
Lecture notes 8 April 11, 2016

Learning signal representations

1 Introduction

In Lecture Notes 4 we described how to design representations that allow to represent signals
with a small number of coefficients and how these sparse representation can be leveraged
to compress and denoise signals. In these notes, we will consider the problem of learning
a representation from a set of signals. In more detail, we assume that we have available a
dataset of n signals x1, x2, . . . , xn ∈ Rd and our goal is to compute a small set of atoms Φ1,
. . . , Φk ∈ Rd that allow to build a linear model for each signal

xj ≈
k∑
i=1

Φi Aij, 1 ≤ j ≤ n, (1)

where A1, . . . , An ∈ Rk are coefficient vectors. Ideally, k should be significantly smaller than
n, which means that the atoms are able to capture the common structure of the n signals.
The learned atoms can be used for compression, denoising or as features for classification,
whereas the coefficients in A may allow to cluster the different signals, as we will discuss
later on.

If we group the signals into a matrix X :=
[
x1 x2 · · · xn

]
, learning the atoms and the

corresponding coefficients is equivalent to a matrix-factorization problem,

X ≈
[
Φ1 Φ2 · · · Φk

] [
A1 A2 · · · An

]
= ΦA (2)

where Φ ∈ Rd×k, A ∈ Rk×n. The assumption that k is smaller than n means that our goal
is to approximate X with a low-rank matrix.

Learning signal representation is significantly more challenging than fitting models once the
atoms are known. The reason is that any optimization problem of the form

minimize
Φ̃,Ã

∣∣∣∣∣∣X − Φ̃ Ã
∣∣∣∣∣∣+R1

(
Φ̃
)

+R2

(
Ã
)
, (3)

where ||·|| is an arbitrary norm and R1 and R2 are regularization terms, is nonconvex due to
the product between the variables. Figure 1 illustrates this by plotting the function f (φ, a) =
(1− φa)2 (i.e. there is only one 1D atom and one coefficient) which has minima along two
separate lines: (α, 1/α) and (−α,−1/α) for any α > 0. In higher dimensions, the number of
local minima grows. Interestingly, if no regularization is added, it is possible to find a global
minimum for the nonconvex problem by computing the singular-value decomposition, as we

Figure 1: The function f (φ, a) = (1− φa)2 has minima at (α, 1/α) and (−α,−1/α) for any α > 0.

Figure 2: Examples from the face dataset. The dataset contains 10 face pictures of 40 different
people.

2

discuss below, but this is no longer the case when we add regularization terms to the cost
function.

Figure 2 shows some examples from a dataset that we will use to illustrate different models.
It contains 10 face pictures of 40 different people, which were taken between April 1992 and
April 1994 at AT&T Laboratories Cambridge1.

2 K means

A possible way of representing a set of signals using a small number of atoms is to cluster
the signals into several groups and assign an atom to each group. This clustering problem
is typically known as k-means clustering. The aim is to learn k atoms Φ1, . . . , Φk that
minimize the cost function

n∑
i=1

∣∣∣∣xi − Φc(i)

∣∣∣∣2
2
, (4)

c (i) := arg min
1≤j≤k

||xi − Φj||2 . (5)

In words, c (i) denotes the index of the atom that is assigned to the signal xi.

After carrying out the clustering, the learned model can be expressed as factorization of the
matrix X where the coefficients for each signal are restricted to just select one of the atoms,

X ≈
[
Φ1 Φ2 · · · Φk

] [
ec(1) ec(2) · · · ec(n)

]
, (6)

where ej is the standard-basis vector (all its entries are zero, except the jth entry which
equals one).

Minimizing the cost function (4) over the choice of atoms and coefficients is computationally
hard (NP-hard). However minimizing the cost function if the atoms or the coefficients are
known is very easy. If the atoms are known, for each signal we just need to select the atom
that is nearest. If the coefficients are known then the following lemma, proved in Section A.1
of the appendix, shows that the optimal atoms just correspond to the mean of each cluster.

