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Vector space

Consists of:

I A set V

I A scalar field (usually R or C)

I Two operations + and ·



Properties

I For any ~x , ~y ∈ V, ~x + ~y belongs to V

I For any ~x ∈ V and any scalar α, α · ~x ∈ V

I There exists a zero vector ~0 such that ~x +~0 = ~x for any ~x ∈ V

I For any ~x ∈ V there exists an additive inverse ~y such that ~x + ~y = ~0,
usually denoted by −~x



Properties

I The vector sum is commutative and associative, i.e. for all ~x , ~y , ~z ∈ V

~x + ~y = ~y + ~x , (~x + ~y) + ~z = ~x + (~y + ~z)

I Scalar multiplication is associative, for any scalars α and β and any
~x ∈ V

α (β · ~x) = (αβ) · ~x

I Scalar and vector sums are both distributive, i.e. for any scalars α and
β and any ~x , ~y ∈ V

(α+ β) · ~x = α · ~x + β · ~x , α · (~x + ~y) = α · ~x + α · ~y



Subspaces

A subspace of a vector space V is any subset of V that is also itself
a vector space



Linear dependence/independence

A set of m vectors ~x1, ~x2, . . . , ~xm is linearly dependent if there exist
m scalar coefficients α1, α2, . . . , αm which are not all equal to zero and

m∑
i=1

αi ~xi = ~0

Equivalently, any vector in a linearly dependent set can be
expressed as a linear combination of the rest



Span

The span of {~x1, . . . , ~xm} is the set of all possible linear combinations

span (~x1, . . . , ~xm) :=

{
~y | ~y =

m∑
i=1

αi ~xi for some scalars α1, α2, . . . , αm

}

The span of any set of vectors in V is a subspace of V



Basis and dimension

A basis of a vector space V is a set of independent vectors {~x1, . . . , ~xm}
such that

V = span (~x1, . . . , ~xm)

If V has a basis with finite cardinality then every basis contains
the same number of vectors

The dimension dim (V) of V is the cardinality of any of its bases

Equivalently, the dimension is the number of linearly independent vectors
that span V



Standard basis

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1



The dimension of Rn is n





Inner product

Operation 〈·, ·〉 that maps a pair of vectors to a scalar



Properties

I If the scalar field is R, it is symmetric. For any ~x , ~y ∈ V

〈~x , ~y〉 = 〈~y , ~x〉

If the scalar field is C, then for any ~x , ~y ∈ V

〈~x , ~y〉 = 〈~y , ~x〉,

where for any α ∈ C α is the complex conjugate of α



Properties

I It is linear in the first argument, i.e. for any α ∈ R and any ~x , ~y , ~z ∈ V

〈α~x , ~y〉 = α 〈~x , ~y〉 ,
〈~x + ~y , ~z〉 = 〈~x , ~z〉+ 〈~y , ~z〉 .

If the scalar field is R, it is also linear in the second argument

I It is positive definite: 〈~x , ~x〉 is nonnegative for all ~x ∈ V and if
〈~x , ~x〉 = 0 then ~x = ~0



Dot product

Inner product between ~x , ~y ∈ Rn

~x · ~y :=
∑
i

~x [i ] ~y [i ]

Rn endowed with the dot product is usually called a Euclidean space of
dimension n

If ~x , ~y ∈ Cn

~x · ~y :=
∑
i

~x [i ] ~y [i ]



Sample covariance

Quantifies joint fluctuations of two quantities or features

For a data set (x1, y1), (x2, y2), . . . , (xn, yn)

cov ((x1, y1) , . . . , (xn, yn)) :=
1

n − 1

n∑
i=1

(xi − av (x1, . . . , xn)) (yi − av (y1, . . . , yn))

where the average or sample mean is defined by

av (a1, . . . , an) :=
1
n

n∑
i=1

ai

If (x1, y1), (x2, y2), . . . , (xn, yn) are iid samples from x and y

E (cov ((x1, y1) , . . . , (xn, yn))) = Cov (x, y) := E ((x− E (x)) (y − E (y)))



