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Convex optimization

Notation

Matrices are written in uppercase: A, vectors are written in lowercase: a. Aij denotes the
element of A in position (i, j), Ai denotes the ith column of A (it’s a vector!). Beware that xi
may denote the ith entry of a vector x or a the ith vector in a list depending on the context.
I denotes a subvector of x that contains the entries listed in the set I. For example, x1:n
contains the first n entries of x.

1 Convexity

1.1 Convex sets

A set is convex if it contains all segments connecting points that belong to it.

Definition 1.1 (Convex set). A convex set S is any set such that for any x, y ∈ S and
θ ∈ (0, 1)

θx+ (1− θ) y ∈ S. (1)

Figure 1 shows a simple example of a convex and a nonconvex set.

The following lemma establishes that the intersection of convex sets is convex.

Lemma 1.2 (Intersection of convex sets). Let S1, . . . ,Sm be convex subsets of Rn, ∩mi=1Si is
convex.

Proof. Any x, y ∈ ∩mi=1Si also belong to S1. By convexity of S1 θx+ (1− θ) y belongs to S1

for any θ ∈ (0, 1) and therefore also to ∩mi=1Si.

The following theorem shows that projection onto non-empty closed convex sets is unique.
The proof is in Section B.1 of the appendix.

Theorem 1.3 (Projection onto convex set). Let S ⊆ Rn be a non-empty closed convex set.
The projection of any vector x ∈ Rn onto S

PS (x) := arg min
s∈S
||x− s||2 (2)

exists and is unique.



Nonconvex Convex

Figure 1: An example of a nonconvex set (left) and a convex set (right).

A convex combination of n points is any linear combination of the points with nonnegative
coefficients that add up to one. In the case of two points, this is just the segment between
the points.

Definition 1.4 (Convex combination). Given n vectors x1, x2, . . . , xn ∈ Rn,

x :=
n∑
i=1

θixi (3)

is a convex combination of x1, x2, . . . , xn as along as the real numbers θ1, θ2, . . . , θn are non-
negative and add up to one,

θi ≥ 0, 1 ≤ i ≤ n, (4)
n∑
i=1

θi = 1. (5)

The convex hull of a set S contains all convex combination of points in S. Intuitively, it is
the smallest convex set that contains S.

Definition 1.5 (Convex hull). The convex hull of a set S is the set of all convex combinations
of points in S.

A justification of why we penalize the `1-norm to promote sparse structure is that the `1-
norm ball is the convex hull of the intersection between the `0 “norm” ball and the `∞-norm
ball. The lemma is illustrated in 2D in Figure 2 and proved in Section 1.6 of the appendix.

Lemma 1.6 (`1-norm ball). The `1-norm ball is the convex hull of the intersection between
the `0 “norm” ball and the `∞-norm ball.
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Figure 2: Illustration of Lemma (1.6) The `0 “norm” ball is shown in black, the `∞-norm ball in
blue and the `1-norm ball in a reddish color.

1.2 Convex functions

We now define convexity for functions.

Definition 1.7 (Convex function). A function f : Rn → R is convex if for any x, y ∈ Rn

and any θ ∈ (0, 1),

θf (x) + (1− θ) f (y) ≥ f (θx+ (1− θ) y) . (6)

The function is strictly convex if the inequality is always strict, i.e. if x 6= y implies that

θf (x) + (1− θ) f (y) > f (θx+ (1− θ) y) . (7)

A concave function is a function f such that −f is convex.

Remark 1.8 (Extended-value functions). We can also consider an arbitrary function f that
is only defined in a subset of Rn. In that case f is convex if and only if its extension f̃ is
convex, where

f̃ (x) :=

{
f (x) if x ∈ dom (f),

∞ if x /∈ dom (f).
(8)

Equivalently, f is convex if and only if its domain dom (f) is convex and any two points in
dom (f) satisfy (6).
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f (θx+ (1− θ)y)
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Figure 3: Illustration of condition (6) in Definition 1.7. The curve corresponding to the function
must lie below any chord joining two of its points.

Condition (6) is illustrated in Figure 3. The curve corresponding to the function must lie
below any chord joining two of its points. It is therefore not surprising that we can determine
whether a function is convex by restricting our attention to its behavior along lines in Rn.
This is established by the following lemma, which is proved formally in Section B.2 of the
appendix.

Lemma 1.9 (Equivalent definition of convex functions). A function f : Rn → R is convex
if and only if for any two points x, y ∈ Rn the univariate function gx,y : [0, 1]→ R defined by

gx,y (α) := f (αx+ (1− α) y) (9)

is convex. Similarly, f is strictly convex if and only if gx,y is strictly convex for any a, b.

Section A in the appendix provides a definition of the norm of a vector and lists the most
common ones. It turns out that all norms are convex.

Lemma 1.10 (Norms are convex). Any valid norm ||·|| is a convex function.