Lemma 2.1. For any x1, x2, . . . , xn ∈ Rd the solution to the optimization problem

minimize
φ

n∑
i=1

||xi − φ||22 (7)

is equal to

φ̂ =
1

n

n∑
i=1

xi. (8)

1See http://scikit-learn.org/stable/datasets/olivetti_faces.html

3

http://scikit-learn.org/stable/datasets/olivetti_faces.html

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

Figure 3: Iterations of Lloyd’s algorithm for k = 3 clusters which are colored orange, blue and
green. The stars indicate the atoms corresponding to each cluster. The original dataset corresponds
to three clusters represented by the circles, triangles and squares.

4

k = 2 k = 3 k = 4

Figure 4: Results of applying k means for different values of k to neural data measured by the
Chichilnisky lab at Stanford.

Lloyd’s algorithm is a heuristic for the k-means problem that alternates between solving the
two subproblems.

Algorithm 2.2 (Lloyd’s algorithm). We initialize the atoms randomly and then alternate
between updating the coefficients and the atoms.

• The assignment step selects the closest atom to each signal,

c (i) := arg min
1≤j≤k

||xi − Φj||2 . (9)

• The averaging step computes the mean of each cluster,

Φj :=

∑n
i=1 δ (c (j) = i) xi∑n
i=1 δ (c (j) = i)

, (10)

where δ (c (j) = i) equals one if c (j) = i and zero otherwise.

In practice, Lloyd’s algorithm often finds a satisfactory solution to the k-means problem,
although for some initializations it might get stuck in a bad local minimum (an atom may
end up with no assignments for example). To avoid such situations we can run the method
several times, using different random initializations, and select the best solution. Figure 3
illustrates Lloyd’s algorithm by showing several iterations.

We end this section describing two applications of k means: one in neuroscience and another
in image processing.

5

Figure 5: Atoms obtained by solving the k means problem superposed on the original neural data.
The data was obtained by the Chichilnisky lab at Stanford.

In neuroscience, data is often collected by placing an array of electric sensors on tissue
containing neurons. Each sensors measures the electric activity of several neurons that can
be well modeled as sequences of spikes. These spikes have different shapes depending on
what neuron generated them. The spike-sorting problem consists of clustering the measured
spikes to assign them to the different cells. If we extract all spiking events from the data
and align them adequately, we can apply solve the k means problem for these signals to sort
the spikes (note that we have to fix the number of neurons k beforehand). Figure 4 shows
the results of applying this procedure with different values of k to some real data measured
by the Chichilnisky lab at Stanford. The atoms learnt using k means can then be used to
obtain a fit to the original data as shown in Figure 5

Figures 6 and 7 show the results of solving the k means problem for the faces dataset from
Figure 2 with different values of k. If k is small with respect to the number of different
people in the dataset, which is equal to 40, then the atoms learnt by k means correspond to
averaging the faces of different people. As we increase k, the atoms become sharper because

6

k = 5

k = 15

Figure 6: Atoms obtained by solving the k means problem for the faces dataset from Figure 2
with k = 5 and k = 15.

they are obtained by averaging less images, and some of them correspond to just one person.

3 Principal-component analysis

We already discussed principal-component analysis (PCA) as a dimensionality-reduction
technique in Lecture Notes 5. In this section we review the method, providing a geometric
and probabilistic interpretation. Then we explain how to learn signal representations using
PCA and end by describing an application to collaborative filtering.

7

k = 40

Figure 7: Atoms obtained by solving the k means problem for the faces dataset from Figure 2
with k = 40.

8

3.1 Algorithm

PCA allows to find directions in this space along which the data have a high variation. This
is achieved by centering the data and then extracting the singular vectors corresponding to
the largest singular values.

Algorithm 3.1 (Principal component analysis). Given n data vectors x̃1, x̃2, . . . , x̃n ∈ Rd,
we apply the following steps.

1. Center the data,

xi = x̃i −
1

n

n∑
i=1

x̃i, 1 ≤ i ≤ n. (11)

2. Group the centered data in a data matrix X ∈ Rd×n

X =
[
x1 x2 · · · xn

]
. (12)

3. Compute the singular-value decomposition (SVD) of X and extract the left singular
vectors corresponding to the k largest singular values. These are the first k principal
components.

