
Lecture notes 4 February 22, 2016

Sparse linear models and denoising

1 Introduction

1.1 Definition and motivation

Finding representations of signals that allow to process them more effectively is a central
problem in signal processing and data analysis. We will consider linear models, where the
signal x is a represented as a sum of weighted atoms φ1, φ2, . . . , φm

x =
m∑
i=1

ci φi. (1)

The set of atoms {φ1, φ2, . . . , φm} is often called a dictionary. The m-dimensional vector of
coefficients c is the representation of the signal x in the dictionary.

A sparse linear model consists of the sum of a small number of atoms selected from a certain
dictionary

x =
∑
i∈I

ci φi |I| � m, (2)

here I is a set of indices of atoms in the dictionary. Its cardinality is significantly smaller
than the number of atoms in the dictionary.

Signals in specific applications tend to have similar characteristics. In this lecture we will
study how to use sparse linear models to exploit this common structure and enhance data
analysis in applications such as compression and denoising. These models may also be
applied to tackle inverse problems, as we will see in the next couple of lectures.

Finding dictionaries that are able to represent classes of signals, such as images or speech,
parsimoniously has been an extremely active area of research in the last 30 years. It is very
related to the problem of computing useful features in machine learning. There are two main
approaches to building sparsifying dictionaries. The first is to use domain knowledge and
intuition. This is the approach on which we will focus in this lecture. The second approach
is to learn the transformation directly from a database of signals in the class of interest. We
will study such methods later on in the course.



1.2 Bases and overcomplete dictionaries

If the atoms of the dictionary {φ1, . . . , φn} form an orthonormal basis of Rn (or Cn) fitting
the coefficients of a linear model is extremely simple. If (1) and the atoms are orthonormal
then

ci = 〈φi, x〉 . (3)

The coefficients are obtained by computing inner products with the atoms. The representa-
tion is simply

x =
m∑
i=1

〈φi, x〉φi. (4)

If we construct a matrix using the atoms as columns

U :=
[
φ1 φ2 · · · φn

]
(5)

then c = UTx (or c = U∗ in the complex case).

If the atoms {φ1, . . . , φn} form a basis, then the matrix

B :=
[
φ1 φ2 · · · φn

]
, (6)

has an inverse matrix B−1. The rows of B−1, which we denote by θ1, θ2, . . . , θn, can be
interpreted as dual atoms. We have

x = BB−1x =
m∑
i=1

〈θi, x〉φi (7)

so

ci = 〈θi, x〉 . (8)

If the atoms {φ1, . . . , φm} are linearly independent and m > n, then the dictionary

D :=
[
φ1 φ2 · · · φm

]
(9)

is overcomplete and no longer has an inverse. There are two alternative ways in which we
can use a given overcomplete dictionary to define a sparse linear model:

1. Synthesis: The synthesis sparse model assumes that there is a sparse m-dimensional
vector of coefficients c such that

x = Dc. (10)

As we will see, finding such a c from a given x is not necessarily an easy task.
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2. Analysis: In the analysis sparse model assumes that

DTx (11)

is sparse, i.e. that the signal has nonzero correlation with a small number of atoms in
the dictionary.

If the dictionary is an orthonormal basis, both models are equivalent.

2 Linear transforms

In this section we describe some of the most important transforms in signal processing.

2.1 Frequency representation

The frequency decomposition or spectrum of a function is obtained by representing the
function as a superposition of sinusoids. To make this more formal, let us consider an
infinite dictionary of sinusoids

φk :=
{
e2πkt = cos (2πkt) + i sin (2πkt) , k ∈ Z

}
. (12)

Recall that L2 ([0, 1]), the space of square-integrable functions defined on the unit interval,
is a Hilbert space when endowed with the inner product

〈f, g〉 =

∫ 1

0

f (t)g (t) d t. (13)

It is not difficult to check that the dictionary of sinusoidal is orthonormal under this inner
product: the atoms are mutually orthogonal and have unit norm.

The Fourier series coefficients of a signal f ∈ L2 are obtained by taking its inner product
with atoms from the dictionary,

ck := 〈φk, f〉 (14)

=

∫ 1

0

f (t) e−i2πkt d t. (15)

The Fourier series of order n of f is defined as

Sn (t) :=
n∑

k=−n
cke

i2πkt =
n∑

k=−n
〈φk, f〉φk. (16)
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Signal DCT coefficients

Figure 1: A signal that is sparse in the DCT dictionary.

