

Vector spaces

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

Carlos Fernandez-Granda

Vector space

Consists of:

- ▶ A set \mathcal{V}
- A scalar field (usually \mathbb{R} or \mathbb{C})
- \blacktriangleright Two operations + and \cdot

Properties

- For any $\vec{x}, \vec{y} \in \mathcal{V}$, $\vec{x} + \vec{y}$ belongs to \mathcal{V}
- For any $\vec{x} \in \mathcal{V}$ and any scalar α , $\alpha \cdot \vec{x} \in \mathcal{V}$
- There exists a zero vector $\vec{0}$ such that $\vec{x} + \vec{0} = \vec{x}$ for any $\vec{x} \in \mathcal{V}$
- For any $\vec{x} \in \mathcal{V}$ there exists an additive inverse \vec{y} such that $\vec{x} + \vec{y} = \vec{0}$, usually denoted by $-\vec{x}$

Properties

▶ The vector sum is commutative and associative, i.e. for all $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$ec{x} + ec{y} = ec{y} + ec{x}, \quad (ec{x} + ec{y}) + ec{z} = ec{x} + (ec{y} + ec{z})$$

 \blacktriangleright Scalar multiplication is associative, for any scalars α and β and any $\vec{x} \in \mathcal{V}$

$$\alpha \left(\beta \cdot \vec{x} \right) = \left(\alpha \, \beta \right) \cdot \vec{x}$$

▶ Scalar and vector sums are both distributive, i.e. for any scalars α and β and any $\vec{x}, \vec{y} \in \mathcal{V}$

$$(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{x}, \quad \alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y}$$

Subspaces

A subspace of a vector space ${\cal V}$ is any subset of ${\cal V}$ that is also itself a vector space

Linear dependence/independence

A set of *m* vectors $\vec{x_1}, \vec{x_2}, \ldots, \vec{x_m}$ is linearly dependent if there exist *m* scalar coefficients $\alpha_1, \alpha_2, \ldots, \alpha_m$ which are not all equal to zero and

$$\sum_{i=1}^{m} \alpha_i \, \vec{x}_i = \vec{0}$$

Equivalently, any vector in a linearly dependent set can be expressed as a linear combination of the rest

The span of $\{\vec{x}_1, \ldots, \vec{x}_m\}$ is the set of all possible linear combinations

$$\operatorname{span}\left(\vec{x_1},\ldots,\vec{x_m}\right) := \left\{ \vec{y} \mid \vec{y} = \sum_{i=1}^m \alpha_i \, \vec{x_i} \quad \text{for some scalars } \alpha_1,\alpha_2,\ldots,\alpha_m \right\}$$

The span of any set of vectors in ${\mathcal V}$ is a subspace of ${\mathcal V}$

Basis and dimension

A basis of a vector space $\mathcal V$ is a set of independent vectors $\{\vec x_1,\ldots,\vec x_m\}$ such that

$$\mathcal{V} = \operatorname{\mathsf{span}}\left(ec{x_1},\ldots,ec{x_m}
ight)$$

If ${\mathcal V}$ has a basis with finite cardinality then every basis contains the same number of vectors

The dimension dim (\mathcal{V}) of \mathcal{V} is the cardinality of any of its bases

Equivalently, the dimension is the number of linearly independent vectors that span $\ensuremath{\mathcal{V}}$

Standard basis

$$\vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \vec{e_n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

The dimension of \mathbb{R}^n is n

Inner product

Operation $\langle\cdot,\cdot\rangle$ that maps a pair of vectors to a scalar

Properties

▶ If the scalar field is \mathbb{R} , it is symmetric. For any $\vec{x}, \vec{y} \in \mathcal{V}$

$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$

If the scalar field is \mathbb{C} , then for any $ec{x}, ec{y} \in \mathcal{V}$

$$\langle \vec{x}, \vec{y}
angle = \overline{\langle \vec{y}, \vec{x}
angle},$$

where for any $\alpha \in \mathbb{C}\ \overline{\alpha}$ is the complex conjugate of α

Properties

▶ It is linear in the first argument, i.e. for any $\alpha \in \mathbb{R}$ and any $\vec{x}, \vec{y}, \vec{z} \in \mathcal{V}$

$$\langle \alpha \, \vec{x}, \vec{y} \rangle = \alpha \, \langle \vec{x}, \vec{y} \rangle \,, \langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle \,.$$

If the scalar field is $\mathbb R,$ it is also linear in the second argument

▶ It is positive definite: $\langle \vec{x}, \vec{x} \rangle$ is nonnegative for all $\vec{x} \in \mathcal{V}$ and if $\langle \vec{x}, \vec{x} \rangle = 0$ then $\vec{x} = \vec{0}$