Proof. By the triangle inequality inequality and homogeneity of the norm, for any x, y ∈ Rn

and any θ ∈ (0, 1)

||θx+ (1− θ) y|| ≤ ||θx||+ ||(1− θ) y|| = θ ||x||+ (1− θ) ||y|| . (10)

The `0 “norm” is not really norm, as explained in Section A, and is not convex either.
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Lemma 1.11 (`0 “norm”). The `0 “norm” is not convex.

Proof. We provide a simple counterexample. Let x := ( 1
0 ) and y := ( 0

1 ), then for any
θ ∈ (0, 1)

||θx+ (1− θ) y||0 = 2 > 1 = θ ||x||0 + (1− θ) ||y||0 . (11)

We end the section by establishing a property of convex functions that is crucial in opti-
mization.

Theorem 1.12 (Local minima are global). Any local minimum of a convex function f :
Rn → R is also a global minimum.

We defer the proof of the theorem to Section B.4 of the appendix.

1.3 Sublevel sets and epigraph

In this section we define two sets associated to a function that are very useful when reasoning
geometrically about convex functions.

Definition 1.13 (Sublevel set). The γ-sublevel set of a function f : Rn → R, where γ ∈ R,
is the set of points in Rn at which the function is smaller or equal to γ,

Cγ := {x | f (x) ≤ γ} . (12)

Lemma 1.14 (Sublevel sets of convex functions). The sublevel sets of a convex function are
convex.

Proof. If x, y ∈ Rn belong to the γ-sublevel set of a convex function f then for any θ ∈ (0, 1)

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) by convexity of f (13)

≤ γ (14)

because both x and y belong to the γ-sublevel set. We conclude that any convex combination
of x and y also belongs to the γ-sublevel set.

Recall that the graph of a function f : Rn → R is the curve in Rn+1

graph (f) := {x | f (x1:n) = xn+1} , (15)

where x1:n ∈ Rn contains the first n entries of x. The epigraph of a function is the set in
Rn+1 that lies above the graph of the function. An example is shown in Figure 4.

5



f

epi (f)

Figure 4: Epigraph of a function.

Definition 1.15 (Epigraph). The epigraph of a function f : Rn → R is defined as

epi (f) := {x | f (x1:n) ≤ xn+1} . (16)

Epigraphs allow to reason geometrically about convex functions. The following basic result
is proved in Section B.5 of the appendix.

Lemma 1.16 (Epigraphs of convex functions are convex). A function is convex if and only
if its epigraph is convex.

1.4 Operations that preserve convexity

It may be challenging to determine whether a function of interest is convex or not by using
the definition directly. Often, an easier alternative is to express the function in terms of
simpler functions that are known to be convex. In this section we list some operations that
preserve convexity.

Lemma 1.17 (Composition of convex and affine function). If f : Rn → R is convex, then
for any A ∈ Rn×m and any b ∈ Rn, the function

h (x) := f (Ax+ b) (17)

is convex.
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Proof. By convexity of f , for any x, y ∈ Rm and any θ ∈ (0, 1)

h (θx+ (1− θ) y) = f (θ (Ax+ b) + (1− θ) (Ay + b)) (18)

≤ θf (Ax+ b) + (1− θ) f (Ay + b) (19)

= θ h (x) + (1− θ)h (y) . (20)

Corollary 1.18 (Least squares). For any A ∈ Rn×m and any y ∈ Rn the least-squares cost
function

||Ax− y||2 (21)

is convex.

Lemma 1.19 (Nonnegative weighted sums). The weighted sum of m convex functions
f1, . . . , fm

f :=
m∑
i=1

αi fi (22)

is convex as long as the weights α1, . . . , α ∈ R are nonnegative.

Proof. By convexity of f1, . . . , fm, for any x, y ∈ Rm and any θ ∈ (0, 1)

f (θx+ (1− θ) y) =
m∑
i=1

αi fi (θx+ (1− θ) y) (23)

≤
m∑
i=1

αi (θfi (x) + (1− θ) fi (y)) (24)

= θ f (x) + (1− θ) f (y) . (25)

Corollary 1.20 (Regularized least squares). Regularized least-squares cost functions of the
form

||Ax− y||22 + ||x|| , (26)

where ||·|| is an arbitrary norm, are convex.

Proposition 1.21 (Pointwise maximum/supremum of convex functions). The pointwise
maximum of m convex functions f1, . . . , fm is convex

fmax (x) := max
1≤i≤m

fi (x) . (27)
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The pointwise supremum of a family of convex functions indexed by a set I

fsup (x) := sup
i∈I

fi (x) . (28)

is convex.

