Wi NYU DATA SCIENCE

Vector spaces

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis
http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

Carlos Fernandez-Granda

Vector space

Consists of:

- A set \mathcal{V}
- A scalar field (usually \mathbb{R} or \mathbb{C})
- Two operations + and .

Properties

- For any $\vec{x}, \vec{y} \in \mathcal{V}, \vec{x}+\vec{y}$ belongs to \mathcal{V}
- For any $\vec{x} \in \mathcal{V}$ and any scalar $\alpha, \alpha \cdot \vec{x} \in \mathcal{V}$
- There exists a zero vector $\overrightarrow{0}$ such that $\vec{x}+\overrightarrow{0}=\vec{x}$ for any $\vec{x} \in \mathcal{V}$
- For any $\vec{x} \in \mathcal{V}$ there exists an additive inverse \vec{y} such that $\vec{x}+\vec{y}=\overrightarrow{0}$, usually denoted by $-\vec{x}$

Properties

- The vector sum is commutative and associative, i.e. for all $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$
\vec{x}+\vec{y}=\vec{y}+\vec{x}, \quad(\vec{x}+\vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z})
$$

- Scalar multiplication is associative, for any scalars α and β and any $\vec{x} \in \mathcal{V}$

$$
\alpha(\beta \cdot \vec{x})=(\alpha \beta) \cdot \vec{x}
$$

- Scalar and vector sums are both distributive, i.e. for any scalars α and β and any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
(\alpha+\beta) \cdot \vec{x}=\alpha \cdot \vec{x}+\beta \cdot \vec{x}, \quad \alpha \cdot(\vec{x}+\vec{y})=\alpha \cdot \vec{x}+\alpha \cdot \vec{y}
$$

Subspaces

A subspace of a vector space \mathcal{V} is any subset of \mathcal{V} that is also itself a vector space

Linear dependence/independence

A set of m vectors $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}$ is linearly dependent if there exist m scalar coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ which are not all equal to zero and

$$
\sum_{i=1}^{m} \alpha_{i} \vec{x}_{i}=\overrightarrow{0}
$$

Equivalently, any vector in a linearly dependent set can be expressed as a linear combination of the rest

Span

The span of $\left\{\vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ is the set of all possible linear combinations
$\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{m}\right):=\left\{\vec{y} \mid \vec{y}=\sum_{i=1}^{m} \alpha_{i} \vec{x}_{i} \quad\right.$ for some scalars $\left.\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$
The span of any set of vectors in \mathcal{V} is a subspace of \mathcal{V}

Basis and dimension

A basis of a vector space \mathcal{V} is a set of independent vectors $\left\{\vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ such that

$$
\mathcal{V}=\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{m}\right)
$$

If \mathcal{V} has a basis with finite cardinality then every basis contains the same number of vectors

The dimension $\operatorname{dim}(\mathcal{V})$ of \mathcal{V} is the cardinality of any of its bases
Equivalently, the dimension is the number of linearly independent vectors that span \mathcal{V}

Standard basis

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

The dimension of \mathbb{R}^{n} is n

Inner product

Operation $\langle\cdot, \cdot\rangle$ that maps a pair of vectors to a scalar

Properties

- If the scalar field is \mathbb{R}, it is symmetric. For any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
\langle\vec{x}, \vec{y}\rangle=\langle\vec{y}, \vec{x}\rangle
$$

If the scalar field is \mathbb{C}, then for any $\vec{x}, \vec{y} \in \mathcal{V}$

$$
\langle\vec{x}, \vec{y}\rangle=\overline{\langle\vec{y}, \vec{x}\rangle},
$$

where for any $\alpha \in \mathbb{C} \bar{\alpha}$ is the complex conjugate of α

Properties

- It is linear in the first argument, i.e. for any $\alpha \in \mathbb{R}$ and any $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$
\begin{aligned}
\langle\alpha \vec{x}, \vec{y}\rangle & =\alpha\langle\vec{x}, \vec{y}\rangle, \\
\langle\vec{x}+\vec{y}, \vec{z}\rangle & =\langle\vec{x}, \vec{z}\rangle+\langle\vec{y}, \vec{z}\rangle .
\end{aligned}
$$

If the scalar field is \mathbb{R}, it is also linear in the second argument

- It is positive definite: $\langle\vec{x}, \vec{x}\rangle$ is nonnegative for all $\vec{x} \in \mathcal{V}$ and if $\langle\vec{x}, \vec{x}\rangle=0$ then $\vec{x}=\overrightarrow{0}$