3.2 PCA: Geometric interpretation

Once the data are centered, the energy of the projection of the data points onto different di-
rections in the ambient space reflects the variation of the dataset along those directions. PCA
selects the directions that maximize the `2 norm of the projection and are mutually orthog-
onal. The sum of the squared `2 norms of the projection of the centered data x1, x2, . . . , xn
onto a 1D subspace spanned by a unit-norm vector u can be expressed as

n∑
i=1

∣∣∣∣Pspan(u) xi
∣∣∣∣2

2
=

n∑
i=1

uTxix
T
i u (13)

= uTXXTu (14)

=
∣∣∣∣XTu

∣∣∣∣2
2
. (15)

If we want to maximize the energy of the projection onto a subspace of dimension k, an
option is to choose orthogonal 1D projections sequentially. First we choose a unit vector

U1 that maximizes
∣∣∣∣XTu

∣∣∣∣2
2

and is consequently the 1D subspace that is better adapted to
the data. Then, we choose a second unit vector U2 orthogonal to the first which maximizes∣∣∣∣XTu

∣∣∣∣2
2

and hence is the 1D subspace that is better adapted to the data while being in

9

σ1/
√
n = 0.705,

σ2/
√
n = 0.690

σ1/
√
n = 0.9832,

σ2/
√
n = 0.3559

σ1/
√
n = 1.3490,

σ2/
√
n = 0.1438

U1

U2

U1

U2

U1

U2

Figure 8: PCA of a dataset with n = 100 2D vectors with different configurations. The two
first singular values reflect how much energy is preserved by projecting onto the two first principal
components.

the orthogonal complement of U1. We repeat this procedure until we have k orthogonal
directions, which are the first k principal components.

More formally, the left singular vectors U1, U2, . . . , Uk and the corresponding singular values
σ1 ≥ σ2 ≥ . . . ≥ σk, are given by

σ1 = max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (16)

U1 = arg max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (17)

σj = max
||u||2=1

u⊥u1,...,uj−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ j ≤ k, (18)

Uj = arg max
||u||2=1

u⊥u1,...,uj−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ j ≤ k. (19)

This is established in Lemma A.1 of Lecture Notes 5.

Figure 8 provides an example in 2D. Note how each singular value is proportional to the
energy that lies in the direction of the corresponding principal component.

PCA is equivalent to choosing the best (in terms of `2 norm) k 1D subspaces following a greedy
procedure, since at each step we choose the best 1D subspace orthogonal to the previous ones.
A natural question to ask is whether this method produces the best k-dimensional subspace.
A priori this is not necessarily the case; many greedy algorithms produce suboptimal results.
However, in this case the greedy procedure is indeed optimal: the subspace spanned by the
first k principal components is the best subspace we can choose in terms of the `2-norm of
the projections. The following result is borrowed from Lecture Notes 5 (Theorem 2.5).

10

σ1/
√
n = 5.077 σ1/

√
n = 1.261

σ2/
√
n = 0.889 σ2/

√
n = 0.139

U1

U2

U2

U1

Uncentered data Centered data

Figure 9: PCA applied to n = 100 2D data points. On the left the data are not centered. As a
result the dominant principal component U1 lies in the direction of the mean of the data and PCA
does not reflect the actual structure. Once we center, U1 becomes aligned with the direction of
maximal variation.

Theorem 3.2. For any matrix X ∈ Rd×n with left singular vectors U1, U2, . . . , Un corre-
sponding to the singular values σ1 ≥ σ2 ≥ . . . ≥ σn, if we fix any k ≤ min {d, n}

n∑
i=1

∣∣∣∣Pspan(U1,U2,...,Uk) xi
∣∣∣∣2

2
≥

n∑
i=1

||PS xi||22 , (20)

for any subspace S of dimension k.

Figure 9 illustrates the importance of centering before applying PCA. Theorems ?? and 3.2
still hold if the data are not centered. However, the norm of the projection onto a certain
direction no longer reflects the variation of the data. In fact, if the data are concentrated
around a point that is far from the origin, the first principal component will tend be aligned
in that direction. This makes sense as projecting onto that direction captures more energy.
As a result, the principal components do not capture the directions of maximum variation
within the cloud of data.