Proof. We prove that the supremum is unique, as it implies the result for the maximum. For
any 0 ≤ θ ≤ 1 and any x, y ∈ R,

fsup (θx+ (1− θ) y) = sup
i∈I

fi (θx+ (1− θ) y) (29)

≤ sup
i∈I

θfi (x) + (1− θ) fi (y) by convexity of the fi (30)

≤ θ sup
i∈I

fi (x) + (1− θ) sup
j∈I

fj (y) (31)

= θfsup (x) + (1− θ) fsup (y) . (32)

2 Differentiable functions

In this section we characterize the convexity of differentiable functions in terms of the be-
havior of their first and second order Taylor expansions, or equivalently in terms of their
gradient and Hessian.

2.1 First-order conditions

Consider the first-order Taylor expansion of f : Rn → R at x,

f 1
x (y) := f (x) +∇f (x) (y − x) . (33)

Note that this first-order approximation is a linear function. The following proposition,
proved in Section B.6 of the appendix, establishes that a function f is convex if and only if
f 1
x is a lower bound for f for any x ∈ Rn. Figure 5 illustrates the condition with an example.

Proposition 2.1 (First-order condition). A differentiable function f : Rn → R is convex if
and only if for every x, y ∈ Rn

f (y) ≥ f (x) +∇f (x)T (y − x) . (34)

It is strictly convex if and only if

f (y) > f (x) +∇f (x)T (y − x) . (35)
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Figure 5: An example of the first-order condition for convexity. The first-order approximation at
any point is a lower bound of the function.

An immediate corollary is that for a convex function, any point at which the gradient is zero
is a global minimum. If the function is strictly convex, the minimum is unique.

Corollary 2.2. If a differentiable function f is convex and ∇f (x) = 0, then for any y ∈ R

f (y) ≥ f (x) . (36)

If f is strictly convex then for any y ∈ R

f (y) > f (x) . (37)

For any differentiable function f and any x ∈ Rn let us define the hyperplane Hf,x ⊂ Rn+1

that corresponds to the first-order approximation of f at x,

Hf,x :=
{
y | yn+1 = f 1

x (y1:n)
}
. (38)

Geometrically, Proposition 2.1 establishes thatHf,x lies above the epigraph of f . In addition,
the hyperplane and epi (f) intersect at x. In convex analysis jargon, Hf,x is a supporting
hyperplane of epi (f) at x.

Definition 2.3 (Supporting hyperplane). A hyperplane H is a supporting hyperplane of a
set S at x if

• H and S intersect at x,

• S is contained in one of the half-spaces bounded by H.

The optimality condition has a very intuitive geometric interpretation in terms of the sup-
porting hyperplane Hf,x. ∇f = 0 implies that Hf,x is horizontal if the vertical dimension
corresponds to the n + 1th coordinate. Since the epigraph lies above hyperplane, the point
at which they intersect must be a minimum of the function.
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Figure 6: An example of the second-order condition for convexity. The second-order approxima-
tion at any point is convex.

2.2 Second-order conditions

For univariate functions that are twice differentiable, convexity is dictated by the curvature
of the function. As you might recall from basic calculus, curvature is the rate of change of
the slope of the function and is consequently given by its second derivative. The following
lemma, proved in Section B.8 of the appendix, establishes that univariate functions are
convex if and only if their curvature is always nonnegative.

Lemma 2.4. A twice-differentiable function g : R → R is convex if and only if g′′ (α) ≥ 0
for all α ∈ R.

By Lemma 1.9, we can establish convexity in Rn by considering the restriction of the function
along an arbitrary line. By multivariable calculus, the second directional derivative of f at
a point x in the direction of a unit vector is equal to uT∇2f (x)u. As a result, if the Hessian
is positive semidefinite, the curvatures is nonnegative in every direction and the function is
convex.

Corollary 2.5. A twice-differentiable function f : Rn → R is convex if and only if for every
x ∈ Rn, the Hessian matrix ∇2f (x) is positive semidefinite.

Proof. By Lemma 1.9 we just need to show that the univariate function ga,b defined by (9) is
convex for all a, b ∈ Rn. By Lemma 2.4 this holds if and only if the second derivative of ga,b
is nonnegative. Applying some basic multivariate calculus, we have that for any α ∈ (0, 1)

g′′a,b (α) := (a− b)T ∇2f (αa+ (1− α) b) (a− b) . (39)

This quantity is nonnegative for all a, b ∈ Rn if and only if ∇2f (x) is positive semidefinite
for any x ∈ Rn.
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Convex Concave Neither

Figure 7: Quadratic forms for which the Hessian is positive definite (left), negative definite (center)
and neither positive nor negative definite (right).

Remark 2.6 (Strict convexity). If the Hessian is positive definite, then the function is
strictly convex (the proof is essentially the same). However, there are functions that are
strictly convex for which the Hessian may equal zero at some points. An example is the
univariate function f (x) = x4, for which f ′′ (0) = 0.

We can interpret Corollary 2.5 in terms of the second-order Taylor expansion of f : Rn → R
at x.