Dot product

Inner product between $\vec{x}, \vec{y} \in \mathbb{R}^n$

$$\vec{x} \cdot \vec{y} := \sum_{i} \vec{x} [i] \ \vec{y} [i]$$

 \mathbb{R}^n endowed with the dot product is usually called a Euclidean space of dimension n

If $\vec{x}, \vec{y} \in \mathbb{C}^n$

$$\vec{x} \cdot \vec{y} := \sum_{i} \vec{x} [i] \ \overline{\vec{y} [i]}$$

Sample covariance

Quantifies joint fluctuations of two quantities or features

For a data set (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)

$$\operatorname{cov}((x_1, y_1), \dots, (x_n, y_n)) := \frac{1}{n-1} \sum_{i=1}^n (x_i - \operatorname{av}(x_1, \dots, x_n)) (y_i - \operatorname{av}(y_1, \dots, y_n))$$

where the average or sample mean is defined by

$$\operatorname{\mathsf{av}}(a_1,\ldots,a_n):=rac{1}{n}\sum_{i=1}^na_i$$

If (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) are iid samples from x and y E $(cov((x_1, y_1), ..., (x_n, y_n))) = Cov(x, y) := E((x - E(x))(y - E(y)))$

Matrix inner product

The inner product between two $m \times n$ matrices A and B is

$$\langle A, B \rangle := \operatorname{tr} \left(A^T B \right)$$

$$= \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$$

where the trace of an $n \times n$ matrix is defined as the sum of its diagonal

$$\mathsf{tr}(M) := \sum_{i=1}^n M_{ii}$$

For any pair of $m \times n$ matrices A and B

$$\operatorname{tr}\left(B^{T}A\right) := \operatorname{tr}\left(AB^{T}\right)$$

The inner product between two complex-valued square-integrable functions f, g defined in an interval [a, b] of the real line is

$$\vec{f} \cdot \vec{g} := \int_{a}^{b} f(x) \overline{g(x)} dx$$

Norm

Let $\mathcal V$ be a vector space, a norm is a function $||{\cdot}||$ from $\mathcal V$ to $\mathbb R$ with the following properties

• It is homogeneous. For any scalar α and any $\vec{x} \in \mathcal{V}$

 $||\alpha \, \vec{x}|| = |\alpha| \, ||\vec{x}|| \, .$

It satisfies the triangle inequality

 $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||.$

In particular, $||\vec{x}|| \ge 0$

•
$$||\vec{x}|| = 0$$
 implies $\vec{x} = \vec{0}$

Inner-product norm

Square root of inner product of vector with itself

$$||ec{x}||_{\langle\cdot,\cdot
angle}:=\sqrt{\langleec{x},ec{x}
angle}$$

Inner-product norm

• Vectors in \mathbb{R}^n or \mathbb{C}^n : ℓ_2 norm

$$||\vec{x}||_2 := \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{\sum_{i=1}^n \vec{x}[i]^2}$$

• Matrices in $\mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$: Frobenius norm

$$||A||_{\mathsf{F}} := \sqrt{\operatorname{tr}(A^{\mathsf{T}}A)} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$

▶ Square-integrable complex-valued functions: L_2 norm

$$||f||_{\mathcal{L}_{2}} := \sqrt{\langle f, f \rangle} = \sqrt{\int_{a}^{b} |f(x)|^{2} dx}$$

Cauchy-Schwarz inequality

For any two vectors \vec{x} and \vec{y} in an inner-product space

$$|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}||_{\langle \cdot, \cdot \rangle} \, ||\vec{y}||_{\langle \cdot, \cdot \rangle}$$

Assume $||\vec{x}||_{\langle\cdot,\cdot\rangle} \neq 0$, then

$$\begin{split} \langle \vec{x}, \vec{y} \rangle &= - \left| \left| \vec{x} \right| \right|_{\langle \cdot, \cdot \rangle} \left| \left| \vec{y} \right| \right|_{\langle \cdot, \cdot \rangle} \iff \vec{y} = - \frac{\left| \left| \vec{y} \right| \right|_{\langle \cdot, \cdot \rangle}}{\left| \left| \vec{x} \right| \right|_{\langle \cdot, \cdot \rangle}} \vec{x} \\ \langle \vec{x}, \vec{y} \rangle &= \left| \left| \vec{x} \right| \right|_{\langle \cdot, \cdot \rangle} \left| \left| \vec{y} \right| \right|_{\langle \cdot, \cdot \rangle} \iff \vec{y} = \frac{\left| \left| \vec{y} \right| \right|_{\langle \cdot, \cdot \rangle}}{\left| \left| \vec{x} \right| \right|_{\langle \cdot, \cdot \rangle}} \vec{x} \end{split}$$