Dot product

Inner product between $\vec{x}, \vec{y} \in \mathbb{R}^{n}$

$$
\vec{x} \cdot \vec{y}:=\sum_{i} \vec{x}[i] \vec{y}[i]
$$

\mathbb{R}^{n} endowed with the dot product is usually called a Euclidean space of dimension n

If $\vec{x}, \vec{y} \in \mathbb{C}^{n}$

$$
\vec{x} \cdot \vec{y}:=\sum_{i} \vec{x}[i] \overline{\vec{y}[i]}
$$

Sample covariance

Quantifies joint fluctuations of two quantities or features
For a data set $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
$\operatorname{cov}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right):=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\operatorname{av}\left(x_{1}, \ldots, x_{n}\right)\right)\left(y_{i}-\operatorname{av}\left(y_{1}, \ldots, y_{n}\right)\right)$
where the average or sample mean is defined by

$$
\operatorname{av}\left(a_{1}, \ldots, a_{n}\right):=\frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are iid samples from x and y
$E\left(\operatorname{cov}\left(\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}\right), \ldots,\left(\mathrm{x}_{\mathbf{n}}, \mathrm{y}_{\mathbf{n}}\right)\right)\right)=\operatorname{Cov}(\mathbf{x}, \mathrm{y}):=\mathrm{E}((\mathbf{x}-\mathrm{E}(\mathbf{x}))(\mathbf{y}-\mathrm{E}(\mathbf{y})))$

Matrix inner product

The inner product between two $m \times n$ matrices A and B is

$$
\begin{aligned}
\langle A, B\rangle & :=\operatorname{tr}\left(A^{T} B\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}
\end{aligned}
$$

where the trace of an $n \times n$ matrix is defined as the sum of its diagonal

$$
\operatorname{tr}(M):=\sum_{i=1}^{n} M_{i i}
$$

For any pair of $m \times n$ matrices A and B

$$
\operatorname{tr}\left(B^{T} A\right):=\operatorname{tr}\left(A B^{T}\right)
$$

Function inner product

The inner product between two complex-valued square-integrable functions f, g defined in an interval $[a, b]$ of the real line is

$$
\vec{f} \cdot \vec{g}:=\int_{a}^{b} f(x) \overline{g(x)} \mathrm{d} x
$$

Norm

Let \mathcal{V} be a vector space, a norm is a function $\|\cdot\|$ from \mathcal{V} to \mathbb{R} with the following properties

- It is homogeneous. For any scalar α and any $\vec{x} \in \mathcal{V}$

$$
\|\alpha \vec{x}\|=|\alpha|\|\vec{x}\| .
$$

- It satisfies the triangle inequality

$$
\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| .
$$

In particular, $\|\vec{x}\| \geq 0$

- $\|\vec{x}\|=0$ implies $\vec{x}=\overrightarrow{0}$

Inner-product norm

Square root of inner product of vector with itself

$$
\|\vec{x}\|_{\langle\cdot,\rangle}:=\sqrt{\langle\vec{x}, \vec{x}\rangle}
$$

Inner-product norm

- Vectors in \mathbb{R}^{n} or $\mathbb{C}^{n}: \ell_{2}$ norm

$$
\|\vec{x}\|_{2}:=\sqrt{\vec{x} \cdot \vec{x}}=\sqrt{\sum_{i=1}^{n} \vec{x}[i]^{2}}
$$

- Matrices in $\mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$: Frobenius norm

$$
\|A\|_{F}:=\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}
$$

- Square-integrable complex-valued functions: \mathcal{L}_{2} norm

$$
\|f\|_{\mathcal{L}_{2}}:=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x}
$$

Cauchy-Schwarz inequality

For any two vectors \vec{x} and \vec{y} in an inner-product space

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\|_{\langle\langle,\rangle}|\vec{y}|_{\langle(,\rangle\rangle}
$$

Assume $\|\vec{x}\|_{\langle\cdot,\rangle} \neq 0$, then

$$
\begin{aligned}
\langle\vec{x}, \vec{y}\rangle=-\|\vec{x}\|_{\langle\cdot, \cdot\rangle}\|\vec{y}\|_{\langle\cdot,\rangle} & \Longleftrightarrow \vec{y}=-\frac{\|\vec{y}\|_{\langle\cdot, \cdot\rangle}}{\|\vec{x}\|_{\langle\cdot,\rangle}} \vec{x} \\
\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\|_{\langle\cdot,\rangle}\|\vec{y}\|_{\langle\cdot,\rangle} & \Longleftrightarrow \vec{y}=\frac{\|\vec{y}\|_{\langle\cdot, \cdot\rangle}}{\|\vec{x}\|_{\langle\cdot, \cdot\rangle}} \vec{x}
\end{aligned}
$$