Signal Spectrum

Figure 2: Electrocardiogram signal (left) and the magnitude of its spectrum (right).
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It turns out that the dictionary is actually an orthonormal basis for L2, since

lim
n→∞

||f (t)− Sn (t)|| = 0 for all f ∈ L2 . (17)

This is a classical result, we refer to any text on Fourier analysis for the proof.

The discrete Fourier transform (DFT) is a discrete counterpart to the Fourier series. It maps
vectors in Cn to their decomposition in terms of discrete sinusoids of the form

φk =
1√
n


1

e
i2πk
n

e
i2πk2
n

· · ·
e
i2πk(n−1)

n

 , 0 ≤ k ≤ n− 1. (18)

This dictionary is an orthonormal basis of Cn. The corresponding matrix is known as the
DFT matrix,

F :=
[
φ0 φ1 · · · φn−1

]
, (19)

DFT {x} := Fx. (20)

The fast Fourier transform (FFT) algorithm allows to compute the DFT in O (n log n).
This efficiency is crucial in practical applications. The discrete cosine transform (DCT)
is a related transformation designed for real vectors; the corresponding atoms are shifted
cosines instead of complex exponentials. Figure 1 shows a signal that is sparse in the DCT
dictionary. Figure 2 shows the frequency representation of an electrocardiogram signal. The
energy of its spectrum is highly concentrated in the low frequencies, as the signal fluctuates
slowly. The representation allows to detect periodicities in the signal, which correspond to
DFT coefficients with large magnitudes.

The DFT can be extended to two dimensions by considering two-dimensional sinusoidal
atoms obtained by taking the outer product of the one-dimensional atoms defined by (18).

φ2D
k1,k2

:=
1

n


1 e

i2πk2
n · · · e

i2πk2(n−1)
n

e
i2πk1
n e

i2π(k1+k2)
n · · · e

i2π(k1+k2(n−1))
n

· · ·

e
i2πk1(n−1)

n e
i2π(k1(n−1)+k2)

n · · · e
i2π(k1(n−1)+k2(n−1))

n

 (21)

= φ1D
k1

(
φ1D
k2

)T
. (22)

To compute the 2D DFT of an image we take inner products with these 2D sinusoidal atoms,
which form an orthonormal basis of Cn×n. The transform can be computed efficiently by
applying 1D DFTs to the rows and columns of the array,

DFT2D {X} := FXF (23)
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Original 10 % largest DCT coeffs 2 % largest DCT coeffs

Figure 3: Discarding the smallest DCT coefficients of an image allows to compress it quite effec-
tively.

The 2D frequency representation of images tends to be sparse. In particular, most of the
energy of the image tends to be concentrated in the lower frequencies. This insight can be
used to compress the image by just retaining the coefficients with larger magnitudes. Figure 3
shows that this simple scheme can be quite effective. The JPEG compression standard is
based on a similar idea: high-frequency coefficients are discarded according to a perceptual
model.

2.2 Short-time Fourier transform (STFT)

The Fourier series or the DFT provide global information about the periodicities of a signal,
but they do not capture localized periodicities. However, the spectrum of speech, music
and other sound signals changes with time. To analyze the changes in the spectrum we can
compute the DFT of time segments of the signal. However, doing this in a näıve way may
introduce spurious high-frequencies, as shown in Figure 4. Multiplying the time segment
with a window that tapers off at the ends smoothens the transitions and avoids introducing
high-frequency artifacts.

The short-time Fourier transform (STFT) is defined as the Fourier series coefficients of the
pointwise product between a function and a shifted window w : [0, 1] → C approximately
localized in time and frequency

STFT {f} (k, τ) :=

∫ 1

0

f (t)w (t− τ)e−i2πkt d t. (24)

Equivalently, the STFT coefficients are equal to the inner product between the signal and
atoms of the form φk,τ (t) := w (t− τ) ei2πkt, which corresponds to copies of w shifted by τ
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Signal Window

× =

Spectrum ∗ =

× =

Spectrum ∗ =

Figure 4: The spectrum of a time segment may contain spurious high-frequency content produced
by the sudden transition at the ends of the segment. In the frequency domain, the spectrum is being
convolved by a sinc function, which has a very heavy tail. Multiplying the signal by a localized
window that has a faster decay in the frequency domain alleviates the problem.
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τ = 0, k = 0 τ = 1/32, k = 0

Real part Imaginary part

Spectrum

Real part Imaginary part

τ = 0, k = 64 τ = 1/32, k = 64

Real part Imaginary part

Spectrum

Real part Imaginary part

Figure 5: Atoms in the STFT dictionary.