3.3 PCA: Probabilistic interpretation

Let us interpret our data, x1, x2, . . . , xn in Rm, as samples of a random vector x of dimension
m. Recall that we are interested in determining the directions of maximum variation of the

11

data in ambient space. In probabilistic terms, we want to find the directions in which the
data have higher variance. The covariance matrix of the data provides this information. In
fact, we can use it to determine the variance of the data in any direction.

Lemma 3.3. Let u be a unit vector,

Var
(
xTu

)
= uTΣxu. (21)

Proof.

Var
(
xTu

)
= E

((
xTu

)2
)
− E2

(
xTu

)
(22)

= E
(
uxxTu

)
− E

(
uTx

)
E
(
xTu

)
(23)

= uT
(

E
(
xxT

)
− E (x) E (x)T

)
u (24)

= uTΣxu. (25)

Of course, if we only have access to samples of the random vector, we do not know the co-
variance matrix of the vector. However we can approximate it using the empirical covariance
matrix.

Definition 3.4 (Empirical covariance matrix). The empirical covariance of the vectors
x1, x2, . . . , xn in Rm is equal to

Σn :=
1

n

n∑
i=1

(xi − xn) (xi − xn)T (26)

=
1

n
XXT , (27)

where xn is the sample mean, as defined in Definition 1.3 of Lecture Notes 4, and X is the
matrix containing the centered data as defined in (12).

If we assume that the mean of the data is zero (i.e. that the data have been centered using
the true mean), then the empirical covariance is an unbiased estimator of the true covariance
matrix:

E

(
1

n

n∑
i=1

xix
T
i

)
=

1

n

n∑
i=1

E
(
xix

T
i

)
(28)

= Σx. (29)

12

n = 5 n = 20 n = 100

True covariance
Empirical covariance

Figure 10: Principal components of n data vectors samples from a 2D Gaussian distribution. The
eigenvectors of the covariance matrix of the distribution are also shown.

If the higher moments of the data E
(
X2
iX

2
j

)
and E (X4

i) are finite, by Chebyshev’s inequality
the entries of the empirical covariance matrix converge to the entries of the true covariance
matrix. This means that in the limit

Var
(
xTu

)
= uTΣxu (30)

≈ 1

n
uTXXTu (31)

=
1

n

∣∣∣∣XTu
∣∣∣∣2

2
(32)

for any unit-norm vector u. In the limit the principal components correspond to the directions
of maximum variance of the underlying random vector. These directions correspond to
the eigenvectors of the true covariance matrix, which maximize the quadratic form uTΣxu.
Figure 10 illustrates how the principal components converge to the eigenvectors of Σx.

3.4 PCA as a matrix-approximation method

Let UΣV T denote the SVD of the data matrix X, which we assume to be centered for
simplicity. PCA allows us to obtain a rank k decomposition of the form (2) which is optimal
in a certain sense, as shown in the following proposition which is proved in Section A.2 of
the appendix.

Proposition 3.5 (Best rank-k approximation). Let UΣV T be the SVD of M . We denote
by U1:k the matrix that contains the first k left singular vectors of M , Σ1:k a k × k diagonal
matrix containing the k largest singular values of X and V1:k the matrix containing the first
k right singular vectors. U1:kΣ1:kV

T
1:k is the best rank-k approximation of M in Frobenius

13

Figure 11: Principal components corresponding to the faces dataset from Figure 2.

norm,

U1:kΣ1:kV
T

1:k = arg min
{M̃ | rank(M̃)=k}

∣∣∣∣∣∣M − M̃ ∣∣∣∣∣∣2
F
. (33)

We can interpret the principal components Φ = U1:k as orthogonal atoms, whereas A =
Σ1:kV

T
1:k corresponds to the coefficient matrix. Figure 11 shows the result of applying PCA

to the faces dataset from Figure 2.

