine-scale details producing a low-
resolution version of the original signal. The aim of spatial super-resolution is to estimate
x from xLR, a problem which is often also referred to as deconvolution. Recovering the lost
fine-scale information amounts to extrapolating the spectrum of x. This becomes apparent
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Figure 1: An example of super-resolution applied to cell imaging using fluorescence microscopy
data. In both images a superposition of a sequence of frames is shown. The data on the left are
contaminated by noise and heavy aliasing. Super-resolving the probes reveals the fine-scale details
of the cell, as we can see on the right. The image is due to Veniamin Morgenshtern.

when we consider the measurement process in the frequency domain. If the cut-off frequency
of the PSF is equal to fc, the spectrum of xLR

x̂LR = φ̂ x̂ = φ̂ Π[−fc,fc]d x̂, (2)

where d is the ambient dimension, ̂denotes the frequency representation of a signal and
Π[−fc,fc]d is an indicator function that is zero out of the set [−fc, fc]d. The high frequency
information in the signal is suppressed in the data. Super-resolution aims to extrapolate this
information from the low-pass measurements.

In order to super-resolve a signal it is necessary to leverage some prior knowledge about its
structure. Otherwise the problem is hopelessly ill posed; the missing spectrum can be filled
in arbitrarily to produce estimates that correspond to the data. In this lecture we consider
signals that are well modeled as superpositions of point sources,

x :=
∑
tj∈T

cjδtj , (3)

where δτ is a Dirac measure at τ , T is a set of locations in the unit interval and the amplitudes
aj may be complex valued. In this case, the low-resolution data are of the form

xLR (t) := φ ∗ x (t) (4)

=
∑
tj∈T

cjφ (t− tj) , (5)
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as illustrated at the top of Figure 2.

Point sources are used to represent celestial bodies in astronomy, neuron spikes in neuro-
science or line spectra in signal processing and spectroscopy. In addition, locating pointwise
fluorescent probes is a crucial step in some optical super-resolution procedures capable of han-
dling more complicated objects. Techniques such as photoactivated localization microscopy
(PALM) or stochastic optical reconstruction microscopy (STORM) are based on localizing
probes that switch randomly between a fluorescent and a non-fluorescent state. To obtain
an image of a certain object, multiple frames are gathered. Each frame consists of a su-
perposition of blurred light sources that correspond to the active probes. Deblurring these
sources and combining the results allows to super-resolve the object of interest. The image
to the right of Figure 1 was generated in this way.

An additional assumption that we make in this lecture is that the PSF of the sensing mech-
anism is known. This is usually a realistic assumption in point-source super-resolution as
long as the measurement process is indeed space-invariant. In such cases the PSF can be
estimated by locating an isolated blurred source in the data. For general images or PSFs
that are not low pass, which arise for instance due to motion blurring, it is necessary to
jointly estimate the PSF and the signal; a problem known as blind deconvolution which we
will not discuss here.

An important instance of the model given by (3) and (4) is when the signal is one dimensional
and the Fourier transform of the PSF φ is constant over [−fc, fc], i.e. φ is a periodized sinc
or Dirichlet kernel. In this case, since the support of xLR is restricted to the unit interval,
it follows from the sampling theorem that its spectrum is completely determined by the
discrete samples

yk := x̂LR(k) (6)

=

∫ 1

0

exp (−i2πkt)x(dt) (7)

=
∑
tj∈T

cj exp (−i2πktj) , k ∈ Z, |k| ≤ fc, (8)

where we assume for simplicity that fc is an integer. In a more compact form,

y = Fn x (9)

where y ∈ Cn and Fn is the linear operator that maps a measure or function to its lowest
n := 2fc + 1 Fourier coefficients.
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Figure 2: Schematic illustration of spatial and spectral super-resolution.
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1.2 Spectral super-resolution

A basic problem in signal processing is to estimate the spectrum of a multisinusoidal signal

g (t) :=
∑
fj∈T

cj exp (−i2πfjt) (10)

from a finite number of samples. The corresponding spectrum of the signal is of the form

ĝ =
∑
fj∈T

cjδfj . (11)

Spectra that are composed of a superposition of Dirac measures are called line spectra.
Estimating line spectra is important for direction-of-arrival (DOA) problems in radar where
the aim is to determine the direction from which a propagating wave arrives at an array of
sensors.

Let us assume that the spectrum of g is restricted to the interval [−1/2, 1/2]. This means
that its cut-off frequency is f = 1/2. Regular samples taken at the rate dictated by the
Nyquist-Shannon theorem 2f = 1

g (k) :=
∑
fj∈T

cj exp (−i2πkfj) , ∞ ≤ k ≤ ∞, (12)

suffice to recover ĝ. Indeed, these samples g (k) are the Fourier coefficients of ĝ!

Unfortunately, in most practical situations we only have access to a finite number of samples.
Truncating the measurements in the time domain is equivalent to convolving the spectrum of
the signal with a periodized sinc. This induces aliasing in the frequency domain as depicted
in the lower half of Figure 2. Spectral super-resolution is the problem of estimating the line
spectra of g from such measurements. This exactly equivalent to the spatial super-resolution
in 1D where the PSF is a sinc. Indeed, ĝ is a superposition of Dirac measures just like x and
the measurements are a contiguous subset of the Fourier coefficients of the measure.

1.3 Deconvolution in reflection seismography

Characterizing underground geological structure, such as the strata portrayed in Figure 3,
from surface measurements is an important problem in geophysics. Reflection seismology is
a technique to achieve this by sending pulses into the ground and analyzing the reflected
signals. Figure 4 provides a cartoon description of the problem. The reflections at the
interface between two strata are governed by a reflection coefficient that corresponds to the
difference between the impedance of the two layers. Estimating the reflection coefficients and
their positions from the reflected pulse allows to determine the composition of the different
strata.

5



Figure 3: Geological strata in Salta, Argentina.
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Figure 4: Cartoon description of reflection seismology.
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Figure 5: Simplified model for a seismography problem where the aim is to estimate reflection
coefficients from bandpass measurements.

A simplified mathematical model of the measurement process is that the data are equal to
the convolution of the pulse φ and the reflection coefficients x,

y = φ ∗ x (13)

where the reflection coefficients can be modeled as a superposition of Dirac measures,

x :=
∑
tj∈T

cjδtj . (14)

The spectrum of pulses used in reflection seismology is often approximately bandpass; it is
mostly concentrated in a certain band of frequencies. If we model the pulse as being exactly
bandpass, then the spectrum of the data corresponds to a contiguous subset of Fourier
coefficients of x, or two contiguous subsets if we consider real bandpass filters as illustrated
in Figure 5. The problem is consequently very similar to the simplified models for spatial
and spectral super-resolution introduced in the previous sections.