Matrix inner product

The inner product between two m × n matrices A and B is

〈A,B〉 := tr
(
ATB

)
=

m∑
i=1

n∑
j=1

AijBij

where the trace of an n × n matrix is defined as the sum of its diagonal

tr (M) :=
n∑

i=1

Mii

For any pair of m × n matrices A and B

tr
(
BTA

)
:= tr

(
ABT

)



Function inner product

The inner product between two complex-valued square-integrable
functions f , g defined in an interval [a, b] of the real line is

~f · ~g :=

∫ b

a
f (x) g (x) dx





Norm

Let V be a vector space, a norm is a function ||·|| from V to R with
the following properties

I It is homogeneous. For any scalar α and any ~x ∈ V

||α~x || = |α| ||~x || .

I It satisfies the triangle inequality

||~x + ~y || ≤ ||~x ||+ ||~y || .

In particular, ||~x || ≥ 0

I ||~x || = 0 implies ~x = ~0



Inner-product norm

Square root of inner product of vector with itself

||~x ||〈·,·〉 :=
√
〈~x , ~x〉



Inner-product norm

I Vectors in Rn or Cn: `2 norm

||~x ||2 :=
√
~x · ~x =

√√√√ n∑
i=1

~x [i ]2

I Matrices in Rm×n or Cm×n: Frobenius norm

||A||F :=
√

tr (ATA) =

√√√√ m∑
i=1

n∑
j=1

A2
ij

I Square-integrable complex-valued functions: L2 norm

||f ||L2
:=
√
〈f , f 〉 =

√∫ b

a
|f (x)|2 dx



Cauchy-Schwarz inequality

For any two vectors ~x and ~y in an inner-product space

|〈~x , ~y〉| ≤ ||~x ||〈·,·〉 ||~y ||〈·,·〉

Assume ||~x ||〈·,·〉 6= 0, then

〈~x , ~y〉 = − ||~x ||〈·,·〉 ||~y ||〈·,·〉 ⇐⇒ ~y = −
||~y ||〈·,·〉
||~x ||〈·,·〉

~x

〈~x , ~y〉 = ||~x ||〈·,·〉 ||~y ||〈·,·〉 ⇐⇒ ~y =
||~y ||〈·,·〉
||~x ||〈·,·〉

~x



Sample variance and standard deviation

The sample variance quantifies fluctuations around the average

var (x1, x2, . . . , xn) :=
1

n − 1

n∑
i=1

(xi − av (x1, x2, . . . , xn))
2

If x1, x2, . . . , xn are iid samples from x

E (var (x1, x2, . . . , xn)) = Var (x) := E
(
(x− E (x))2

)
The sample standard deviation is

std (x1, x2, . . . , xn) :=
√

var (x1, x2, . . . , xn)



Correlation coefficient

Normalized covariance

ρ(x1,y1),...,(xn,yn) :=
cov ((x1, y1) , . . . , (xn, yn))

std (x1, . . . , xn) std (y1, . . . , yn)

Corollary of Cauchy-Schwarz

−1 ≤ ρ(x1,y1),...,(xn,yn) ≤ 1

and

ρ~x ,~y = −1 ⇐⇒ yi = av (y1, . . . , yn)−
std (y1, . . . , yn)

std (x1, . . . , xn)
(xi − av (x1, . . . , xn))

ρ~x ,~y = 1 ⇐⇒ yi = av (y1, . . . , yn) +
std (y1, . . . , yn)

std (x1, . . . , xn)
(xi − av (x1, . . . , xn))



Correlation coefficient

ρ~x ,~y 0.50 0.90 0.99

ρ~x ,~y 0.00 -0.90 -0.99



Temperature data

Temperature in Oxford over 150 years
I Feature 1: Temperature in January
I Feature 1: Temperature in August

ρ = 0.269
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Temperature data

Temperature in Oxford over 150 years (monthly)
I Feature 1: Maximum temperature
I Feature 1: Minimum temperature