3.5 Collaborative filtering

We now describe an application of PCA to collaborative filtering, where the aim is to pool
together information from many users to obtain a model of their behavior. In particular, for
movie data, we consider the ratings given by a set of users to a set of movies. If the some
of the users have similar tastes, then the ratings will be correlated. PCA allows to uncover
this low-rank structure in the data. We demonstrate this through a simple example. Bob,

14

Molly, Mary and Larry rate the following six movies from 1 to 5,

A :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2

(34)

We subtract the average rating,

µ :=
1

n

m∑
i=1

n∑
j=1

Aij, (35)

(36)

from each entry in the matrix and then compute its singular value decomposition

A− Ā = USV T = U


7.79 0 0 0

0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T , (37)

where

Ā :=


µ µ · · · µ
µ µ · · · µ
· · · · · · · · · · · ·
µ µ · · · µ

 . (38)

The fact that the first singular value is significantly larger than the rest suggests that the
matrix may be well approximated by a rank-1 matrix. This is the case (for ease of comparison
the values of A are shown in brackets):

Ā+ σ1U1V
T

1 =

Bob Molly Mary Larry


1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) Bridget Jones’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2

(39)

15

The first left singular vector is equal to

U1 =
D. Knight Spiderman 3 Love Act. B.J.’s Diary P. Woman Superman 2

()−0.45 −0.39 0.39 0.39 0.39 −0.45 .

It can be interpreted as an atom in the sense that centered scores for each person are
proportional to U1. Alternatively, it can be interpreted as coefficients corresponding to the
atoms V1 below, which allow to cluster the movies into action (+) and romantic (-) movies.

The first right singular vector is equal to

V1 =
Bob Molly Mary Larry

()0.48 0.52 −0.48 −0.52 . (40)

It can be interpreted as an atom in the sense that centered scores for each movie are propor-
tional to V1. Alternatively, it can be interpreted as coefficients corresponding to the atom
U1, which allow to cluster the users that have similar tastes (Bob and Molly vs Mary and
Larry).

This example is obviously very simple, but it illustrates the interest of low-rank models in
collaborative filtering. These models reveal the correlation structure of the data, uncovering
hidden factors that determine users’ preferences and can be used for clustering. Of course,
in practice there will be more than one factor.

4 Nonnegative matrix factorization

4.1 Optimization problem

As explained in the previous section, PCA computes the best low-rank approximation to the
data matrix in Frobenius norm. However, depending on the application the atoms obtained
from the decomposition are not very interpretable. For example, in Figure 11 the atoms may
have negative pixels and the coefficients negative values, so it is difficult to interpret them
as face atoms that can be added to form a face. This suggests computing a decomposition
where both atoms and coefficients are nonnegative, with the hope that this will allow us to
learn a more interpretable model.

A nonnegative matrix factorization of the data matrix may be obtained by solving the

16

Figure 12: Atoms obtained by applying nonnegative matrix factorization to the faces dataset
from Figure 2.

optimization problem,

minimize
∣∣∣∣∣∣X − Φ̃ Ã

∣∣∣∣∣∣2
F

(41)

subject to Φ̃i,j ≥ 0, (42)

Ãi,j ≥ 0, for all i, j (43)

where Φ̃ ∈ Rd×k and Ã ∈ Rk×n for a fixed k. This is a nonconvex problem which is computa-
tionally hard, due to the nonnegative constraint. Several methods to compute local optima
have been suggested in the literature, as well as alternative cost functions to replace the
Frobenius norm. We refer interested readers to [2]. Figure 12 shows the atoms obtained by
applying this method to the faces dataset from Figure 2. Due to the nonnegative constraint,
the atoms resemble portions of faces (the black areas have very small values) which capture
features such as the eyebrows, the nose, the eyes, etc.

4.2 Topic modeling

Topic modeling aims to learn the thematic structure of a text corpus automatically. We
will illustrate this application with a simple example. We take six newspaper articles and
compute the frequency of a list of words in each of them. Our final goal is to separate the

17

words into different clusters that hopefully correspond to different topics. The following
matrix contains the counts for each word and article. Each entry contains the number of
times that the word corresponding to column j is mentioned in the article corresponding to
row i.