2 Conditioning of the super-resolution problem

In this section we analyze the conditioning of the super-resolution problem when the signal
is equal to a superposition of Dirac measures and the data are equal to the first n low-pass
Fourier coefficients

y = Fn x. (15)
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Figure 6: Illustration of the minimum separation of a signal.

As we discussed in the previous lecture, a fundamental insight in the theoretical analysis of
compressed sensing is that random measurements conserve the energy of sparse signals with
high probability. More specifically, the randomized operator obeys the restricted-isometry
property (RIP). This ensures that the inverse problem of sparse recovery from random mea-
surements is well posed at least in principle.

In contrast, sparsity is not enough to make super-resolution a well posed problem. The crucial
difference between super-resolution and compressed sensing is the correlation structure of
the measurement process. The sensing operator Fc defined by (19) can be interpreted as
an infinite matrix with n rows and infinite columns parametrized by t ∈ [0, 1]. Each of
the columns is a sinusoidal atom of the form exp i2πkt for −fc ≤ k ≤ fc. If the difference
between t1 and t2 is small, the corresponding columns

(Fn)t1 =


exp−i2πfct1

exp−i2π (fc − 1) t1
· · ·

exp i2πfct1

 ≈ (Fn)t2 =


exp−i2πfct2

exp−i2π (fc − 1) t2
· · ·

exp i2πfct2

 (16)

are extremely correlated. As a result, the measurement process does not even satisfy the RIP
with sparsity level equal to two! In this case, we cannot recover a 1-sparse signal reliably in
the presence of noise. However, if the difference between t1 and t2 is large then the atoms are
not too correlated. In fact, as we shall demonstrate numerically in a moment, submatrices
corresponding to columns that are spread out are well conditioned. This suggests restricting
the class of signals of interest to signals that have a support that is not too clustered. To
this end, we define the minimum separation of the support T of a signal. The concept is
illustrated in Figure 6.

Definition 2.1 (Minimum separation). For a set of points T ⊆ [0, 1], the minimum separa-
tion (or minimum distance) is defined as the closest distance between any two elements from
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T ,
∆(T ) = inf

(t,t′)∈T : t6=t′
|t− t′|. (17)

In order to determine how the linear operator Fn acts upon signals with supports that satisfy
a certain minimum separation, we compute the singular values of the submatrix formed by
the corresponding columns. Figure 7 shows the results. For minimum separations above
0.5/fc the submatrices are very well conditioned, but as soon as the minimum separation
falls below 0.5/fc some of the singular values of the operator plummet. Below 0.35/fc a
fourth of the singular values are extremely small. Below 0.2/fc the magnitude of half of
them is negligeable. The effect becomes more pronounced as the cardinality s of the support
of the signal increases.

Note that signals in the span of the singular vectors that correspond to very small singular
values in Figure 8 are essentially mapped to zero by the low-resolution operator. These
signals are consequently almost in the null space of the measurements: they are impossible to
estimate under very small perturbations to the data even if we know the support beforehand.
As a result, a fundamental limit for signal recovery in terms of the minimum separation is
1/fc, the inverse of the cut-off frequency (it also corresponds to the width of the main lobe
of the point-spread function φ, when the PSF is a sinc). To see why, consider two signals x1
and x2 with a minimum separation just below 1/fc such their difference d := x1 − x2 has a
minimum separation under 0.5/fc. From Figure 7 we can choose d so that

Fn d = Fn x1 −Fn x2 ≈ 0. (18)

Even under very low levels of noise it will be impossible to distinguish x1 and s2 from low-
resolution data. Figure 8 illustrates this: the measurements corresponding to two signals
with disjoint supports and a minimum distance of 0.9λc for fc = 103 are indeed almost
indistinguishable. The phenomenon can be characterized theoretically in an asymptotic
setting using Slepian’s prolate-spheroidal sequences [12] (see also Section 3.2 in [2]). More
recently, [9] (see Theorem 1.3) provides a non-asymptotic analysis.

The take-home lesson is that we can only hope to achieve stable super-resolution of signals
with a minimum separation above 0.5/fc if the signal consists of a large number of point
sources. For signals with a small number of point sources, robust recovery may be possible
below that limit. However, even for very small supports, the problem is always hopelessly
ill posed for a small enough value of the minimum distance.

3 Linear methods

In this section we describe some simple linear techniques to tackle the super-resolution
problem.
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Figure 7: Singular values of the linear operator Fn when restricted to act upon signals of sparsity
s that have a minimum separation of ∆.
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Figure 8: Two signals with disjoint supports that satisfy the minimum-separation condition for
∆ (T ) = 0.9fc when fc = 103 (top left) and their spectrum (top right). Their difference (center left)
has a spectrum that is concentrated away for the low-pass band between −fc and fc (center right).
As a result, it is very difficult to distinguish the data corresponding to the two signals (bottom).
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3.1 The periodogram

As explained in Section 1.2 in the spectral super-resolution problem the data (12) correspond
to a contiguous subset of the Fourier coefficients of the signal

y = Fn x. (19)

If x corresponds to a superposition of line spectra, this is equivalent to convolving the sparse
spectrum with a periodized sinc function. The periodogram recovers this representation
by applying the adjoint of the measurement operator Fn to the data. This is essentially
equivalent to projecting the data onto the signal space.

P (t) = F∗n y (20)

=

fc∑
k=−fc

y (k) exp (i2πkt) (21)

=

fc∑
k=−fc

∑
tj∈T

cj exp (i2πktj)

 exp (i2πkt) (22)

=
∑
tj∈T

cj

fc∑
k=−fc

exp (i2πk (t− tj)) (23)

=
∑
tj∈T

cjDfc (t− tj) , (24)

where Dfc is the periodized sinc or Dirichlet kernel

Dfc (t) :=

fc∑
k=−fc

exp (i2πkt) =

{
1 if t = 0
sin((2fc+1)πt)
(2fc+1) sin(πt)

otherwise .
(25)

Just to clarify, in most applications that use the periodogram t would index the frequency
domain, not the time domain, but we keep this notation for the sake of consistency. Also, fc
no longer has a physical meaning (beyond determining the number of time-domain samples)
in contrast to spatial super-resolution where it represents the cut-off frequency of the sensing
mechanism.