8



Time Frequency

Figure 6: Time and frequency representation of a speech signal.

Time

Frequency

Figure 7: Spectrogram (log magnitude of STFT coefficients) of the speech signal in Figure 6.
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Scaling function Mother wavelet

Figure 8: Scaling function and mother wavelet of the Haar wavelet transform.

in time and by k in frequency. Some examples are shown in Figure 5. Including dilations of
w (in addition to time and frequency translations) yields a dictionary of Gabor atoms.

The discrete-time STFT consists of pointwise multiplication by a shifted window followed by
a DFT. This is equivalent to computing DTx, where D ∈ Cn×m, m > n is an overcomplete
dictionary. The corresponding analysis sparse model is very useful for speech analysis. The
logarithm of the magnitude of the STFT coefficients, called an spectrogram, is widely used
for sound processing. Figure 7 shows the spectrogram of a real speech signal. The time and
frequency representation of the same signal are shown in Figure 6.

2.3 Wavelets

Wavelets are atoms that allow to capture signal structure at different scales. A wavelet ψ
is a unit-norm, zero-mean function in L2. The wavelet transform of a function f ∈ L2 is
defined as

W {f} (s, τ) :=
1√
s

∫
f (t)ψ

(
t− τ
s

)
d t = 〈φs,τ , f〉 . (25)

The wavelet coefficients are obtained by taking the inner product with atoms that are shifted
and dilated copies of the mother wavelet ψ

φs,τ (t) =
1√
s
ψ

(
t− τ
s

)
. (26)

The wavelet transform coefficients provide information about the signal at different scales.
This rather vague statement can be made precise using the multiresolution framework of
Mallat and Meyer.
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Definition 2.1 (Multiresolution approximation). A multi resolution approximation is a se-
quence {Vj, j ∈ Z} of closed subspaces of L2 (R) satisfying the following conditions.

• Dilating functions in Vj by 2 yields functions in Vj+1

f (t) ∈ Vj ⇐⇒ f

(
t

2

)
∈ Vj+1. (27)

• Approximations at a scale 2j are always better than at 2j+1

Vj+1 ⊂ Vj. (28)

• Vj is invariant to translations at the scale 2j

f (t) ∈ Vj ⇐⇒ f
(
t− 2jk

)
∈ Vj for all k ∈ Z. (29)

• As j →∞ the approximation loses all information

lim
j→∞
Vj = {0} . (30)

• As j → −∞ the approximation is perfect

lim
j→−∞

Vj = L2. (31)

• There exists a scaling function ζ ∈ V0 such that

{ζ0,k (t) := ζ (t− k) , k ∈ Z} (32)

is an orthonormal basis for V0.

Under these conditions, we can interpret the projection PVj (f) of a function f onto Vj as
an approximation of f at scale 2j. In a remarkable result, Mallat and Meyer prove that for
any multiresolution approximation there exists a wavelet ψ such that

PVj (f) = PVj+1
(f) +

∑
k∈Z

〈
ψ2j ,k, f

〉
ψ2j ,k. (33)

The particular wavelet ψ that yields this orthonormal basis depends on the scaling function.
Figure 8 shows the scaling function and the corresponding mother wavelet for the Haar
wavelet transform. The dictionary of shifted wavelets dilated by 2j

{
ψ2j ,k, k ∈ Z

}
is an

orthonormal basis for Vj ∩ V⊥j+1, i.e. the subspace in Vj that contains the functions that
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Signal Haar transform

Figure 9: Haar wavelet coefficients (right) of an electrocardiogram signal (left).

are not available at coarser scales. As a result,
{
ζ0,k (t) , ψ21,k, ψ22,k, . . . , ψ2j ,k, k ∈ Z

}
is an

orthonormal basis for Vj.