A =

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f

Computing the singular-value decomposition of the matrix– after subtracting the mean of
each entry as in (37)– we determine that the matrix is approximately low rank

A− Ā = USV T = U


19.32 0 0 0

0 14.46 0 0 0 0
0 0 4.99 0 0 0
0 0 0 2.77 0 0
0 0 0 0 1.67 0
0 0 0 0 0 0.93

V
T . (44)

Unfortunately the singular vectors do not have an intuitive interpretation as in Section ??.
In particular, they do not allow to cluster the words

a b c d e f
()U1 = −0.51 −0.40 −0.54 −0.11 −0.38 −0.38
()U2 = 0.19 −0.45 −0.19 −0.69 −0.2 −0.46
()U3 = 0.14 −0.27 −0.09 −0.58 −0.69 −0.29

(45)

or the articles

singer GDP senate election vote stock bass market band
()V1 = −0.38 0.05 0.4 0.27 0.4 0.17 −0.52 0.14 −0.38
()V2 = 0.16 −0.46 0.33 0.15 0.38− 0.49 0.1 −0.47 0.12
()V3 = −0.18 −0.18 −0.04 −0.74 −0.05 0.11 −0.1 −0.43 −0.43

(46)

A problem here is that the singular vectors have negative entries that are difficult to interpret.
In the case of rating prediction, negative ratings mean that a person does not like a movie.
In contrast articles either are about a topic or they are not: it makes sense to add atoms

18

corresponding to different topics to approximate the word count of a document but not to
subtract them. Following this intuition, we apply nonnegative matrix factorization to obtain
two matrices W ∈ Rm×k and H ∈ Rk×n such that

M ≈ WH, Wi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k, (47)

Hi,j ≥ 0, 1 ≤ i ≤ k, 1 ≤ i ≤ n. (48)

In our example, we set k = 3. H1, H2 and H3 can be interpreted as word-count atoms, but
also as coefficients that weigh the contribution of W1, W2 and W3.

singer GDP senate election vote stock bass market band
()H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
()H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
()H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

(49)

The latter interpretation allows to cluster the words into topics. The first topic corresponds
to the entries that are not zero (or very small) in H1: senate, election and vote. The second
corresponds to H2: GDP, stock and market. The third corresponds to H3: singer, bass and
band.

The entries of W allow to assign the topics to articles. b, e and f are about politics (topic
1), d and e about economics (topic 3) and a and c about music (topic 3)

a b c d e f
()W1 = 0.03 2.23 0 0 1.59 2.24
()W2 = 0.1 0 0.08 3.13 2.32 0
()W3 = 2.13 0 2.22 0 0 0.03

(50)

Finally, we check that the factorization provides a good fit to the data. The product WH is
equal to

singer GDP senate election vote stock bass market band Art.


6.89 (6) 1.01 (1) 0.53 (1) 0.54 (0) 0.10 (0) 0.53 (1) 8.83 (9) 0.53 (0) 7.36 (8) a
0.75 (1) 0 (0) 8.32 (9) 5.66 (5) 8.18 (8) 1.15 (1) 0 (0) 0.78 (1) 0.78 (0) b
7.14 (8) 0.99 (1) 0.44 (0) 0.47 (1) 0 (0) 0.47 (0) 9.16 (9) 0.48 (1) 7.62 (7) c

0 (0) 7 (6.91) 0.67 (1) 1.41 (0) 0 (0) 8.28 (9) 0.65 (1) 7.60 (7) 0.69 (0) d
0.53 (0) 5.12 (5) 6.45 (6) 5.09 (7) 5.85 (5) 6.97 (6) 0.48 (0) 6.19 (7) 1.07 (2) e
0.86 (1) 0.01 (0) 8.36 (8) 5.69 (5) 8.22 (9) 1.16 (2) 0.14 (0) 0.79 (0) 0.9 (1) f

For ease of comparison the values of A are shown in brackets.

19

Figure 13: Atoms obtained by applying sparse PCA to the faces dataset from Figure 2.

5 Sparse principal-component analysis

In certain cases, it may be desirable to learn sparse atoms that are able to represent a set
of signals. In the case of the faces dataset, this may force the representation to isolate
specific face features such as the mouth, the eyes, etc. In order to fit such a model, we can
incorporate a sparsity constraint on the atoms by using the `1 norm

minimize
∣∣∣∣∣∣X − Φ̃ Ã

∣∣∣∣∣∣2
2

+ λ
k∑
i=1

∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
1

(51)

subject to
∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k. (52)

Due to the sparsity-inducing constraint, this problem is computationally hard, as in the case
of nonnegative matrix factorization. We refer the interested reader to [6] for algorithms to
compute local minima. Figure 13 shows the atoms obtained by applying this method to the
faces dataset from Figure 2. The model indeed learns very localized atoms that represent
face features.