Computing the periodogram does not solve the super-resolution problem, it just allows to
visualize the aliased spectrum corresponding to the data samples available in spectral super-
resolution. If the line spectra of the signal are far apart, a straightforward way to estimate
their location is to locate local maxima of P . The problem with this approach is that the
side lobes corresponding to large blurred spikes may mask the presence of smaller spikes. As
a result, the periodogram is not very useful if the spikes are not far enough from each other
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Figure 9: Example of data in spectral super-resolution generated according to (6) before (top left)
and after applying a window function (top right). No noise is added to the data. Below we can
see the periodogram (center) and windowed periodogram (bottom) computed from the data. The
scaling of the periodograms is set so that both the large and small peaks can be seen on the plot.
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or if their amplitudes differ substantially, even if no noise is present in the data. The image
at the center of Figure 9 illustrates this: detecting some of the lower-amplitude spikes from
the periodogram is impossible.

In order to alleviate this problem one can apply a window function ŵ ∈ Cn to the data
before computing the periodogram,

yŵ = y · ŵ, (26)

where · denotes pointwise multiplication. The windowed periodogram

Pŵ(f) = F∗n yŵ (27)

=
∑
tj∈T

cjw (t− tj) , (28)

where w denotes the inverse Fourier transform of the window function. Ideally, w should be
as spiky as possible to make it easier to locate the support of the signal from the windowed
periodogram. However, this is challenging due to the constraint that ŵ has finite support
and hence w is a low-pass function.

In the image on the top right of Figure 9 we apply a Gaussian window to the data. To be
more precise, we set ŵ to be a truncated Gaussian, so that w is equal to the convolution
between a periodized sinc and a periodized Gaussian. The resulting periodogram, shown at
the center of Figure 9, has much less spectral leakage from the largest signal components,
due to the fact that the Gaussian window has lower side lobes than the periodized sinc.
However, the latter is spikier at the origin, which allows to better distinguish neighboring
spikes with similar amplitudes. In general, designing an adequate window implies finding
a good tradeoff between the width of the main lobe and the height of the side lobes. We
refer the reader to [6] for a detailed account of design considerations and types of window
function. As discussed in Lecture Notes 4, windowing is also important when computing
short-time Fourier transforms.

Figure 10 compares the result of applying the periodogram and the windowed periodogram
to noisy data from two signals with different minimum separations. The signal-to-noise ratio
is 20 dB (equivalently the ratio between the `2-norm of the signal and the noise is equal to
10). When the minimum separation is large the windowed periodogram provides a relatively
good estimate of the number of point sources, although their locations do not exactly coincide
with the local maxima for some of the spikes. Without windowing, the periodogram provides
sharper localization but suffers from spurious spikes produced by the side lobes of the sinc
function. When the minimum separation is small, it is impossible to super-resolve many of
the spikes, which is not surprising: the problem becomes very ill-conditioned as discussed in
Section 2.

To conclude, the periodogram is a useful method to obtain a general idea of the spectral
structure of the signal and can provide insight as to the number of sources and their approx-
imate location, especially if the data is processed with a suitable window function and the
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Figure 10: Periodogram (left) and windowed periodogram (right) for two signals with identical
amplitudes but different minimum separations.
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support of the signal is not too clustered together. However, the method does not provide a
precise estimate of the support even in the absence of noise. This is the aim of the techniques
described in the following sections.

3.2 Local fitting

If we have low-resolution measurements of the form (4) and the signal consists of a single
blurred source then

xLR (t) := c1φ (t− t1) . (29)

In this case, it seems reasonable to estimate the location of the source by fitting the shifted
PSF to the data, for instance, by minimizing a least-squares cost function. For a single
source, performing a least-squares fit amounts to finding the shift that maximizes the inner
product between the data and the PSF φ shifted by t̃, which is denoted by φt̃. Let us assume
that xLR and φt̃ are in L2 and that ||φt̃||L2 = 1. For a fixed t̃ the best coefficient is obtained
by projecting xLR onto φt̃

〈xLR, φt̃〉 = arg min
t̃,α∈C

||xLR − αφt̃||2 . (30)

As a result, choosing the first shift is equivalent to maximizing the inner product

test = arg min
t̃

min
α∈C
||xLR − αφt̃||2

= arg min
t̃
||xLR − 〈xLR, φt̃〉 φt̃||2

= arg min
t̃
−2 |〈xLR, φt̃〉|2

= arg max
t̃
|〈xLR, φt̃〉| . (31)

This procedure is known as matched filtering in the signal-processing literature.

When more than one point source is present, the overlap between neighboring blurred sources
may be negligible if the sources are far enough with respect to the decay of the PSF. In this
case, one can just fit the PSF locally to each of them. The approach is essentially equivalent
to applying matching pursuit (Algorithm 3.2 in Lecture Notes 4) with a dictionary of shifted
copies of φ. This method is quite popular in fluorescence microscopy. However, if there is
interference between the blurred sources, then the problem becomes much more challenging.
As a result, in fluorescence microscopy the data is usually measured at a rate that ensures
a certain separation between the active fluorophores.
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4 Parametric methods for spectral super-resolution

In this section we review parametric methods for spectral super-resolution based on Prony’s
method. These algorithms take the number of line spectra of the original signal as input
and return an estimate of their location. As in our description of the periodogram, we use
the variable t to denote frequency for the sake of consistency with other sections.

4.1 Prony’s method

Prony’s method solves the spectral super-resolution problem by encoding the position of s
sources T = {t1, . . . , ts} as the zeros of a trigonometric polynomial of order s. In the absence
of noise, it turns out that we can always find such a polynomial and achieve perfect spectral
super-resolution by locating its roots.

We consider a signal x

x :=
∑
tj∈T

cjδtj , (32)

and data that correspond to the n first Fourier coefficients of x

yk := x̂ (k) , 0 ≤ k ≤ n− 1. (33)

If we set n := 2fc + 1, this model is essentially equivalent to (6).

The following lemma shows that for any x of the form (32) there exists a nonzero polynomial
of order s which is exactly zero on the support of the x.

Lemma 4.1 (Existence of Prony polynomial). Assume that x is as in (3) and |T | = s, then

Pprony(t) :=
s∏
j=1

(1− exp (i2π(t− tj))) (34)

= 1 +
s∑
l=1

vl exp (i2πlt) , v0 := 1, (35)

is a nonzero polynomial of order s with roots located exactly on T .

Proof. Since v0 = 1 the polynomial is nonzero. By construction Pprony(tj) = 0 for every
tj ∈ T .