Sample variance and standard deviation

The sample variance quantifies fluctuations around the average

$$\operatorname{var}(x_1, x_2, \dots, x_n) := \frac{1}{n-1} \sum_{i=1}^n (x_i - \operatorname{av}(x_1, x_2, \dots, x_n))^2$$

If $x_1,\,x_2,\,\ldots,\,x_n$ are iid samples from x

$$\mathrm{E}\left(\mathsf{var}\left(\mathsf{x}_{1},\mathsf{x}_{2},\ldots,\mathsf{x}_{\mathsf{n}}
ight)
ight)=\mathrm{Var}\left(\mathsf{x}
ight):=\mathrm{E}\left(\left(\mathsf{x}-\mathrm{E}\left(\mathsf{x}
ight)
ight)^{2}
ight)$$

The sample standard deviation is

$$\operatorname{std}(x_1, x_2, \ldots, x_n) := \sqrt{\operatorname{var}(x_1, x_2, \ldots, x_n)}$$

Correlation coefficient

Normalized covariance

$$\rho_{(x_1,y_1),\ldots,(x_n,y_n)} := \frac{\operatorname{cov}\left((x_1,y_1),\ldots,(x_n,y_n)\right)}{\operatorname{std}\left(x_1,\ldots,x_n\right)\operatorname{std}\left(y_1,\ldots,y_n\right)}$$

Corollary of Cauchy-Schwarz

$$-1 \leq \rho_{(x_1,y_1),...,(x_n,y_n)} \leq 1$$

and

$$\rho_{\vec{x},\vec{y}} = -1 \iff y_i = \operatorname{av}(y_1, \dots, y_n) - \frac{\operatorname{std}(y_1, \dots, y_n)}{\operatorname{std}(x_1, \dots, x_n)} (x_i - \operatorname{av}(x_1, \dots, x_n))$$

$$\rho_{\vec{x},\vec{y}} = 1 \iff y_i = \operatorname{av}(y_1, \dots, y_n) + \frac{\operatorname{std}(y_1, \dots, y_n)}{\operatorname{std}(x_1, \dots, x_n)} (x_i - \operatorname{av}(x_1, \dots, x_n))$$

Correlation coefficient

Temperature data

Temperature in Oxford over 150 years

- ► Feature 1: Temperature in January
- ▶ Feature 1: Temperature in August

20 18 16 April 14 12 10 8∟ 16 18 20 22 24 26 28 August

 $\rho = 0.269$

Temperature data

Temperature in Oxford over 150 years (monthly)

- ► Feature 1: Maximum temperature
- ► Feature 1: Minimum temperature

 $\rho = 0.962$

Parallelogram law

A norm $\|\cdot\|$ on a vector space \mathcal{V} is an inner-product norm if and only if $2\|\vec{x}\|^2 + 2\|\vec{y}\|^2 = \|\vec{x} - \vec{y}\|^2 + \|\vec{x} + \vec{y}\|^2$ for any $\vec{x}, \vec{y} \in \mathcal{V}$

$\ell_1 \text{ and } \ell_\infty \text{ norms}$

Norms in \mathbb{R}^n or \mathbb{C}^n not induced by an inner product

$$||\vec{x}||_1 := \sum_{i=1}^n |\vec{x}[i]|$$

$$||\vec{x}||_{\infty} := \max_{i} |\vec{x}[i]|$$

Hölder's inequality

 $|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}||_1 \, ||\vec{y}||_\infty$

Norm balls

The distance between two vectors \vec{x} and \vec{y} induced by a norm $||\cdot||$ is

$$d\left(\vec{x},\vec{y}\right) := \left|\left|\vec{x}-\vec{y}\right|\right|$$

Classification

Aim: Assign a signal to one of k predefined classes

Training data: *n* pairs of signals (represented as vectors) and labels: $\{\vec{x_1}, l_1\}, \ldots, \{\vec{x_n}, l_n\}$

Nearest-neighbor classification

Training set: 360 64 \times 64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject

We model each image as a vector in \mathbb{R}^{4096} and use the $\ell_2\text{-norm}$ distance

Face recognition

Training set

Nearest-neighbor classification

Errors: 4 / 40

Test image

Closest image

Orthogonality

Two vectors \vec{x} and \vec{y} are orthogonal if and only if

 $\langle \vec{x}, \vec{y} \rangle = 0$

A vector \vec{x} is orthogonal to a set S, if

$$\langle \vec{x}, \vec{s}
angle = 0$$
, for all $\vec{s} \in S$

Two sets of $\mathcal{S}_1, \mathcal{S}_2$ are orthogonal if for any $\vec{x} \in \mathcal{S}_1, \vec{y} \in \mathcal{S}_2$

$$\langle \vec{x}, \vec{y} \rangle = 0$$

The orthogonal complement of a subspace S is

$$\mathcal{S}^{\perp} := \{ ec{x} \mid \langle ec{x}, ec{y}
angle = 0 \quad ext{for all } ec{y} \in \mathcal{S} \}$$