20

Figure 14: Atoms (right) learnt from patches extracted from a natural image (left).

6 Sparse coding

In Lecture Notes 4 we studied several sparsifying transforms that allow to decompose data
into a small number of atoms in order to perform compression or denoising. Dictionary-
learning or sparse-coding techniques allow to learn these transforms directly from the data.
This is very useful in situations where a dataset with a large number of signals cannot
be compactly represented in any predefined dictionary. The aim is to learn a dictionary
Φ ∈ Rd×k such that X ≈ ΦA, where the matrix of coefficients A ∈ Rk×n is very sparse.
Following the heuristic that penalizing the `1 norm promotes sparse solutions, this may be
achieved by solving the following optimization program,

min
Φ̃, Ã

∣∣∣∣∣∣X − Φ̃Ã
∣∣∣∣∣∣2

F
+ λ

∣∣∣∣∣∣Ã∣∣∣∣∣∣
1

such that
∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k. (53)

Note that the formulation is very similar to sparse PCA, with the crucial difference that we
are promoting sparsity in the coefficient matrix, as opposed to in the atoms. An efficient
method to compute a local minimum of the nonconvex problem is to apply techniques based
on stochastic gradient descent [4].

Figure 14 shows patches learnt from a natural image. The corresponding dictionary can
be used to denoise other images quite effectively, as shown in Figure 15. See [3] for other
applications of dictionary learning in image processing. Finally, we note that interestingly
sparse coding was first proposed in neuroscience, as an explanation of the Gabor-like receptive
fields of neurons in the visual cortex [5].

21

Noisy Estimate Original

Figure 15: Denoising results using the dictionary learnt from the image shown in Figure 14.

22

References

The tutorial [3] is an excellent reference on the application of matrix-decomposition tech-
niques in machine learning and image processing. Chapters 7 and 8 of [1] describe low-rank
models in statistics. The numerical experiments shown in these notes were implemented
using scikit-learn, which is available online at http://scikit-learn.org. In particular, a
script to apply different matrix-decomposition techniques to the faces dataset is available
here.

[1] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the lasso and
generalizations. CRC Press, 2015.

[2] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in
neural information processing systems, pages 556–562, 2001.

[3] J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image and vision processing. arXiv
preprint arXiv:1411.3230, 2014.

[4] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse
coding. The Journal of Machine Learning Research, 11:19–60, 2010.

[5] B. A. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607–609, 1996.

[6] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of compu-
tational and graphical statistics, 15(2):265–286, 2006.

A Proofs

A.1 Proof of Lemma 2.1

The function

f (φ) =
1

2

n∑
i=1

||xi − φ||22 (54)

is convex and its gradient is equal to

∇f (φ) =
n∑
i=1

φ− xi (55)

= nφ−
n∑
i=1

xi. (56)

Setting the gradient to zero yields the result.

23

http://scikit-learn.org
http://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html

A.2 Proof of Proposition 3.5

Let M be an arbitrary rank k matrix with singular value decomposition UMΣMV
T
M . By

Pythagoras’ Theorem

||X −M ||2F =
∣∣∣∣X − UMUT

MX
∣∣∣∣2

F
+
∣∣∣∣M − UMUT

MX
∣∣∣∣2

F

because the column space of X − UMUT
MX is orthogonal to the column space of M . Now,

recall that by Theorem 3.2, ∣∣∣∣U1:kU
T
1:kX

∣∣∣∣2
F
≤
∣∣∣∣UMUT

MX
∣∣∣∣2

F

since UMU
T
M represents a projection onto a k-dimensional subspace. We conclude that

||X −M ||2F ≥
∣∣∣∣X − UMUT

MX
∣∣∣∣2

F

≥
∣∣∣∣U1:kU

T
1:kX

∣∣∣∣2
F
.

24

	Introduction
	K means
	Principal-component analysis
	Algorithm
	PCA: Geometric interpretation
	PCA: Probabilistic interpretation
	PCA as a matrix-approximation method
	Collaborative filtering

	Nonnegative matrix factorization
	Optimization problem
	Topic modeling

	Sparse principal-component analysis
	Sparse coding
	Proofs
	Proof of Lemma 2.1
	Proof of Proposition 3.5