If we are able to compute such a polynomial, then finding its roots immediately reveals the
support of x. The problem is how to compute Pprony from the available data y. Prony’s
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method consists of setting up a system of linear equations that only depends on y such that
the solution is equal to the coefficients of Pprony.

Since Pprony is zero wherever x is nonzero, the inner product of x and Pprony is equal to zero,

〈Pprony, x〉 =

∫ 1

0

Pprony(t)x(dt) (36)

=
s∑
j=0

cj exp (−i2πltj) (1− exp (i2π(tj − tj))) (37)

= 0. (38)

By Parseval’s Theorem this inner product equals the inner product between the Fourier
coefficients of x and Pprony which implies

〈v, x̂〉 = 〈Pprony, x〉 = 0. (39)

We can use this identity to obtain an equation tying the coefficient vector v to the data.

0 = 〈v, x̂〉 =
∞∑

k=−∞
vk x̂ (k) (40)

=
s∑
l=0

vl x̂ (k) (41)

=
s∑
l=0

vl y (k) if s+ 1 ≤ n. (42)

In order to estimate v we need at least s − 1 other equations. Consider taking the inner
product between the coefficients of Pprony and x̂ shifted by k′, which we denote by

x̂k′ := x̂ (k + k′) . (43)

By basic Fourier identities, x̂k′ is the Fourier representation of exp (2πk′t)x. This measure
has exactly the same support as x. As a result, we can repeat the same argument as above
to conclude that

0 = 〈Pprony, exp (2πk′t)x〉 (44)

= 〈v, x̂k′〉 (45)

=
s∑
l=0

vk y (k + k′) if s+ k′ ≤ n− 1 (46)

= 0. (47)

If we select k′ to be between 0 and s − 1 we obtain a system of s equations. This system
only involves the data y and the unknown coefficients v as long as n ≥ 2s.

18



No noise SNR = 140 dB

Signal (magnitude)

Prony polynomial (magnitude)

Signal (magnitude)

Prony polynomial (magnitude)

Figure 11: Prony polynomial applied on noiseless data (left). The image on the right shows the
effect of adding a very small quantity of noise to the data. The roots of the polynomial no longer
coincide with the support of the original signal. Note that the vertical axis is scaled differently in
the two images.

Prony’s method consists of solving this system and then decoding the support of the signal
by rooting the corresponding polynomial. For simplicity we assume that n = 2s.

Algorithm 4.2 (Prony’s method). The input to the algorithm is the cardinality of the
support s and the data y, which are assumed to be of the form (33).

1. Form the system of equations
y1 y2 · · · ys
y2 y3 · · · ys+1

· · · · · · · · · · · ·
ys ys+1 · · · yn−1



ṽ1
ṽ2
· · ·
ṽs

 = −


y0
y1
· · ·
ys−1

 . (48)

2. Solve the system to obtain v1, . . . , vs and set v0 = 1.

3. Root the polynomial corresponding to v0, . . . , vs to obtain its s roots z1, . . . , zs.

4. For every root on the unit circle zj = exp (i2πτ) include τ in the estimated support.

This procedure is guaranteed to achieve exact recovery of the original signal.

Lemma 4.3. In the absence of noise, the output of Prony’s method is equal to the support
of the original signal.
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Proof. The coefficients of the polynomial (35) are a feasible solution for the system of equa-
tions (48). In fact, they are the unique solution. To show this we compute the factorization

y1 y2 · · · ys

y2 y3 · · · ys+1

· · · · · · · · · · · ·
ys ys+1 · · · yn−1

 = (49)


e−i2πt1 e−i2πt2 · · · e−i2πts

e−i2π2t1 e−i2π2t2 · · · e−i2π2ts

· · · · · · · · · · · ·
e−i2πst1 e−i2πst2 · · · e−i2πsts




c1 0 · · · 0

0 c2 · · · 0

· · · · · · · · · · · ·
0 0 · · · cs




1 e−i2πt1 · · · e−i2π(s−1)t1

1 e−i2πt2 · · · e−i2π(s−1)t2

· · · · · · · · · · · ·
1 e−i2πts · · · e−i2π(s−1)ts

 .
(50)

The diagonal matrix is full rank as long as all the coefficients cj are nonzero, whereas the
two remaining matrices are full rank by the following lemma, proved in Section A.1 of the
appendix (set zj := exp (−i2πtj)).
Lemma 4.4 (Vandermonde matrix). For any distinct set of s nonzero complex numbers
z1, z2, . . . , zs and any positive integers m1,m2, s such that m2−m1 +1 ≥ s the Vandermonde
matrix 

zm1
1 zm1

2 · · · zm1
s

zm1+1
1 zm1+1

2 · · · zm1+1
s

zm1+2
1 zm1+2

2 · · · zm1+2
s

· · ·
zm2
1 zm2

2 · · · zm2
s


(51)

is full rank.

As a result, the matrix in (48) is full rank, so the system of equations has a unique solution
equal to (35). This completes the proof, as rooting (35) obviously yields the support of the
signal.

Unfortunately, Prony’s method as presented above cannot be applied to real data even if the
signal-to-noise ratio is exceptionally high. The image on the left of Figure 11 shows how the
Prony polynomial allows to super-resolve the support to very high accuracy from noiseless
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data. However, on the right we see the result of applying the method to data that have a
very small amount of noise (the ratio between the `2 norm of the noise and the noiseless
data is around 10−8!). The roots of the Prony polynomial are perturbed away from the
points of the unit circle that correspond to the support, so that it is no longer possible to
accurately locate the support of the signal. It is consequently necessary to adapt the method
to deal with noisy data if there is to be any hope of applying it in any realistic scenario. The
following sections discuss such extensions.

4.2 Subspace methods

In order to motivate subspace-based methods to tackle noisy data, we first describe an
alternative interpretation of Prony’s method.

Solving the system (48) is essentially a way to find a nonzero vector in the null space of
Y (s+ 1)T , where Y (m) is defined for any integer m as the Hankel matrix

Y (m) :=


y0 y1 · · · yn−m
y1 y2 · · · yn−m+1

· · · · · · · · · · · ·
ym−1 ym · · · yn−1

 . (52)

The vector in the null space of Y (s+ 1)T corresponds to the coefficients of the Prony poly-
nomial, which we can root to find the support of the signal.