Wavelet bases can be discretized to obtain orthonormal bases of Cn or Rn. These discrete
transforms can be computed in O (n). Figure 9 shows the Haar wavelet coefficients of an
electrocardiogram signal. The corresponding multiresolution approximations at the different
scales are shown in Figures 10, 11 and 12.

A signal-processing interpretation of the wavelet transform is that the scaling function acts as
a low-pass filter, whereas the dilated and shifted wavelets act as band-pass filters in different
bands. Many other wavelet bases apart from the Haar exist: Meyer, Daubechies, Battle-
Lemarie, . . . We refer the interested reader to [3] for more information. Chapter 7 provides
a detailed and rigorous description of the construction of orthonormal wavelet bases from a
multiresolution approximation.

Two-dimensional wavelets can be obtained by taking outer products of one-dimensional
wavelets, as we did for the DFT.

φ2D
s1,s2,k1,k2

:= φ1D
s1,k1

(
φ1D
s2,k2

)T
(34)

The corresponding two-dimensional transform allows to obtain sparse representations of
natural images. An example is shown in Figure 13. The wavelet coefficients at finer scales
are mostly zero in most areas of the image. Figure 14 shows the sorted magnitudes of the
coefficients on a logarithmic scale. A large majority of the coefficients are very small and
can be discarded without significantly affecting the quality of the image. The JPEG 2000
compression standard is based this insight.

Finally we would like to mention that designing multidimensional transforms that are more
effective at providing sparse representations for images has been a vibrant research subject
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Scale Contribution Approximation

29

28

27

Figure 10: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Scale Contribution Approximation

26

25

24

Figure 11: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Scale Contribution Approximation

23

22

21

20

Figure 12: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Wavelet coefficients

Figure 13: Coefficients in a wavelet basis (right) of a natural image (left).

for many years. Some of these extensions include the steerable pyramid, ridgelets, curvelets,
and bandlets. We refer to Section 9.3 in [3] for more details.

3 The synthesis model

Overcomplete dictionaries provide greater flexibility for signal representation than orthonor-
mal transforms, but this comes at a cost. Computing the corresponding coefficients and
using the corresponding sparse models to process data is not as simple or computation-
ally efficient. We consider an overcomplete dictionary D with linearly independent atoms
{φ1, . . . , φm ∈ Rm} that are linearly independent

D :=
[
φ1 φ2 · · · φm

]
, m > n. (35)

The synthesis sparse model assumes that a signal x ∈ Rn can be represented as

x = Dc, (36)

where c is sparse. Unfortunately, even if such a sparse c exists, it is not easy to compute
it from x. There reason is that there are infinite choices of coefficient vectors c′ such that
x = Dc′ and most of them are not sparse at all!

A possible choice for the coefficient vector is given by the following lemma, which is proved
in Section A.1 of the appendix.
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10−1
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103

Figure 14: Sorted magnitude of the wavelet coefficients shown in Figure 13 plotted on a logarithmic
scale. The image is highly compressible in the wavelet domain.

Lemma 3.1 (Minimum `2-norm solution). The coefficient vector with minimum `2 norm
satisfying x = Dc is

c`2 := DT
(
DDT

)−1
x, (37)

which is the projection of c onto the row space of D.

In the case of complex signals, the same result holds replacing DT by D∗.

Unfortunately, the minimum `2-norm solution is often very dense. Let us consider a concrete
example. We define the atoms of an overcomplete dictionary of sinusoids as

φk (j) :=
1√
n
e
i2πkj
m , 1 ≤ k ≤ m, 1 ≤ j ≤ n. (38)

If m = n this is an orthonormal DFT basis, but for m > n the sinusoidal atoms are correlated
and the dictionary is overcomplete. Figure 15 shows a signal that is sparse in this dictionary
and the corresponding coefficient vector. Note that this signal would not be sparse in a DFT
basis. As we can see in Figure 16, the minimum `2-norm coefficient vector is not sparse.

Ideally, we would like to find the coefficient vector with the smallest number of nonzeros
that corresponds to the signal. More precisely, our aim is to solve

minimize ||c̃||0 (39)

subject to x = D c̃ (40)

Unfortunately, this optimization problem is computationally intractable. Intuitively, we
cannot do much better than try out all the possibilities. However there are tractable methods
that are able to produce sparse coefficients in practice. They are divided in two main classes.
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Coefficients Signal

Figure 15: A signal that is sparse in an overcomplete dictionary of sinusoids (left) and its corre-
sponding coefficients (right).