Definition 2.7 (Second-order approximation). The second-order or quadratic approximation
of f at x is

f 2
x (y) := f (x) +∇f (x) (y − x) +

1

2
(y − x)T ∇2f (x) (y − x) . (40)

f 2
x is a quadratic form that shares the same value at x. By the corollary, f is convex if

and only if this quadratic approximation is always convex. This is illustrated in Figure 6.
Figure 7 shows some examples of quadratic forms in two dimensions.

3 Nondifferentiable functions

If a function is not differentiable we cannot use its gradient to check whether it is convex
or not. However, we can extend the first-order characterization derived in Section 2.1 by
checking whether the function has a supporting hyperplane at every point. If a supporting
hyperplane exists at x, the gradient of the hyperplane is called a subgradient of f at x.
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Definition 3.1 (Subgradient). The subgradient of a function f : Rn → R at x ∈ Rn is a
vector q ∈ Rn such that

f (y) ≥ f (x) + qT (y − x) , for all y ∈ Rn. (41)

The set of all subgradients is called the subdifferential of the function at x.

The following theorem, proved in Section B.9 of the appendix, establishes that if a subgra-
dient exists at every point, the function is convex.

Theorem 3.2. If a function f : Rn → R has a non-empty subdifferential at any x ∈ Rn

then f is convex.

The subdifferential allows to obtain an optimality condition for nondifferentiable convex
functions.

Proposition 3.3 (Optimality condition). A convex function attains its minimum value at
a vector x if the zero vector is a subgradient of f at x.

Proof. By the definition of subgradient, if q := 0 is a subgradient at x for any y ∈ Rn

f (y) ≥ f (x) + qT (y − x) = f (x) . (42)

If a function is differentiable at a point, then the gradient is the only subgradient at that
point.

Proposition 3.4 (Subdifferential of differentiable functions). If a convex function f : Rn →
R is differentiable at x ∈ Rn, then its subdifferential at x only contains ∇f (x).

Proof. By Proposition 2.1 ∇f is a subgradient at x. Now, let q be an arbitrary subgradient
at x. By the definition of subgradient,

f (x+ α ei) ≥ f (x) + qTα ei (43)

= f (x) + qi α, (44)

f (x) ≥ f (x− α ei) + qTα ei (45)

= f (x− α ei) + qi α. (46)

Combining both inequalities

f (x)− f (x− α ei)
α

≤ qi ≤
f (x+ α ei)− f (x)

α
. (47)

If we let α→ 0, this implies qi = ∂f(x)
∂xi

. Consequently, q = ∇f .
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An important nondifferentiable convex function in optimization-based data analysis is the
`1 norm. The following proposition characterizes its subdifferential.

Proposition 3.5 (Subdifferential of `1 norm). The subdifferential of the `1 norm at x ∈ Rn

is the set of vectors q ∈ Rn that satisfy

qi = sign (xi) if xi 6= 0, (48)

|qi| ≤ 1 if xi = 0. (49)

Proof. The proof relies on the following simple lemma, proved in Section B.10.

Lemma 3.6. q is a subgradient of ||·||1 : Rn → R at x if and only if qi is a subgradient of
|·| : R→ R at xi for all 1 ≤ i ≤ n.

If xi 6= 0 the absolute-value function is differentiable at xi, so by Proposition (3.4), qi is
equal to the derivative qi = sign (xi).

If xi = 0, qi is a subgradient of the absolute-value function if and only if |α| ≥ qi α for any
α ∈ R, which holds if and only if |qi| ≤ 1.

4 Optimization problems

4.1 Definition

We start by defining a canonical optimization problem. The vast majority of optimization
problems (certainly all of the ones that we will study in the course) can be cast in this form.

Definition 4.1 (Optimization problem).

minimize f0 (x) (50)

subject to fi (x) ≤ 0, 1 ≤ i ≤ m, (51)

hi (x) = 0, 1 ≤ i ≤ p, (52)

where f0, f1, . . . , fm, h1, . . . , hp : Rn → R.

The problem consists of a cost function f0, inequality constraints and equality constraints.
Any vector that satisfies all the constraints in the problem is said to be feasible. A solution
to the problem is any vector x∗ such that for all feasible vectors x

f0 (x) ≥ f0 (x∗) . (53)

If a solution exists f (x∗) is the optimal value or optimum of the optimization problem.

An optimization problem is convex if it satisfies the following conditions:
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• The cost function f0 is convex.

• The functions that determine the inequality constraints f1, . . . , fm are convex.

• The functions that determine the equality constraints h1, . . . , hp are affine, i.e. hi (x) =
aTi x+ bi for some ai ∈ Rn and bi ∈ R.

Note that under these assumptions the feasibility set is convex. Indeed, it corresponds to
the intersection of several convex sets: the 0-sublevel sets of f1, . . . , fm, which are convex by
Lemma 1.14, and the hyperplanes hi (x) = aTi x+bi. The intersection is convex by Lemma 1.2.