Recall that in the absence of noise the data are of the form

yk := x̂ (k) (53)

=
∑
tj∈T

cje
−i2πktj , 0 ≤ k ≤ n− 1. (54)

Consider the decomposition

Y (m) =
[
a0:m−1 (t1) a0:m−1 (t2) · · · a0:m−1 (ts)

]

c1 0 · · · 0

0 c2 · · · 0

· · · · · · · · · · · ·
0 0 · · · cs




a0:n−m (t1)

T

a0:n−m (t2)
T

· · ·
a0:n−m (ts)

T


= A0:m−1 (T ) C A0:m (T )T , (55)
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where for k > 0 we define

a0:k (t) :=



1

e−i2πt

e−i2π2t

· · ·
e−i2πkt


, A0:k (T ) :=

[
a0:k (t1) a0:k (t2) · · · a0:k (ts)

]
. (56)

This decomposition suggests an alternative way of estimating the support T from Y (m):
finding sinusoidal atoms a0:m−1 (t) that are in the column space of Y (m+ 1). Lemma 4.5
below proves that the only atoms of this form that belong to the column space of Y (m) are
precisely a0:m−1 (t1), a0:m−1 (t2), . . . , a0:m−1 (ts).

In order to make this procedure robust to noise, in practice we check what atoms are close
to the column space of Y (m). To quantify this we compute the orthogonal complement N
of the column space of Y (m) and construct the pseudospectrum

PN (t) = log
1

|PN (a0:m−1 (t))|2
, (57)

where PN denotes a projection onto N . If an atom is almost orthogonal to N then PN will
have a very large value at that point.

In order to find the subspace N , one possibility is computing the null space of the empirical
covariance matrix

Σ (m) =
1

n−m+ 1
Y Y ∗ (58)

=
1

n−m+ 1

n−m∑
j=0


yj
yj+1

· · ·
yj+m−1

 [yj yj+1 · · · yj+m−1
]
. (59)

The following lemma shows that the maxima of the pseudospectrum reveal the support of
the signal in the noiseless case.

Lemma 4.5. Let N be the null space of the empirical covariance matrix Σ (m) for m ≥ s.
If the data are of the form (53),

PN (tj) =∞, for tj ∈ T, (60)

PN (t) <∞, for t /∈ T. (61)
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No noise SNR = 140 dB

Figure 12: Pseudospectrum corresponding to the data used to construct the Prony polynomials
in Figure 11. The true location of the support is marked with red circles.

Proof. By (55) the atoms a0:m−1(t1), . . . , a0:m−1(ts) span the column space of Y (m) and
Σ (m). As a result they are orthogonal to the null space N of the empirical covariance
matrix, which proves (60).

We prove (61) by contradiction. The atoms a0:m−1 (t1), . . . , a0:m−1 (ts) span the orthogonal
complement to N . As a result, if a0:m−1 (t) is orthogonal to N for some t then a0:m−1 (t) is
in the span of a0:m−1 (t1), . . . , a0:m−1 (ts). This would imply that AT0:m−1 (T ∪ {t}) is not full
rank, which can only hold if t ∈ T by Lemma 4.4.

Figure 12 shows the pseudospectrum corresponding to the data used to construct the Prony
polynomials in Figure 11 when n = 2s− 1. In the noiseless case, the pseudospectrum allows
to locate the support T perfectly. Unfortunately, the locations of the local maxima are
severely perturbed by even a very small amount of noise.

In order to obtain an estimate that is robust to noise, we need to use more data to estimate
the support of the signal. The definition of the empirical covariance matrix Σ (m) in (58)
provides a way to do this, we can just average over more data. If we fix m and increase
n, the column space of Σ (m) remains the same, but the averaging process may cancel out
the noise to some extent. This is the principle underlying the multiple-signal classification
(MUSIC) [1, 11].

Algorithm 4.6 (Multiple-signal classification (MUSIC)). The input is the cardinality of the
support s, the data y, which are assumed to be generated as in (66) and the value of the
parameter m ≥ s.
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SNR = 40 dB SNR = 1 dB

Figure 13: Pseudospectrum constructed by the MUSIC algorithm with n = 81 and m = 30 for
the same signal used in Figure 11 and different noise levels. The true location of the support is
marked with red circles.

1. Build the empirical covariance matrix Σ (m) defined in (58).

2. Compute the eigendecomposition of Σ (m) to select the subspace N corresponding to
the m− s smallest eigenvalues.

3. Output an estimate of s estimated positions for the support by locating the s highest
peaks of the pseudospectrum

PN (t) = log
1

|PN (a0:m−1)|2
, (62)

By Lemma 4.5, in the absence of noise MUSIC allows to estimate the support of the signal
perfectly. When additive Gaussian noise is present in the data, MUSIC is much more robust
than Prony’s method. Figure 13 shows the result of applying MUSIC algorithm with n = 81
and m = 30 to the same data used in Figure 11 and different noise levels. The method is
able to locate the support of the signal at a noise level of 40 dB. At 1 dB the pseudospectrum
does not detect the smaller spikes (the true magnitudes are shown in Figure 11), but the
estimate for the rest is still rather accurate.

In order to provide a theoretical justification of why MUSIC is stable we study the method
in an asymptotic regime where the two following assumptions on the signal and the noise
are met:
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• Assumption 1: The original signal,

x =
∑
tj∈T

cjδtj =
∑
tj∈T
|cj| exp (iφj) δtj , (63)

follows a probabilistic model where the phases φj are independent and uniformly dis-
tributed in the interval [0, 2π], whereas the amplitudes are arbitrary and deterministic.
Note that this implies that the expectation of x is equal to zero and that the covariance
matrix equals

E [cc∗] = Dc :=


|c1|2 0 · · · 0

0 |c2|2 · · · 0
· · · · · · · · · · · ·
0 0 · · · |cs|2

 . (64)

• Assumption 2: The measurements are corrupted by white Gaussian noise with zero
mean and standard deviation σ, which is independent from the signal. At time k we
measure

yk :=

∫ 1

0

exp (−i2πkt)x(dt) + zk (65)

=
∑
tj∈T

cj exp (−i2πktj) + zk, (66)

where z ∼ N(0, σ2I) is a zero-mean Gaussian random vector with covariance matrix
σ2I.

Under these assumptions, a sequence of m measurements y0, y1, . . . , ym−1 is a random vector
of the form

ỹ = A0:m−1 (T ) c+ z, (67)

The following proposition, proved in Section A.2 of the appendix, characterizes the covariance
matrix of ỹ.