ρ = 0.962
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Parallelogram law

A norm ‖ · ‖ on a vector space V is an inner-product norm if and only if

2‖~x‖2 + 2‖~y‖2 = ‖~x − ~y‖2 + ‖~x + ~y‖2

for any ~x , ~y ∈ V



`1 and `∞ norms

Norms in Rn or Cn not induced by an inner product

||~x ||1 :=
n∑

i=1

|~x [i ]|

||~x ||∞ := max
i
|~x [i ]|

Hölder’s inequality

|〈~x , ~y〉| ≤ ||~x ||1 ||~y ||∞



Norm balls

`1 `2 `∞



Distance

The distance between two vectors ~x and ~y induced by a norm ||·|| is

d (~x , ~y) := ||~x − ~y ||



Classification

Aim: Assign a signal to one of k predefined classes

Training data: n pairs of signals (represented as vectors) and
labels: {~x1, l1}, . . . , {~xn, ln}



Nearest-neighbor classification

nearest neighbor



Face recognition

Training set: 360 64× 64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject

We model each image as a vector in R4096 and use the `2-norm distance



Face recognition

Training set



Nearest-neighbor classification

Errors: 4 / 40

Test
image

Closest
image





Orthogonality

Two vectors ~x and ~y are orthogonal if and only if

〈~x , ~y〉 = 0

A vector ~x is orthogonal to a set S, if

〈~x , ~s〉 = 0, for all ~s ∈ S

Two sets of S1,S2 are orthogonal if for any ~x ∈ S1, ~y ∈ S2

〈~x , ~y〉 = 0

The orthogonal complement of a subspace S is

S⊥ := {~x | 〈~x , ~y〉 = 0 for all ~y ∈ S}



Pythagorean theorem

If ~x and ~y are orthogonal

||~x + ~y ||2〈·,·〉 = ||~x ||2〈·,·〉 + ||~y ||2〈·,·〉



Orthonormal basis

Basis of mutually orthogonal vectors with inner-product norm
equal to one

If {~u1, . . . , ~un} is an orthonormal basis of a vector space V,
for any ~x ∈ V

~x =
n∑

i=1

〈~ui , ~x〉 ~ui



Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors
~x1, . . . , ~xm in Rn

1. Set ~u1 := ~x1/ ||~x1||2

2. For i = 1, . . . ,m, compute

~vi := ~xi −
i−1∑
j=1

〈~uj , ~xi 〉 ~uj

and set ~ui := ~vi/ ||~vi ||2





Direct sum

For any subspaces S1,S2 such that

S1 ∩ S2 = {0}

the direct sum is defined as

S1 ⊕ S2 := {~x | ~x = ~s1 + ~s2 ~s1 ∈ S1, ~s2 ∈ S2}

Any vector ~x ∈ S1 ⊕ S2 has a unique representation

~x = ~s1 + ~s2 ~s1 ∈ S1, ~s2 ∈ S2



Orthogonal projection

The orthogonal projection of ~x onto a subspace S is a vector
denoted by PS ~x such that

~x − PS ~x ∈ S⊥

The orthogonal projection is unique



Orthogonal projection



Orthogonal projection

Any vector ~x can be decomposed into

~x = PS ~x + PS⊥ ~x .

For any orthonormal basis ~b1, . . . , ~bm of S,

PS ~x =
m∑
i=1

〈
~x , ~bi

〉
~bi

The orthogonal projection is a linear operation. For ~x and ~y

PS (~x + ~y) = PS ~x + PS ~y



Dimension of orthogonal complement

Let V be a finite-dimensional vector space, for any subspace S ⊆ V

dim (S) + dim
(
S⊥
)
= dim (V)



Orthogonal projection is closest

The orthogonal projection PS ~x of a vector ~x onto a subspace S is
the solution to the optimization problem

minimize
~u

||~x − ~u||〈·,·〉
subject to ~u ∈ S



Proof

Take any point ~s ∈ S such that ~s 6= PS ~x

||~x − ~s||2〈·,·〉

= ||~x − PS ~x + PS ~x − ~s||2〈·,·〉
= ||~x − PS ~x ||2〈·,·〉 + ||PS ~x − ~s||2〈·,·〉
> ||~x − PS ~x ||2〈·,·〉 if ~s 6= PS ~x