If both the cost function and the constraint functions are all affine, the problem is a linear
program (LP).

Definition 4.2 (Linear program).

minimize aTx (54)

subject to cTi x ≤ di, 1 ≤ i ≤ m, (55)

Ax = b. (56)

It turns out that `1-norm minimization can be cast as an LP. The theorem is proved in
Section B.11 of the appendix.

Theorem 4.3 (`1-norm minimization as an LP). The optimization problem

minimize ||x||1 (57)

subject to Ax = b (58)

can be recast as the linear program

minimize
n∑
i=1

ti (59)

subject to ti ≥ xi, (60)

ti ≥ −xi, (61)

Ax = b. (62)

If the cost function is a positive semidefinite quadratic form and the constraints are affine
the problem is a quadratic program (QP).

Definition 4.4 (Quadratic program).

minimize xTQx+ aTx (63)

subject to cTi x ≤ di, 1 ≤ i ≤ m, (64)

Ax = b, (65)

where Q ∈ Rn×n is positive semidefinite.
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A corollary of Theorem 4.3 is that `1-norm regularized least squares can be cast as a QP.

Corollary 4.5 (`1-norm regularized least squares as a QP). The optimization problem

minimize ||Ax− y||22 + λ ||x||1 (66)

can be recast as the quadratic program

minimize xTATAx− 2yTx+ λ
n∑
i=1

ti (67)

subject to ti ≥ xi, (68)

ti ≥ −xi. (69)

We will discuss other types of convex optimization problems, such as semidefinite programs
later on in the course.

4.2 Duality

The Lagrangian of the optimization problem in Definition 4.1 is defined as the cost function
augmented by a weighted linear combination of the constraint functions,

L (x, λ, ν) := f0 (x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νj hj (x) , (70)

where the vectors λ ∈ Rm, ν ∈ Rp are called Lagrange multipliers or dual variables. In
contrast, x is the primal variable.

Note that as long as λi ≥ 0 for 1 ≤ i ≤ m, the Lagrangian is a lower bound for the value of
the cost function at any feasible point. Indeed, if x is feasible and λi ≥ 0 for 1 ≤ i ≤ m then

λi fi (x) ≤ 0, (71)

νj hj (x) = 0, (72)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ p. This immediately implies,

L (x, λ, ν) ≤ f0 (x) . (73)

The Lagrange dual function is the infimum of the Lagrangian over the primal variable x

l (λ, ν) := inf
x∈Rn

f0 (x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νj hj (x) . (74)
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Proposition 4.6 (Lagrange dual function as a lower bound of the primal optimum). Let p∗

denote an optimal value of the optimization problem in Definition 4.1,

l (λ, ν) ≤ p∗, (75)

as long as λi ≥ 0 for 1 ≤ i ≤ n.

Proof. The result follows directly from (73),

p∗ = f0 (x∗) (76)

≥ L (x∗, λ, ν) (77)

≥ l (λ, ν) . (78)

Optimizing this lower bound on the primal optimum over the Lagrange multipliers yields
the dual problem of the original optimization problem, which is called the primal problem
in this context.

Definition 4.7 (Dual problem). The dual problem of the optimization problem from Defi-
nition 4.1 is

maximize l (λ, ν) (79)

subject to λi ≥ 0, 1 ≤ i ≤ m. (80)

Note that the cost function is a pointwise supremum of linear (and hence convex) functions,
so by Proposition 1.21 the dual problem is a convex optimization problem even if the primal
is nonconvex! The following result, which is an immediate corollary to Proposition 4.6, states
that the optimum of the dual problem is a lower bound for the primal optimum. This is
known as weak duality.

Corollary 4.8 (Weak duality). Let p∗ denote an optimum of the optimization problem in
Definition 4.1 and d∗ an optimum of the corresponding dual problem,

d∗ ≤ p∗. (81)

In the case of convex functions, the optima of the primal and dual problems are often equal,
i.e.

d∗ = p∗. (82)

This is known as strong duality. A simple condition that guarantees strong duality for convex
optimization problems is Slater’s condition.
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Definition 4.9 (Slater’s condition). A vector x ∈ Rn satisfies Slater’s condition for a convex
optimization problem if

fi (x) < 0, 1 ≤ i ≤ m, (83)

Ax = b. (84)

A proof of strong duality under Slater’s condition can be found in Section 5.3.2 of [1].
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A Norms

The norm of a vector is a generalization of the concept of length.

Definition A.1 (Norm). Let V be a vector space, a norm is a function ||·|| from V to R
that satisfies the following conditions.

• It is homogeneous. For all α ∈ R and x ∈ V

||αx|| = |α| ||x|| . (85)

• It satisfies the triangle inequality

||x+ y|| ≤ ||x||+ ||y|| . (86)

In particular, it is nonnegative (set y = −x).

• ||x|| = 0 implies that x is the zero vector 0.