Proposition 4.7. Let ỹ be an m dimensional vector of data satisfying Assumptions 1 and
2. The eigendecomposition of the covariance matrix of ỹ is equal to

E [ỹỹ∗] =
[
US UN

] [Λ + σ2Is 0
0 σ2In−s

] [
U∗S
U∗N

]
. (68)

The eigenvectors are divided into two unitary matrices.

• US ∈ Cm×s contains an orthonormal basis of the signal subspace which corresponds to
the span of a0:m−1 (t1), . . . , a0:m−1 (ts).
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Figure 14: Result of applying MUSIC to data with an SNR of 20 dB for two different minimum
separations. In both cases, fc = 40 (so n = 81) and m = 40.

• UN ∈ Cm×(m−s) is a unitary matrix spanning the noise subspace, which is the orthog-
onal complement of the signal subspace.

In addition, all eigenvalues are positive: σ2Ik ∈ Ck×k is a diagonal matrix with diagonal
entries equal to σ2 and Λ is another diagonal matrix with positive entries.

This proposition provides a rather intuitive interpretation of the MUSIC algorithm. The
eigendecomposition of the covariance matrix of the data allows to estimate a signal subspace
and a noise subspace. As a result, the term subspace methods is often used to describe MUSIC
and related algorithms. Computing the pseudospectrum from these subspaces allows us to
locate the support of the signal.

In practice, we approximate the covariance matrix using the empirical covariance matrix
Σ (m) defined in (58). Asymptotically, if we fix s and m and let n→∞, Σ (m) converges to
the true covariance matrix (see Section 4.9.1 in [13]). However that this does not necessarily
imply that MUSIC will allow to find the support! To ensure that we can actually identify the
noise subspace correctly, the eigenvalues in Λ must all be large with respect to the variance
of the noise σ2. In the case of signals that have a small separation (with respect to n),
some of these eigenvalues may be small due to the correlation between the atoms a0:m−1 (t1),
. . . , a0:m−1 (ts). This is not surprising because at small separations the inverse problem is ill
posed, as explained in Section 2. Figure 14 shows the result of applying MUSIC to data with
the same noise level for two different minimum separations. When the minimum separation
is too small the method fails to detect some of the smaller spikes.

Figure 15 compares the performance of MUSIC for different noise levels and different values
of the parameter m. On the left column, we see the decay of the eigenvalues of the empirical
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Figure 15: Eigenvalues of the empirical covariance matrix Σ (m) used by MUSIC (left) and corre-
sponding estimates (right) for different values of the parameter m and of the SNR. The cardinality
of the true support is s = 7.
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Figure 16: Line-spectra estimates obtained by Root MUSIC when the estimated number of sources
is equal to s− 1 (left) and s + 1 (right) for the same data as in Figure 15.

covariance matrix. At high signal-to-noise ratios (SNR) there is a clear transition between the
eigenvalues corresponding to the signal subspace (in this case s = 7) and the noise subspace,
but this is no longer necessarily the case when the noise is increased. On the right column,
we see the performance of the algorithm for different values of the SNR and the parameter
m. At relatively high SNRs MUSIC is an effective algorithm as long as the assumptions
on the signal (random phases), noise (Gaussian) and measurement model (equispaced time
samples) are satisfied. In Figure 16 we show the result of running the algorithm for the
wrong value of the parameter s. If the value is not too different to s and the SNR not too
low, the method is still capable of approximately locating the support.

4.3 Matrix-pencil methods

In this section we describe an alternative approach to perform spectral super-resolution. In
the previous section, we saw that MUSIC exploits the fact that in the absence of noise the
matrix

Y0 =


y0 y1 · · · yn−m
y1 y2 · · · yn−m+1

· · · · · · · · · · · ·
ym−1 ym · · · yn−1

 (69)
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has the rank-s factorization

Y0 = A0:m−1 (T ) C A0:n−m (T )T (70)

=
∑
tj∈T

cj a0:m−1 (tj) a0:n−m (tj)
T (71)

by computing the eigendecomposition of the empirical covariance matrix. Recall that

Am1:m2 (T ) :=
[
am1:m2 (t1) am1:m2 (t2) · · · am1:m2 (ts)

]
. (72)

Matrix-pencil methods make use of this factorization in a different way.

Let us begin by defining a matrix pencil and its rank-reducing values.

Definition 4.8 (Matrix pencil). The matrix pencil of two matrices M1 and M2 is the matrix-
valued function

LM1,M2 (µ) := M2 − µM1 (73)

where µ ∈ C.

The set of rank-reducing values R of a matrix pencil satisfy

rank (LM1,M2 (µ)) = rank (LM1,M2 (µj)) + 1 for all µj ∈ R and µ /∈ R. (74)

Now consider the matrix

Y1 =


y1 y2 · · · yn−m+1

y2 y3 · · · yn−m+2

· · · · · · · · · · · ·
ym ym+1 · · · yn

 (75)

which can be written as

Y1 = A1:m (T ) C A0:n−m (T )T (76)

=
∑
tj∈T

cj a1:m (tj) a0:n−m (tj)
T . (77)

The insight behind matrix-pencil methods for spectral super-resolution is that exp (i2πt1),
exp (i2πt2), . . . , exp (i2πts) are all rank-reducing values of the matrix pencil LY0,Y1 .

Lemma 4.9. exp (i2πτ) is a rank-reducing value of LY0,Y1 if and only if τ ∈ T .

This lemma, proved in Section A.3 of the appendix implies that we can estimate the support
of the signal by finding the rank-reducing numbers of the matrix pencil LY0,Y1 . The following
lemma, proved in Section A.4 of the appendix, shows how to compute them.
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Lemma 4.10. Let Y0 = U0 Σ0 V
∗
0 be the singular-value decomposition of Y0. The s eigenval-

ues of the matrix

M = V0 Σ−10 U∗0 Y1 (78)

are equal to exp (i2πtj) for 1 ≤ j ≤ s.

The matrix-pencil algorithm [7] estimates the rank-reducing values from the noisy data,
hoping that the noise will not disrupt the eigenvalues of M too much.

Algorithm 4.11 (Matrix-pencil method). The input is the cardinality of the support s, the
data y, which are assumed to be generated as in (66) and the value of the parameter m.

1. Build the matrices Y0 and Y1.

2. Compute the singular-value decomposition of Y0 = U0 Σ0 V
∗
0 .

3. Compute the s largest eigenvalues λ1, λ2, . . . , λs of the matrix

M = V0 Σ−10 U∗0 Y1. (79)

4. Output τ such that λj = exp (i2πτ) for 1 ≤ j ≤ s.

For more information we refer the interested reader to Chapter 4 of [13], where it is re-
ported that matrix-pencil algorithms exhibit a similar performance to subspace methods.
For theoretical guarantees under a minimum-separation condition see [9].