Sample variance and standard deviation

The sample variance quantifies fluctuations around the average

$$
\operatorname{var}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\operatorname{av}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)^{2}
$$

If $x_{1}, x_{2}, \ldots, x_{n}$ are iid samples from x

$$
\mathrm{E}\left(\operatorname{var}\left(\mathrm{x}_{\mathbf{1}}, \mathrm{x}_{\mathbf{2}}, \ldots, \mathrm{x}_{\mathbf{n}}\right)\right)=\operatorname{Var}(\mathbf{x}):=\mathrm{E}\left((\mathbf{x}-\mathrm{E}(\mathbf{x}))^{2}\right)
$$

The sample standard deviation is

$$
\operatorname{std}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sqrt{\operatorname{var}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

Correlation coefficient

Normalized covariance

$$
\rho_{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)}:=\frac{\operatorname{cov}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)}{\operatorname{std}\left(x_{1}, \ldots, x_{n}\right) \operatorname{std}\left(y_{1}, \ldots, y_{n}\right)}
$$

Corollary of Cauchy-Schwarz

$$
-1 \leq \rho_{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)} \leq 1
$$

and

$$
\begin{aligned}
& \rho_{\vec{x}, \vec{y}}=-1 \Longleftrightarrow y_{i}=\operatorname{av}\left(y_{1}, \ldots, y_{n}\right)-\frac{\operatorname{std}\left(y_{1}, \ldots, y_{n}\right)}{\operatorname{std}\left(x_{1}, \ldots, x_{n}\right)}\left(x_{i}-\operatorname{av}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \rho_{\vec{x}, \vec{y}}=1 \Longleftrightarrow y_{i}=\operatorname{av}\left(y_{1}, \ldots, y_{n}\right)+\frac{\operatorname{std}\left(y_{1}, \ldots, y_{n}\right)}{\operatorname{std}\left(x_{1}, \ldots, x_{n}\right)}\left(x_{i}-\operatorname{av}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Correlation coefficient

$\rho_{\vec{x}, \vec{y}}$
0.00
-0.90

0.99

-0.99

Temperature data

Temperature in Oxford over 150 years

- Feature 1: Temperature in January
- Feature 1: Temperature in August

$$
\rho=0.269
$$

Temperature data

Temperature in Oxford over 150 years (monthly)

- Feature 1: Maximum temperature
- Feature 1: Minimum temperature

$$
\rho=0.962
$$

Parallelogram law

A norm $\|\cdot\|$ on a vector space \mathcal{V} is an inner-product norm if and only if

$$
2\|\vec{x}\|^{2}+2\|\vec{y}\|^{2}=\|\vec{x}-\vec{y}\|^{2}+\|\vec{x}+\vec{y}\|^{2}
$$

for any $\vec{x}, \vec{y} \in \mathcal{V}$

ℓ_{1} and ℓ_{∞} norms

Norms in \mathbb{R}^{n} or \mathbb{C}^{n} not induced by an inner product

$$
\begin{aligned}
\|\vec{x}\|_{1} & :=\sum_{i=1}^{n}|\vec{x}[i]| \\
\|\vec{x}\|_{\infty} & :=\max _{i}|\vec{x}[i]|
\end{aligned}
$$

Hölder's inequality

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\|_{1}\|\vec{y}\|_{\infty}
$$

Norm balls

ℓ_{2}
ℓ_{∞}

Distance

The distance between two vectors \vec{x} and \vec{y} induced by a norm $\|\cdot\|$ is

$$
d(\vec{x}, \vec{y}):=\|\vec{x}-\vec{y}\|
$$

Classification

Aim: Assign a signal to one of k predefined classes
Training data: n pairs of signals (represented as vectors) and labels: $\left\{\vec{x}_{1}, I_{1}\right\}, \ldots,\left\{\vec{x}_{n}, I_{n}\right\}$

Nearest-neighbor classification

Face recognition

Training set: 36064×64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject
We model each image as a vector in \mathbb{R}^{4096} and use the ℓ_{2}-norm distance

Face recognition

Training set

Nearest-neighbor classification

Errors: 4 / 40

Test
image

Orthogonality

Two vectors \vec{x} and \vec{y} are orthogonal if and only if

$$
\langle\vec{x}, \vec{y}\rangle=0
$$

A vector \vec{x} is orthogonal to a set \mathcal{S}, if

$$
\langle\vec{x}, \vec{s}\rangle=0, \quad \text { for all } \vec{s} \in \mathcal{S}
$$