• Greedy methods which select atoms one by one.

• Methods based on solving a related convex program, usually `1-norm minimization.

In general, the performance of these methods deteriorates for dictionaries with more cor-
related atoms. This is not surprising because correlations tangle the contributions of the
different atoms making more difficult to obtain a sparse solution efficiently.

3.1 Greedy methods

Matching pursuit (MP) [4] is a very simple method for obtaining a sparse coefficient vector.
We initialize a residual vector to equal the signal. Then we iteratively choose the atom
that is most correlated with the residual and subtract the component of the residual in that
direction.

Algorithm 3.2 (Matching pursuit). Given a dictionary D ∈ Rn×m (or Cn×m) and a signal
x ∈ Rn (or Cn), we initialize the residual and the approximation by setting,

r(0) := x, (41)

x̂(0) := 0, (42)

I(0) = ∅. (43)

18



Coefficients Approximation

Minimum `2
norm

Matching
pursuit

Orthogonal
matching
pursuit

Minimum `1
norm

Figure 16: .
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Then for a fixed number of iterations k = 1, 2, . . . , N we compute

φ(k) := arg max
j∈{1,2,...,m}/I(k−1)

∣∣〈r(k−1), φj〉∣∣ , (44)

x̂(k) := x̂(k−1) +
〈
r(k−1), φ(k)

〉
φ(k), (45)

r(k) := r(k−1) −
〈
r(k−1), φ(k)

〉
φ(k), (46)

I(k) := I(k−1) ∪ {j} where j is the index such that φ(k) = φj. (47)

The output is a sparse approximation to the signal x̂(N) and the corresponding coefficient
indices I(N).

If the atoms form an orthonormal basis, MP produces the exact coefficient vector in a number
of iterations that is equal to its cardinality. However, for more correlated dictionaries it might
choose wrong atoms (that may be very correlated with the actual atoms that form the signal),
as shown in Figure 16.

The approximation obtained by MP at every iteration is not necessarily optimal in terms of
`2-norm. Indeed, given a set of atoms

DI(N) :=
[
φ(1) φ(2) · · · φ(N)

]
(48)

where N < m, the coefficients that yield the best `2-norm approximation are equal to the
least-squares estimate

cls := D†I(k)x (49)

=
(
DT
I(N)DI(N)

)−1
DT
I(N)x. (50)

In contrast, MP computes

(cMP)k =

〈
φ(k), x−

k−1∑
j=1

(cMP)j φ
(j)

〉
. (51)

Setting the coefficients to equal (49) ensures that the residual and the approximation are
orthogonal. This is the strategy followed by orthogonal matching pursuit (OMP) [5].

Algorithm 3.3 (Orthogonal matching pursuit). Given a dictionary D ∈ Rn×m (or Cn×m)
and a signal x ∈ Rn (or Cn), we initialize the residual and the approximation by setting,

r(0) := x, (52)

I(0) = ∅. (53)
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c2
Min. `1-norm solution
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Dc = x

Figure 17: The minimum `1-norm solution is sparser than the minimum `2-norm solution because
of the geometry of the `1-norm and `2-norm balls.

Then for a fixed number of iterations k = 1, 2, . . . , N we compute

φ(k) := arg max
j∈{1,2,...,m}/I(k−1)

∣∣〈r(k−1), φj〉∣∣ , (54)

I(k) := I(k−1) ∪ {j} where j is the index such that φ(k) = φj, (55)

DI(k) :=
[
φ(1) φ(2) · · · φ(k)

]
, (56)

ĉ(k) := D†I(k)x, (57)

x̂(k) := DI(k) ĉ
(k), (58)

r(k) := x− x̂(k). (59)

The output is a sparse approximation to the signal x̂(N) and the corresponding coefficient
indices I(N).

OMP produces better approximations to the signal than MP, but it may still choose the
wrong atoms if the dictionary is highly correlated, as is the case in Figure 16.