1However, see http://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf
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The `2 norm is induced by the inner product 〈x, y〉 = xTy

||x||2 :=
√
xTx. (87)

Definition A.2 (`2 norm). The `2 norm of a vector x ∈ Rn is defined as

||x||2 :=

√√√√ n∑
i=1

x2i . (88)

Definition A.3 (`1 norm). The `1 norm of a vector x ∈ Rn is defined as

||x||1 :=
n∑
i=1

|xi| . (89)

Definition A.4 (`∞ norm). The `∞ norm of a vector x ∈ Rn is defined as

||x||∞ := max
1≤i≤n

|xi| . (90)

Remark A.5. The `0 “norm” is not a norm, as it is not homogeneous. For example, if x
is not the zero vector,

||2x||0 = ||x||0 6= 2 ||x||0 . (91)

B Proofs

B.1 Proof of Theorem 1.3

Existence

Since S is non-empty we can choose an arbitrary point s̃ ∈ S. Minimizing ||x− s||2 over
S is equivalent to minimizing ||x− s||2 over S ∩ {y | ||x− y||2 ≤ ||x− s̃||2}. Indeed, the
solution cannot be a point that is farther away from x than s̃. By Weierstrass’s extreme-
value theorem, the optimization problem

minimize ||x− s||22 (92)

subject to s ∈ S ∩ {y | ||x− y||2 ≤ ||x− s̃||2} (93)

has a solution because ||x− s||22 is a continuous function and the feasibility set is bounded
and closed, and hence compact. Note that this also holds if S is not convex.

Uniqueness
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Assume that there are two distinct projections s1 6= s2. Consider the point

s :=
s1 + s2

2
, (94)

which belongs to S because S is convex. The difference between x and s and the difference
between s1 and s are orthogonal vectors,

〈x− s, s1 − s〉 =

〈
x− s1 + s2

2
, s1 −

s1 + s2
2

〉
(95)

=

〈
x− s1

2
+
x− s2

2
,
x− s1

2
− x− s2

2

〉
(96)

=
1

4

(
||x− s1||2 + ||x− s2||2

)
(97)

= 0, (98)

because ||x− s1|| = ||x− s2|| by assumption. By Pythagoras’s theorem this implies

||x− s1||22 = ||x− s||22 + ||s1 − s||22 (99)

= ||x− s||22 +

∣∣∣∣∣∣∣∣s1 − s22

∣∣∣∣∣∣∣∣2
2

(100)

> ||x− s||22 (101)

because s1 6= s2 by assumption. We have reached a contradiction, so the projection is unique.

B.2 Proof of Lemma 1.9

The proof for strict convexity is exactly the same, replacing the inequalities by strict in-
equalities.

f being convex implies that gx,y is convex for any x, y ∈ Rn

For any α, β, θ ∈ (0, 1)

gx,y (θα + (1− θ) β) = f ((θα + (1− θ) β)x+ (1− θα− (1− θ) β) y) (102)

= f (θ (αx+ (1− α) y) + (1− θ) (βx+ (1− β) y)) (103)

≤ θf (αx+ (1− α) y) + (1− θ) f (βx+ (1− β) y) by convexity of f

= θgx,y (α) + (1− θ) gx,y (β) . (104)

gx,y being convex for any x, y ∈ Rn implies that f is convex
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For any α, β, θ ∈ (0, 1)

f (θx+ (1− θ) y) = gx,y (θ) (105)

≤ θgx,y (1) + (1− θ) gx,y (0) by convexity of gx,y (106)

= θf (x) + (1− θ) f (y) . (107)

B.3 Proof of Lemma 1.6

We prove that the `1-norm ball B`1 is equal to the convex hull of the intersection between the
`0 “norm” ball B`0 and the `∞-norm ball B`∞ by showing that the sets contain each other.

B`1 ⊆ C (B`0 ∩ B`∞)

Let x be an n-dimensional vector in B`1 . If we set θi := |x(i)|, where x (i) is the ith entry of
x by x (i), and θ0 = 1−∑n

i=1 θi we have

n+1∑
i=1

θi = 1, (108)

θi ≥ 0 for 1 ≤ i ≤ n by definition, (109)

θ0 = 1−
n+1∑
i=1

θi (110)

= 1− ||x||1 (111)

≥ 0 because x ∈ B`1 . (112)

We can express x as a convex combination of the standard basis vectors e1, e2, . . . , en, which
belong to B`0 ∩B`∞ since they have a single nonzero entry equal to one, and the zero vector
e0, which also belongs to B`0 ∩ B`∞ ,

x =
n∑
i=1

θiei + θ0e0. (113)

C (B`0 ∩ B`∞) ⊆ B`1
Let x be an n-dimensional vector in C (B`0 ∩ B`∞). By the definition of convex hull, we can
write

x =
m∑
i=1

θiyi, (114)
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where m > 0, y1, . . . , ym ∈ Rn have a single entry bounded by one, θi ≥ 0 for all 1 ≤ i ≤ m
and