Two sets of $\mathcal{S}_{1}, \mathcal{S}_{2}$ are orthogonal if for any $\vec{x} \in \mathcal{S}_{1}, \vec{y} \in \mathcal{S}_{2}$

$$
\langle\vec{x}, \vec{y}\rangle=0
$$

The orthogonal complement of a subspace \mathcal{S} is

$$
\mathcal{S}^{\perp}:=\{\vec{x} \mid\langle\vec{x}, \vec{y}\rangle=0 \quad \text { for all } \vec{y} \in \mathcal{S}\}
$$

Pythagorean theorem

If \vec{x} and \vec{y} are orthogonal

$$
\|\vec{x}+\vec{y}\|_{\langle\cdot,\rangle}^{2}=\|\vec{x}\|_{\langle\cdot,\rangle}^{2}+\|\vec{y}\|_{\langle\cdot,\rangle}^{2}
$$

Orthonormal basis

Basis of mutually orthogonal vectors with inner-product norm equal to one

If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal basis of a vector space \mathcal{V}, for any $\vec{x} \in \mathcal{V}$

$$
\vec{x}=\sum_{i=1}^{n}\left\langle\vec{u}_{i}, \vec{x}\right\rangle \vec{u}_{i}
$$

Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors $\vec{x}_{1}, \ldots, \vec{x}_{m}$ in \mathbb{R}^{n}

1. Set $\vec{u}_{1}:=\vec{x}_{1} /\left\|\vec{x}_{1}\right\|_{2}$
2. For $i=1, \ldots, m$, compute

$$
\vec{v}_{i}:=\vec{x}_{i}-\sum_{j=1}^{i-1}\left\langle\vec{u}_{j}, \vec{x}_{i}\right\rangle \vec{u}_{j}
$$

and set $\vec{u}_{i}:=\vec{v}_{i} /\left\|\vec{v}_{i}\right\|_{2}$

Direct sum

For any subspaces $\mathcal{S}_{1}, \mathcal{S}_{2}$ such that

$$
\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}
$$

the direct sum is defined as

$$
\mathcal{S}_{1} \oplus \mathcal{S}_{2}:=\left\{\vec{x} \mid \vec{x}=\vec{s}_{1}+\vec{s}_{2} \quad \vec{s}_{1} \in \mathcal{S}_{1}, \vec{s}_{2} \in \mathcal{S}_{2}\right\}
$$

Any vector $\vec{x} \in \mathcal{S}_{1} \oplus \mathcal{S}_{2}$ has a unique representation

$$
\vec{x}=\vec{s}_{1}+\vec{s}_{2} \quad \vec{s}_{1} \in \mathcal{S}_{1}, \vec{s}_{2} \in \mathcal{S}_{2}
$$

Orthogonal projection

The orthogonal projection of \vec{x} onto a subspace \mathcal{S} is a vector denoted by $\mathcal{P}_{\mathcal{S}} \vec{x}$ such that

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x} \in \mathcal{S}^{\perp}
$$

The orthogonal projection is unique

Orthogonal projection

Orthogonal projection

Any vector \vec{x} can be decomposed into

$$
\vec{x}=\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}
$$

For any orthonormal basis $\vec{b}_{1}, \ldots, \vec{b}_{m}$ of \mathcal{S},

$$
\mathcal{P}_{\mathcal{S}} \vec{x}=\sum_{i=1}^{m}\left\langle\vec{x}, \vec{b}_{i}\right\rangle \vec{b}_{i}
$$

The orthogonal projection is a linear operation. For \vec{x} and \vec{y}

$$
\mathcal{P}_{\mathcal{S}}(\vec{x}+\vec{y})=\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{y}
$$

Dimension of orthogonal complement

Let \mathcal{V} be a finite-dimensional vector space, for any subspace $\mathcal{S} \subseteq \mathcal{V}$

$$
\operatorname{dim}(\mathcal{S})+\operatorname{dim}\left(\mathcal{S}^{\perp}\right)=\operatorname{dim}(\mathcal{V})
$$

Orthogonal projection is closest

The orthogonal projection $\mathcal{P}_{\mathcal{S}} \vec{x}$ of a vector \vec{x} onto a subspace \mathcal{S} is the solution to the optimization problem

$$
\begin{array}{lc}
\underset{\vec{u}}{\operatorname{minimize}} & \|\vec{x}-\vec{u}\|_{\langle\cdot, \cdot\rangle} \\
\text { subject to } & \vec{u} \in \mathcal{S}
\end{array}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\|\vec{x}-\vec{s}\|_{\langle\cdot \cdot,\rangle}^{2}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2}=\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\begin{aligned}
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2} & =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2} \\
& =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot,\rangle}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2}
\end{aligned}
$$