3.2 `1-norm minimization

As shown in Figure 16 minimizing the `2 norm of the coefficient vector does not tend to yield
a sparse solution. However, minimizing the `1 norm, i.e. solving the problem

minimize ||c̃||1 (60)

subject to x = D c̃ (61)

often does. This approach is known as basis pursuit [2] in the literature. As we have seen in
previous lectures, the optimization problem is convex and can be recast as a linear program.
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It is therefore computationally tractable although significantly more computationally costly
than greedy methods such as MP or OMP. `1-norm minimization achieves better results than
these methods in some cases, see for instance Figure 16, but it may also fail to find sparse
solutions in highly correlated dictionaries.

Figure 17 provides some geometric intuition as to why minimizing the `1 norm is better than
minimizing the `2 norm when we aim to obtain sparse solutions under linear constraints.
The `1-norm ball is more concentrated around the axes than the `2-norm ball. It is therefore
more likely for the line representing the constraint x = Dc to be tangent to the ball on
an axis, where the solution has cardinality one instead of two. As a result, the minimum
`1-norm solution is sparser than the minimum `2-norm solution. This intuition generalizes
to higher dimensions.

4 Denoising

4.1 The denoising problem

The aim of denoising is to extract a signal from data that is corrupted by uninformative
perturbations, which we call noise. We will focus on the additive noise model

data = signal + noise, (62)

y = x+ z. (63)

In order to achieve denoising it is necessary to have some prior knowledge about the structure
of the signal and the structure of the noise. As an example, in Figure 18, an electrocardiogram
recording is corrupted by high-frequency perturbations. In the frequency domain, we can
see a small peak at 60 Hz due to noise coming from the power grid. To eliminate this noise
we enforce the prior that the signal of interest is essentially low pass by filtering out the high
end of the spectrum.

4.2 Thresholding

Dictionaries and transforms such as the DFT, STFT and the wavelet transform allow to
obtain sparse representations of images, music, speech and other signals. These dictionaries
exploit structure that is expected to be present in the signal but not in the noise. As a result
the noise component in the data will not have a sparse representation most of the time; it
is incoherent with the dictionary atoms. This can be exploited to denoise the signal via
thresholding.

Definition 4.1 (Hard thresholding). Let x ∈ Rn. The hard-thresholding operator Hη :
Rn → Rn sets to zero any entries in x with magnitude smaller than a predefined real-valued
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Spectrum

Denoised
signal

Figure 18: Electrocardiogram recording denoised via low-pass filtering.

threshold η > 0,

Hη (x)i :=

{
xi if |xi| > η,

0 otherwise.
(64)

The idea is very simple. We first map the signal to a domain where it is sparse, but the
noise is dense. Then we discard all the coefficients below a certain threshold, as illustrated
in Figure 19. In particular, if the signal is sparse in a basis, we threshold the coefficients
B−1y,

ĉ = Hη

(
B−1y

)
(65)

= Hη

(
c+B−1z

)
, (66)

x̂ = Bĉ. (67)

For the method to work B−1z must not be sparse. We can actually prove that this is the
case if the basis is orthonormal and the noise is iid Gaussian.

Lemma 4.2 (Thresholding Gaussian noise). If z is an n-dimensional iid Gaussian with zero
mean and variance σ2, then for any orthogonal matrix U ∈ Rn UT z is iid Gaussian with
zero mean and variance σ2.
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Before thresholding After thresholding

Data
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Estimate

Signal

Figure 19: Denoising via hard thresholding.

Proof. By elementary properties of Gaussian random vectors, UT z is Gaussian with zero
mean and covariance matrix

Σ = UT
(
σ2 I
)
U = σ2UTU = σ2 I . (68)

Figures 20 and 21 show the results of applying this denoising method to the signals in
Figures 1 and 13. Both signals are corrupted by additive Gaussian noise. In both cases,
exploiting the sparse decomposition allows us to denoise the data very effectively.

Thresholding can also be applied in conjunction with a sparse analysis model. If we suspect
that the inner products between a signal x and the atoms in a dictionary D are mostly zero
then we can threshold DTy to denoise the coefficients,

ĉ = Hη

(
DTy

)
(69)

= Hη

(
DTx+DT z

)
, (70)

(71)

This method will be effective if DT z is dense (recall that z denotes the noise component).
Recovering an approximation to the signal from the thresholded vector Hη

(
DTy

)
requires

applying a left inverse L that might introduce some distortion,

x̂ = Lĉ, LDT = I . (72)

An alternative approach is to enforce the analysis model within an optimization problem, as
we explain in Section ??. Thresholding STFT coefficients is a popular denoising technique
in speech processing. Figures 24 and ?? show an example with real data.
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Figure 20: Denoising via hard thresholding in the DCT basis.
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Wavelet coefficients

Noisy
image

Estimate

Figure 21: Denoising via hard thresholding in a biorthogonal wavelet basis.
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Time thresholding

Figure 22: Time thresholding applied to the noisy data shown in Figure 6. The result sounds
terrible because the thresholding eliminates parts of the speech.