Proof

Take any point ~s ∈ S such that ~s 6= PS ~x

||~x − ~s||2〈·,·〉 = ||~x − PS ~x + PS ~x − ~s||2〈·,·〉

= ||~x − PS ~x ||2〈·,·〉 + ||PS ~x − ~s||2〈·,·〉
> ||~x − PS ~x ||2〈·,·〉 if ~s 6= PS ~x



Proof

Take any point ~s ∈ S such that ~s 6= PS ~x

||~x − ~s||2〈·,·〉 = ||~x − PS ~x + PS ~x − ~s||2〈·,·〉
= ||~x − PS ~x ||2〈·,·〉 + ||PS ~x − ~s||2〈·,·〉

> ||~x − PS ~x ||2〈·,·〉 if ~s 6= PS ~x



Proof

Take any point ~s ∈ S such that ~s 6= PS ~x

||~x − ~s||2〈·,·〉 = ||~x − PS ~x + PS ~x − ~s||2〈·,·〉
= ||~x − PS ~x ||2〈·,·〉 + ||PS ~x − ~s||2〈·,·〉
> ||~x − PS ~x ||2〈·,·〉 if ~s 6= PS ~x





Denoising

Aim: Estimating a signal from perturbed measurements

If the noise is additive, the data are modeled as the sum of the signal ~x
and a perturbation ~z

~y := ~x + ~z

The goal is to estimate ~x from ~y

Assumptions about the signal and noise structure are necessary



Denoising via orthogonal projection

Assumption: Signal is well approximated as belonging to a predefined
subspace S

Estimate: PS ~y , orthogonal projection of the noisy data onto S

Error:

||~x − PS ~y ||22 = ||PS⊥ ~x ||22 + ||PS ~z ||22



Proof

~x − PS ~y

= ~x − PS ~x − PS ~z
= PS⊥ ~x − PS ~z



Proof

~x − PS ~y = ~x − PS ~x − PS ~z

= PS⊥ ~x − PS ~z



Proof

~x − PS ~y = ~x − PS ~x − PS ~z
= PS⊥ ~x − PS ~z



Error

error

0

S

PS~y

~y

~x ~z

PS⊥~x

PS~z



Face denoising

Training set: 360 64× 64 images from 40 different subjects (9 each)

Noise: iid Gaussian noise

SNR :=
||~x ||2
||~z ||2

= 6.67

We model each image as a vector in R4096



Face denoising

We denoise by projecting onto:

I S1: the span of the 9 images from the same subject

I S2: the span of the 360 images in the training set

Test error:

||~x − PS1 ~y ||2
||~x ||2

= 0.114

||~x − PS2 ~y ||2
||~x ||2

= 0.078



S1

S1 := span

( )



Denoising via projection onto S1

Projection
onto S1

Projection
onto S⊥1

Signal
~x

= 0.993 + 0.114

+

Noise
~z

= 0.007 + 0.150

=

Data
~y

= +

Estimate



S2

S2 := span

(

· · · )



Denoising via projection onto S2

Projection
onto S2

Projection
onto S⊥2

Signal
~x

= 0.998 + 0.063

+

Noise
~z

= 0.043 + 0.144

=

Data
~y

= +

Estimate



PS1 ~z and PS2 ~z

PS1 ~z PS2 ~z

0.007 =
||PS1 ~z ||2
||~x ||2

<
||PS2 ~z ||2
||~x ||2

= 0.043

0.043
0.007

= 6.14 ≈
√

dim (S2)

dim (S1)
(not a coincidence)



PS⊥1 ~x and PS⊥2 ~x

PS⊥1 ~x PS⊥2 ~x

0.063 =

∣∣∣∣∣∣PS⊥2 ~x∣∣∣∣∣∣2
||~x ||2

<

∣∣∣∣∣∣PS⊥1 ~x∣∣∣∣∣∣2
||~x ||2

= 0.190



PS1 ~y and PS2 ~y

~x PS1 ~y PS2 ~y