Proof

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$
\begin{aligned}
\|\vec{x}-\vec{s}\|_{\langle\cdot, \cdot\rangle}^{2} & =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}+\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot, \cdot\rangle}^{2} \\
& =\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot, \cdot\rangle}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{x}-\vec{s}\right\|_{\langle\cdot,\rangle}^{2} \\
& >\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}\right\|_{\langle\cdot, \cdot\rangle}^{2} \quad \text { if } \vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}
\end{aligned}
$$

Denoising

Aim: Estimating a signal from perturbed measurements
If the noise is additive, the data are modeled as the sum of the signal \vec{x} and a perturbation \vec{z}

$$
\vec{y}:=\vec{x}+\vec{z}
$$

The goal is to estimate \vec{x} from \vec{y}
Assumptions about the signal and noise structure are necessary

Denoising via orthogonal projection

Assumption: Signal is well approximated as belonging to a predefined subspace \mathcal{S}

Estimate: $\mathcal{P}_{\mathcal{S}} \vec{y}$, orthogonal projection of the noisy data onto \mathcal{S}
Error:

$$
\left\|\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}\right\|_{2}^{2}=\left\|\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}\right\|_{2}^{2}+\left\|\mathcal{P}_{\mathcal{S}} \vec{z}\right\|_{2}^{2}
$$

Proof

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}
$$

Proof

$$
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y}=\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z}
$$

Proof

$$
\begin{aligned}
\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{y} & =\vec{x}-\mathcal{P}_{\mathcal{S}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z} \\
& =\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}-\mathcal{P}_{\mathcal{S}} \vec{z}
\end{aligned}
$$

Error

Face denoising

Training set: 36064×64 images from 40 different subjects (9 each)

Noise: iid Gaussian noise

$$
\text { SNR }:=\frac{\|\vec{x}\|_{2}}{\|\vec{z}\|_{2}}=6.67
$$

We model each image as a vector in \mathbb{R}^{4096}

Face denoising

We denoise by projecting onto:

- \mathcal{S}_{1} : the span of the 9 images from the same subject
- \mathcal{S}_{2} : the span of the 360 images in the training set

Test error:

$$
\begin{aligned}
& \frac{\left\|\vec{x}-\mathcal{P}_{\mathcal{S}_{1}} \vec{y}\right\|_{2}}{\|\vec{x}\|_{2}}=0.114 \\
& \frac{\left\|\vec{x}-\mathcal{P}_{\mathcal{S}_{2}} \vec{y}\right\|_{2}}{\|\vec{x}\|_{2}}=0.078
\end{aligned}
$$

\mathcal{S}_{1}

Denoising via projection onto \mathcal{S}_{1}

Estimate

\mathcal{S}_{2}

Denoising via projection onto \mathcal{S}_{2}

Estimate
$\mathcal{P}_{\mathcal{S}_{1}} \vec{z}$ and $\mathcal{P}_{\mathcal{S}_{2}} \vec{z}$

$$
\mathcal{P}_{\mathcal{S}_{1}} \vec{z}
$$

$$
\mathcal{P}_{\mathcal{S}_{2}} \vec{z}
$$

$$
0.007=\frac{\left\|\mathcal{P}_{\mathcal{S}_{1}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}<\frac{\left\|\mathcal{P}_{\mathcal{S}_{2}} \vec{z}\right\|_{2}}{\|\vec{x}\|_{2}}=0.043
$$

$$
\frac{0.043}{0.007}=6.14 \approx \sqrt{\frac{\operatorname{dim}\left(\mathcal{S}_{2}\right)}{\operatorname{dim}\left(\mathcal{S}_{1}\right)}} \quad \text { (not a coincidence) }
$$

$\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}$ and $\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}$

$$
\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}
$$

$$
\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}
$$

$$
0.063=\frac{\left\|\mathcal{P}_{\mathcal{S}_{2}^{\perp}} \vec{x}\right\|_{2}}{\|\vec{x}\|_{2}}<\frac{\left\|\mathcal{P}_{\mathcal{S}_{1}^{\perp}} \vec{x}\right\|_{2}}{\|\vec{x}\|_{2}}=0.190
$$

$\mathcal{P}_{\mathcal{S}_{1}} \vec{y}$ and $\mathcal{P}_{\mathcal{S}_{2}} \vec{y}$

\vec{x}