4.3 Block thresholding

When we apply transforms that capture localized details of signals, such as the wavelet
transform or the STFT, sparse representations tend to be highly structured. For example,
nonzero wavelet coefficients are often clustered around edges. This is apparent in Figure 13.
The reason is that several localized atoms are needed to reproduce sharp variations, whereas
a small number of coarse-scale atoms suffice to represent smooth areas of the image.

The assumption that the coefficients of a signal are grouped together is called group sparsity.
Thresholding-based denoising of group-sparse signals should take into account this structure.
It is probably a good idea to threshold an isolated coefficient that is not too large, but a sim-
ilar coefficient that lies near large nonzero coefficients is likely to contain useful information
and should not be discarded.

Block thresholding exploits group sparsity by thresholding the `2 norm of groups of co-
efficients. The coefficients are partitioned into blocks I1, I2, . . . , Ik. The blocks are then
thresholded one by one.

Bη (x)i :=

{
xi if i ∈ Ij such that

∣∣∣∣xIj ∣∣∣∣2 > η,

0 otherwise.
(73)

4.4 Speech denoising

We use a real speech denoising example to compare the effect of thresholding in different
domains and of applying block thresholding. The recording shown in Figures 6 and 7 is a
short snippet from the movie Apocalypse Now where one of the character talks over the noise
of a helicopter. We denoise the data using the following methods (click on the links to hear
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Frequency thresholding

Figure 23: Frequency thresholding applied to the noisy data shown in Figure 6. The result is
very low pitch because the thresholding eliminates the high frequencies of both the speech and the
noise.

the result):

• Time thresholding: The result, which is plotted in Figure 22, sounds terrible because
the thresholding eliminates parts of the speech.

• Frequency thresholding: The result has very low pitch because the thresholding elim-
inates the high frequencies of both the speech and the noise. The spectrum is shown
in Figure 22 before and after thresholding.

• STFT thresholding: The result is significantly better but isolated STFT coefficients
that are not discarded produce musical noise artifacts. The corresponding spectrogram
is shown in Figure 24.

• STFT block thresholding: The result does not suffer from musical noise and retains
some of the high-pitch speech. The corresponding spectrogram is shown in Figure 24.

The results are compared visually for a small time segment of the data in Figure 25.

4.5 Synthesis model

A discussed previously, overcomplete dictionaries are not invertible. This means that we
cannot apply a linear transform to the noisy signal and threshold in order to exploit the
synthesis model. However, we can apply the methods we studied in Section 3 for estimating
synthesis coefficients in the noiseless case. In particular, we can adapt the approach based
on `1-norm minimization by eliminating the equality constraint in Problem ?? and adding a
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STFT
thresholding

STFT block
thresholding

Figure 24: Spectrograms of the noisy signal (above) compared to the estimates obtained by simple
thresholding (center) and block thresholding (bottom). The result of simple thresholding contains
musical noise caused by particularly large STFT coefficients caused by the noise that were not
thresholded. The result of block thresholding does not suffer from these artifacts.
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STFT
thresholding

STFT block
thresholding

Figure 25: Comparison of the original noisy data (blue) with the denoised signal for the data
shown in Figure 6. We compare frequency thresholding (above) and thresholding (center) and block
thresholding (below) of STFT coefficients.
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Figure 26: A signal consisting of a superposition of spikes and sinusoids.

data-fidelity term to the cost function. This is known as basis-pursuit denoising [2]. Thus,
we estimate the coefficients by solving

ĉ = arg min
x̃∈Rm

||y −Dc̃||22 + λ ||c̃||1 (74)

x̂ = Dĉ, (75)

where λ > 0 is a regularization parameter that determines the tradeoff between the term
that promotes sparsity and the term that promotes data fidelity.