∑m
i=1 θi = 1. This immediately implies x ∈ B`1 , since

||x||1 ≤
m∑
i=1

θi ||yi||1 by the Triangle inequality (115)

≤
n∑
i=1

θi ||yi||∞ because each yi only has one nonzero entry (116)

≤
n∑
i=1

θi (117)

≤ 1. (118)

B.4 Proof of Theorem 1.12

We prove the result by contradiction. Let xloc be a local minimum and xglob a global minimum
such that f (xglob) < f (xloc). Since xloc is a local minimum, there exists γ > 0 for which
f (xloc) ≤ f (x) for all x ∈ Rn such that ||x− xloc||2 ≤ γ. If we choose θ ∈ (0, 1) small
enough, xθ := θxloc + (1− θ)xglob satisfies ||x− xloc||2 ≤ γ and therefore

f (xloc) ≤ f (xθ) (119)

≤ θf (xloc) + (1− θ) f (xglob) by convexity of f (120)

< f (xloc) because f (xglob) < f (xloc). (121)

B.5 Proof of Lemma 1.16

f being convex implies that epi (f) is convex

Let x, y ∈ Rn+1 ∈ epi (f), then for any θ ∈ (0, 1)

f (θx1:n + (1− θ) y1:n) ≤ θf (x1:n) + (1− θ) f (y1:n) by convexity of f (122)

≤ θxn+1 + (1− θ) yn+1 (123)

because x, y ∈ Rn+1 ∈ epi (f) so f (x1:n) ≤ xn+1 and f (y1:n) ≤ yn+1. This implies that
θx+ (1− θ) y ∈ epi (f).

epi (f) being convex implies that f is convex

For any x, y ∈ Rn, let us define x̃, ỹ ∈ Rn+1 such that

x̃1:n := x, x̃n+1 := f (x) , (124)

ỹ1:n := y, ỹn+1 := f (y) . (125)
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By definition of epi (f), x̃, ỹ ∈ epi (f). For any θ ∈ (0, 1), θx̃ + (1− θ) ỹ belongs to epi (f)
because it is convex. As a result,

f (θx+ (1− θ) y) = f (θx̃1:n + (1− θ) ỹ1:n) (126)

≤ θx̃n+1 + (1− θ) ỹn+1 (127)

= θf (x) + (1− θ) f (y) . (128)

B.6 Proof of Proposition 2.1

The proof for strict convexity is almost exactly the same; we omit the details.

The following lemma, proved in Section B.7 below establishes that the result holds for
univariate functions

Lemma B.1. A univariate differentiable function g : R→ R is convex if and only if for all
α, β ∈ R

g (β) ≥ g′ (α) (β − α) (129)

and strictly convex if and only if for all α, β ∈ R

g (β) > g′ (α) (β − α) . (130)

To complete the proof we extend the result to the multivariable case using Lemma 1.9.

If f (y) ≥ f (x) +∇f (x)T (y − x) for any x, y ∈ Rn then f is convex

By Lemma 1.9 we just need to show that the univariate function ga,b defined by (9) is convex
for all a, b ∈ Rn. Applying some basic multivariate calculus yields

g′a,b (α) = ∇f (α a+ (1− α) b)T (a− b) . (131)

Let α, β ∈ R. Setting x := α a+ (1− α) b and y := β a+ (1− β) b we have

ga,b (β) = f (y) (132)

≥ f (x) +∇f (x)T (y − x) (133)

= f (α a+ (1− α) b) +∇f (α a+ (1− α) b)T (a− b) (β − α) (134)

= ga,b (α) + g′a,b (α) (β − α) by (131), (135)

which establishes that ga,b is convex by Lemma B.1 above.

If f is convex then f (y) ≥ f (x) +∇f (x)T (y − x) for any x, y ∈ Rn

22



By Lemma 1.9, gx,y is convex for any x, y ∈ Rn.

f (y) = gx,y (1) (136)

≥ gx,y (0) + g′x,y (0) by convexity of gx,y and Lemma B.1 (137)

= f (x) +∇f (x)T (y − x) by (131). (138)

B.7 Proof of Lemma B.1

g being convex implies g (β) ≥ g′ (α) (β − α) for all α, β ∈ R

If g is convex then for any α, β ∈ R and any 0 ≤ θ ≤ 1

θ (g (β)− g (α)) + g (α) ≥ g (α + θ (β − α)) . (139)

Rearranging the terms we have

g (β) ≥ g (α + θ (β − α))− g (α)

θ
+ g (α) . (140)

Setting h = θ (β − α), this implies

g (β) ≥ g (α + h)− g (α)

h
(β − α) + g (α) . (141)

Taking the limit when h→ 0 yields

g (β) ≥ g′ (α) (β − α) . (142)