5 Super-resolution via convex programming

In this section we describe how to perform super-resolution by penalizing a sparsity-inducing
norm. This is reminiscent of compressed sensing, which consists of estimating sparse signals
from randomized measurements via `1-norm minimization. As we have explained in the
previous sections, in super-resolution problem the signal is of the form

x :=
∑
tj∈T

cjδtj , (80)

and the measurements are given by

y = Fn x. (81)

Since the signal can be supported anywhere in the unit interval, we cannot use the `1 norm
to induce sparsity, as it is only defined for finite-dimensional vectors. In order to promote
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Original signal Min. `2-norm estimate Min. `1-norm estimate

Figure 17: Results of applying `2 and `1-norm minimization to the inverse problem described in
Figure 5. `1-norm minimization achieves exact recovery.

sparsity within a continuous interval, we resort to a continuous counterpart of the `1 norm:
the total-variation (TV) norm. The total-variation norm of a measure x is defined as

||x||TV = sup
||f ||∞≤1,f∈C(T)

∫
T
f (t)x (dt) . (82)

For a superposition of Dirac deltas
∑

j ajδtj , this norm is equal to the `1 norm of the co-
efficients, i.e. ||x||TV =

∑
j |aj|. The term total-variation norm is somewhat unfortunate

because total variation may also refer to the `1 norm of the discontinuities of a piecewise-
constant function, as we have seen in previous lectures.

Super-resolution via TV-norm minimization requires solving the optimization problem

minimize ||x̃||TV (83)

subject to Fn x̃ = y, (84)

where the minimization is carried out over the set of all finite complex measures x̃ supported
on [0, 1]. This infinite-dimensional convex problem can be solved by recasting it into a finite-
dimensional problem involving matrices (more specifically a semidefinite program), as we
will see later on in the course.

If the support of the signal is restricted to lie on a grid, problem 83 is equivalent to `1-norm
minimization, exactly as in compressed sensing. Figure 17 shows the result of applying this
algorithm to the reflection-seismography inverse problem described in Figure 5, where `1-
norm minimization achieves exact recovery. In fact, it was geophysicists working in this area
who first suggested using `1-norm minimization to tackle underdetermined linear inverse
problems. Figure 18 shows results on real seismography data from a paper in 1979 [14].
These results spurred the interest of statisticians like David Donoho, who would eventually
spearhead the use of `1-norm minimization in other areas of signal processing and compressed
sensing.
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Figure 18: Result of applying `1-norm minimization to real seismography data from a paper in
1979 [14].
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Figure 19: Interpolating kernel K used in the proof of Theorem 5.1 (left), along with its asymptotic
decay (center) and its low-pass spectrum (right).

5.1 Exact recovery

The following theorem establishes that TV-norm minimization succeeds for signals that have
a minimum separation of 1.26/fc, very near the limit of 1/fc at which the problem becomes
ill posed.

Theorem 5.1 (Total-variation minimization). Let T be the support of a signal x. If the
minimum separation obeys

∆(T ) ≥ 1.26 /fc (85)

then x is the unique solution to (83).

The proof of this theorem is based on the construction of a dual certificate for the TV norm.
To simplify matters, while still conveying the main ideas, let us assume that the signal lies
on a grid and we are minimizing the `1 norm. In that case, as we saw in the lecture on
compressed sensing, a dual certificate is a vector v such that q = F∗nv interpolates the sign
pattern of the signal on its support and has magnitude smaller than one on its off-support.
In compressed sensing q is a superposition of random vectors, whereas in super-resolution
q is a superposition of low-pass trigonometric polynomials (the rows of the linear operator
Fn). This difference is crucial: if the support of the signal is cluttered together and the sign
of its coefficients varies rapidly, it may not be possible to achieve the interpolation with a
bounded polynomial.

We will sketch the proof of Theorem 5.1, which can be found in [2, 4]. The construction
of dual certificates for compressed sensing typically relies on concentration arguments from
probability theory. However there is nothing random about Theorem 5.1. We resort to a
different approach: interpolating the sign of the signal using a low-pass kernel K to construct
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Figure 20: Dual-polynomial if we only use K to interpolate the sign pattern (left), as opposed to
also incorporating its derivative into the construction and forcing the derivative of the polynomial
to be zero at the interpolation points (right).

q directly. Since any shift of a low-pass kernel is low pass, this means that q = F∗nv for some
v ∈ Cn. Figure 19 shows the kernel and its spectrum.

Interpolating the sign pattern with an adequately selected kernel is not sufficient to produce
a valid construction. The reason is that the magnitude of the polynomial tends to exceed one
near the elements of the support T . This can be avoided, however, by forcing the derivative
of the kernel to be zero at those points. As a result, the magnitude of the polynomial has
a local extremum at the interpolation point and its magnitude remains below one for a
sufficiently large minimum separation, as illustrated by Figure 20. In order to enforce the
extra constraint on the derivative of q, we need more degrees of freedom in the construction.
For this purpose, we incorporate the derivative of the kernel, so that the q is of the form

q(t) =
∑
tj∈T

αjKγ(t− tj) + βjK
′

γ(t− tj), (86)

where α, β ∈ C|T | are coefficient sequences satisfying

q(tk) =
∑
tj∈T

αjKγ (tk − tj) + βjK
′

γ (tk − tj) = vj, tk ∈ T, (87)

q
′

R(tk) + iq
′

I(tk) =
∑
tj∈T

αjK
′

γ (tk − tj) + βjK
′′

γ (tk − tj) = 0, tk ∈ T, (88)

and qR and qI are the real and imaginary parts of q. Since the derivative of a low-pass
function is still low pass, q is in the row space of the linear operator Fc. All is left is to show
that the system of equations has a solution and that the magnitude of q is indeed bounded
on the complement of T . We refer the interested reader to [2, 4] for the gory details.
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Figure 21: Result of applying TV-norm minimization to super-resolve data with an SNR of 20
dB for two different minimum separations. In both cases, fc = 40.