The signal in Figure 26 is not sparse either in a basis of spiky atoms or sinusoidal atoms.
However, it is sparse in a dictionary that contains both sinusoids and spikes,

x = Dc =
[
I F

] [a
b

]
= a+ Fb, (76)

where I ∈ Rn×n is the identity matrix and F ∈ Rn×n is a DCT matrix. Figure 27 shows the
result of applying `1-norm regularization to denoise a noisy version of the signal.

4.6 Analysis model

In Section 4.2 we explained how to apply thresholding to the coefficients of a noisy signal
in an overcomplete dictionary. To retrieve an approximation of the signal we were forced to
apply a left inverse matrix that could distort the result. A more principled way to enforce a
sparse analysis model while denoising is to solve the `1-norm regularized problem

x̂ = arg min
x̃∈Rm

||y − x̃||22 + λ
∣∣∣∣AT x̃∣∣∣∣

1
, (77)

which can be interpreted as a tractable relaxation of the problem

minimize
∣∣∣∣DT x̃

∣∣∣∣
0

(78)

subject to y ≈ x̃. (79)
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Figure 27: Denoising via `1-norm-regularized least squares.

Although this problem is very similar to the `1-norm regularized synthesis formulation (74)
it is significantly more challenging to solve.

In image processing, an extremely popular analysis operator is the finite-differences operator.
The reason is that images are often well approximated as piecewise constant, which means
that they have sparse gradients. We define the total variation of an image Im as the `1-norm
of the horizontal and vertical components of its gradient

TV (Im) := ||∇x Im||1 + ||∇y Im||1 . (80)

If the image is corrupted by noise that is not piecewise constant, we can enforce the prior that
the gradient is sparse by penalizing the total variation of the estimate. This is equivalent
to applying `1-norm regularization with an analysis operator that computes the discretized
gradient of the image (i.e. a finite-differences operator),

Îm = arg min
Ĩm∈Rn×n

∣∣∣∣∣∣Y − Ĩm
∣∣∣∣∣∣2
F

+ λTV
(

Ĩm
)
. (81)

Figures 29, 30 and ?? display the results of applying total-variation denoising to a one-
dimensional piecewise constant signal and to a real image. Small values of the regularization
parameter do not denoise well, whereas large values produce cartoonish estimates. Medium
values however allow to denoise quite effectively. We refer the interested reader to [1, 6] for
more details on total-variation regularization.

References

The book A wavelet tour of signal processing by Mallat [3] is a great reference for the topics
discussed in these notes. Numerical experiments by Gabriel Peyré illustrating many of the
ideas that we have discussed are available here.
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Signal Data

Figure 28: One-dimensional signal (left) and the corresponding noisy data (right).

Small λ Medium λ Large λ

Figure 29: Total-variation denoising applied to the data in Figure 28 for different values of the
regularization parameter.
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Small λ Medium λ Large λ

Figure 30: Total-variation denoising applied to the image in Figure 21 for different values of the
regularization parameter.

Original Noisy Estimate

Figure 31: Total-variation denoising applied to the image in Figure 21 for different values of the
regularization parameter.
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A Proofs

A.1 Proof of Lemma 3.1

Consider the SVD of D = USV ∗. The columns of V ∈ Rm×n are an orthonormal basis for
the row space of D row (D). Let us decompose any coefficient vector c′ such that x = Dc′ as

c′ = V b+ Prow(D)⊥ (c′) (82)

where b is an n-dimensional vector. If x = Dc′, then

S−1UTx = V ∗c′ (83)

= V ∗
(
V b+ Prow(D)⊥ (c′)

)
(84)

= b, (85)

so b has the same value for any c′ such that x = Dc′. We can decompose the norm of c′ in
the following way by Pythagoras’s Theorem,

||c′||22 =
∣∣∣∣Prow(D) (c′)

∣∣∣∣2
2

+
∣∣∣∣∣∣Prow(D)⊥ (c′)

∣∣∣∣∣∣2
2

(86)

= ||b||22 + Prow(D)⊥ (c′) . (87)

Any solution such that Prow(D)⊥ (c′) 6= 0 will have norm greater than ||b||22 so the minimum
norm solution is

V b = V S−1UTx (88)

DT
(
DDT

)−1
x. (89)
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