If g (β) ≥ g′ (α) (β − α) for all α, β ∈ R then g is convex

Let z = θα + (1− θ) β, then by if g (β) ≥ g′ (α) (β − α)

g (α) ≥ g′ (z) (α− z) + g (z) (143)

= g′ (z) (1− θ) (α− β) + g (z) (144)

g (β) ≥ g′ (z) (β − z) + g (z) (145)

= g′ (z) θ (β − α) + g (z) (146)

Multiplying (144) by θ, then (146) by 1− θ and summing the inequalities, we obtain

θg (α) + (1− θ) g (β) ≥ g (θα + (1− θ) β) . (147)
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B.8 Proof of Lemma 2.4

The second derivative of g is nonnegative anywhere if and only if the first derivative is
nondecreasing, because g′′ is the derivative of g′.

If g is convex g′ is nondecreasing

By Lemma B.1, if the function is convex then for any α, β ∈ R such that β > α

g (α) ≥ g′ (β) (α− β) + g (β) , (148)

g (β) ≥ g′ (α) (β − α) + g (α) . (149)

Rearranging, we obtain

g′ (β) (β − α) ≥ g (β)− g (α) ≥ g′ (α) (β − α) . (150)

Since β − α > 0, we have g′ (β) ≥ g′ (α).

If g′ is nondecreasing, g is convex

For arbitrary α, β, θ ∈ R, such that β > α and 0 < θ < 1, let η = θβ + (1− θ)α. Since
β > η > α, by the mean-value theorem there exist γ1 ∈ [α, η] and γ2 ∈ [η, β] such that

g′ (γ1) =
g (η)− g (α)

η − α , (151)

g′ (γ2) =
g (β)− g (η)

β − η . (152)

Since γ1 < γ2, if g′ is nondecreasing

g (β)− g (η)

β − η ≥ g (η)− g (α)

η − α , (153)

which implies

η − α
β − αg (β) +

β − η
β − αg (α) ≥ g (η) . (154)

Recall that η = θβ + (1− θ)α, so that θ = (η − α) / (β − α) and θ = (η − α) / (β − α) and
1− θ = (β − η) / (β − α). (154) is consequently equivalent to

θg (β) + (1− θ) g (α) ≥ g (θβ + (1− θ)α) . (155)
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B.9 Proof of Theorem 3.2

For arbitrary x, y ∈ Rn and α ∈ R there exists a subgradient q of f at αx+ (1− α) y. This
implies

f (y) ≥ f (αx+ (1− α) y) + qT (y − αx− (1− α) y) (156)

= f (αx+ (1− α) y) + α qT (y − x) , (157)

f (x) ≥ f (αx+ (1− α) y) + qT (x− αx− (1− α) y) (158)

= f (αx+ (1− α) y) + (1− α) qT (y − x) . (159)

Multiplying equation (157) by 1 − α and equation (159) by α and adding them together
yields

αf (x) + (1− α) f (y) ≥ f (αx+ (1− α) y) . (160)

B.10 Proof of Lemma 3.6

If q is a subgradient for ||·||1 at x then qi is a subgradient for |·| at |xi| for 1 ≤ i ≤ n

|yi| = ||x+ (yi − xi) ei||1 − ||x||1 (161)

≥ qT (yi − xi) ei (162)

= qi (yi − xi) . (163)

If qi is a subgradient for |·| at |xi| for 1 ≤ i ≤ n then q is a subgradient for ||·||1 at x

||y||1 =
n∑
i=1

|yi| (164)

≥
n∑
i=1

|xi|+ qi (yi − xi) (165)

= ||x||1 + qT (y − x) . (166)

B.11 Proof of Theorem 4.3

To show that the linear problem and the `1-norm minimization problem are equivalent, we
show that they have the same set of solutions.

25



Let us denote an arbitrary solution of the LP by
(
xlp, tlp

)
. For any solution x`1 of the `1-norm

minimization problem, we define t`1i :=
∣∣x`1i ∣∣. (x`1 , t`1) is feasible for the LP so

∣∣∣∣x`1∣∣∣∣
1

=
n∑
i=1

t`1i (167)

≥
n∑
i=1

tlpi by optimality of tlp (168)

≥
∣∣∣∣xlp∣∣∣∣

1
by constraints (60) and (61). (169)

This implies that any solution of the LP is also a solution of the `1-norm minimization
problem.

To prove the converse, we fix a solution x`1 of the `1-norm minimization problem. Setting
t`1i :=

∣∣x`1i ∣∣, we show that
(
x`1 , t`1

)
is a solution of the LP. Indeed,

n∑
i=1

t`1i =
∣∣∣∣x`1∣∣∣∣

1
(170)

≤
∣∣∣∣xlp∣∣∣∣

1
by optimality of x`1 (171)

≤
n∑
i=1

tlpi by constraints (60) and (61). (172)
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