5.2 Super-resolution from noisy data

Consider the additive-noise model

y = Fnx+ z (89)

where z is a noise term. In order to account for the perturbation, we can adapt Problem (83)
by using an inequality constraint to quantify the uncertainty,

min
x̃
||x̃||TV subject to ||Fnx̃− y||22 ≤ δ, (90)

where δ is an estimate of the noise level. Alternatively, we could also consider a Lagrangian
formulation of the form

min
x̃
||x̃||TV + γ ||Fnx̃− y||22 , (91)

where the regularization parameter γ > 0 governs the tradeoff between data fidelity and
the sparsity of the estimate. Figure 21 shows the result of applying TV-norm minimization
to super-resolve data with an SNR of 20 dB for two different minimum separations. For a
theoretical analysis of the performance of Problem 90 see [3].
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A Proofs

A.1 Proof of Lemma 4.4

Let us define

Z :=



1 1 · · · 1

z1 z2 · · · zs

z21 z22 · · · z2s

· · ·
zs−11 zs−12 · · · zs−1s


. (92)

The determinant of the first s rows of our matrix of interest is equal to

|Z|
∏

1≤i≤s
zi =

∏
1≤j<k≤s

(zj − zk)
∏

1≤i≤s
zi 6= 0 (93)

This implies that the first s rows are linearly independent and consequently that the whole
matrix is full rank.

A.2 Proof of Proposition 4.7

Due to the assumptions,

E [yy∗] = E
[
A0:m−1cc

∗A∗0:m−1 + A0:m−1cz
∗ + zc∗A∗0:m−1 + zz∗

]
(94)

= A0:m−1E [cc∗]A∗0:m−1 + A0:m−1E [c] E [z∗] + E [z] E [c∗]A∗0:m−1 + E [zz∗] (95)

= A0:m−1DcA
∗
0:m−1 + σ2I. (96)

We begin by writing the full eigendecomposition of A0:m−1DcA
∗
0:m−1, which is a positive

semidefinite symmetric matrix of rank s. By the spectral theorem, this matrix has a singular
value decomposition of the form

A0:m−1DcA
∗
0:m−1 =

[
US UN

]Λ 0

0 0

U∗S
U∗N

 , (97)

where US and UN are as defined in the statement of the proposition. Λ is a diagonal matrix
with positive entries, because A0:m−1DcA

∗
0:m−1 is positive semidefinite. Indeed if we define
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√
Dc, a diagonal matrix with |c| in the diagonal, we have that for any nonzero vector u

u∗A0:m−1DcA
∗
0:m−1u = u∗A0:m−1

√
Dc

√
DcA

∗
0:m−1u (98)

=
∣∣∣∣∣∣√DcA

∗
0:m−1u

∣∣∣∣∣∣2
2

(99)

> 0, (100)

where the inequality is strict because
√
DcA

∗
0:m−1 is full rank.

To complete the proof, we decompose the identity matrix using US and UN to obtain

E [yy∗] = A0:m−1DcA
∗
0:m−1 + σ2I (101)

=
[
US UN

]Λ 0

0 0

U∗S
U∗N

+
[
US UN

]σ2Is 0

0 σ2In−s

U∗S
U∗N

 . (102)

A.3 Proof of Lemma 4.9

For any τ ∈ T

a1:m (τ) = exp (i2πτ) a0:m−1 (τ) (103)

so

LY0,Y1 (exp (i2πτ)) = Y1 − exp (i2πτ)Y0 (104)

=
∑
tj∈T

cj (a1:m (tj)− exp (i2πτ) a0:m−1 (tj)) a0:n−m (tj)
T (105)

=
∑

tj∈T/{τ}
cj (a1:m (tj)− exp (i2πτ) a0:m−1 (tj)) a0:n−m (tj)

T , (106)

which has rank s− 1.

If τ /∈ T the column space of LY0,Y1 (exp (i2πτ)) is spanned by exp (i2πt1), . . . , exp (i2πts)
and exp (i2πτ). By Lemma 4.4 these vectors are linearly independent, so the matrix pencil
has rank s.

A.4 Proof of Lemma 4.10

From (103) we have

A0:m−1 (T ) = A0:m−1 (T ) Φ, (107)
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where

Φ :=


exp (i2πt1) 0 · · · 0

0 exp (i2πt2) · · · 0

· · · · · · · · · · · ·
0 0 · · · exp (i2πts)

 . (108)

Y0 can be decomposed as

Y0 = A0:m−1 (T )CA0:n−m (T )T . (109)

Let U ΣV ∗ be the singular value decomposition of C A0:n−m (T )T , where U ∈ Cs×s, Σ ∈ Cs×s

and V ∈ Cn−m+1×s. If the coefficients c1, . . . , cs are nonzero then C is full rank. A0:n−m (T )T

is full rank by Lemma 4.4. This implies that V Σ−1 U∗ is a right inverse of C A0:n−m (T )T ,

C A0:n−m (T )T V Σ−1 U∗ = I. (110)

We now use these facts to decompose Y1,

Y1 = A1:m (T ) C A0:n−m (T )T (111)

= A0:m−1 (T ) ΦC A0:n−m (T )T by (107) (112)

= A0:m−1 (T ) C A0:n−m (T )T V Σ−1 U∗ΦC A0:n−m (T )T by (110) (113)

= Y0 V Σ−1 U∗ΦU ΣV ∗. (114)

The row space of Y0 is the same as the row space of CA0:n−m (T )T because A0:m−1 (T )T is
full rank by Lemma 4.4. This implies that

V0 Σ−10 U∗0 Y0V = V0V
∗
0 V (115)

= V. (116)

As a consequence

V0 Σ−10 U∗0 Y1 = V0 Σ−10 U∗0Y0 V Σ−1 U∗ΦU ΣV ∗ (117)

= V Σ−1 U∗ΦU ΣV ∗ (118)

= P−1

Φ 0

0 0

P, (119)

where

P :=

U 0

0 I

Σ 0

0 I

V ∗
V ∗⊥

 (120)

and V⊥ is any orthogonal matrix whose column space is the orthogonal complement to the
column space of V . This establishes that the nonzero eigenvalues of the matrix V0 Σ−10 U∗0 Y1
correspond to the diagonal entries of Φ.

39


	Super-resolution of point sources
	Spatial super-resolution
	Spectral super-resolution
	Deconvolution in reflection seismography

	Conditioning of the super-resolution problem
	Linear methods
	The periodogram
	Local fitting

	Parametric methods for spectral super-resolution
	Prony's method
	Subspace methods
	Matrix-pencil methods

	Super-resolution via convex programming
	Exact recovery
	Super-resolution from noisy data

	Proofs
	Proof of Lemma 4.4
	Proof of Proposition 4.7
	Proof of Lemma 4.9
	Proof of Lemma 4.10