Pythagorean theorem

If \vec{x} and \vec{y} are orthogonal

$$||\vec{x} + \vec{y}||_{\langle \cdot, \cdot \rangle}^2 = ||\vec{x}||_{\langle \cdot, \cdot \rangle}^2 + ||\vec{y}||_{\langle \cdot, \cdot \rangle}^2$$

Basis of mutually orthogonal vectors with inner-product norm equal to one

If $\{\vec{u_1},\ldots,\vec{u_n}\}$ is an orthonormal basis of a vector space \mathcal{V} , for any $\vec{x}\in\mathcal{V}$

$$ec{x} = \sum_{i=1}^n \left\langle ec{u_i}, ec{x}
ight
angle ec{u_i}$$

Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors $\vec{x_1}, \ldots, \vec{x_m}$ in \mathbb{R}^n

- 1. Set $\vec{u_1} := \vec{x_1} / ||\vec{x_1}||_2$
- 2. For $i = 1, \ldots, m$, compute

$$ec{v_i} := ec{x_i} - \sum_{j=1}^{i-1} \left\langle ec{u_j}, ec{x_i}
ight
angle ec{u_j}$$

and set $\vec{u}_i := \vec{v}_i / ||\vec{v}_i||_2$

Direct sum

For any subspaces $\mathcal{S}_1, \mathcal{S}_2$ such that

$$\mathcal{S}_1 \cap \mathcal{S}_2 = \{0\}$$

the direct sum is defined as

$$\mathcal{S}_1 \oplus \mathcal{S}_2 := \{ \vec{x} \mid \vec{x} = \vec{s}_1 + \vec{s}_2 \quad \vec{s}_1 \in \mathcal{S}_1, \vec{s}_2 \in \mathcal{S}_2 \}$$

Any vector $\vec{x} \in S_1 \oplus S_2$ has a unique representation

$$ec{x}=ec{s_1}+ec{s_2} \quad ec{s_1}\in\mathcal{S}_1, ec{s_2}\in\mathcal{S}_2$$

The orthogonal projection of \vec{x} onto a subspace S is a vector denoted by $\mathcal{P}_{S} \vec{x}$ such that

$$\vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{x} \in \mathcal{S}^{\perp}$$

The orthogonal projection is unique

Orthogonal projection

Orthogonal projection

Any vector \vec{x} can be decomposed into

$$\vec{x} = \mathcal{P}_{\mathcal{S}} \, \vec{x} + \mathcal{P}_{\mathcal{S}^{\perp}} \, \vec{x}.$$

For any orthonormal basis $\vec{b}_1, \ldots, \vec{b}_m$ of \mathcal{S} ,

$$\mathcal{P}_{\mathcal{S}}\,ec{x} = \sum_{i=1}^m \left\langle ec{x},ec{b}_i
ight
angle \,ec{b}_i$$

The orthogonal projection is a linear operation. For \vec{x} and \vec{y}

$$\mathcal{P}_{\mathcal{S}}\left(\vec{x}+\vec{y}\right) = \mathcal{P}_{\mathcal{S}}\,\vec{x} + \mathcal{P}_{\mathcal{S}}\,\vec{y}$$

Dimension of orthogonal complement

Let $\mathcal V$ be a finite-dimensional vector space, for any subspace $\mathcal S\subseteq \mathcal V$

$$\mathsf{dim}\,(\mathcal{S}) + \mathsf{dim}\,\left(\mathcal{S}^{\perp}\right) = \mathsf{dim}\,(\mathcal{V})$$

Orthogonal projection is closest

The orthogonal projection $\mathcal{P}_{S} \vec{x}$ of a vector \vec{x} onto a subspace S is the solution to the optimization problem

$$\begin{array}{ll} \underset{\vec{u}}{\text{minimize}} & ||\vec{x} - \vec{u}||_{\langle \cdot, \cdot \rangle} \\ \text{subject to} & \vec{u} \in \mathcal{S} \end{array}$$

Take any point $\vec{s} \in S$ such that $\vec{s} \neq \mathcal{P}_S \vec{x}$

$$\|ec{x}-ec{s}\|^2_{\langle\cdot,\cdot\rangle}$$

Take any point $\vec{s} \in \mathcal{S}$ such that $\vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x}$

$$||\vec{x} - \vec{s}||_{\langle \cdot, \cdot \rangle}^2 = ||\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{x} + \mathcal{P}_{\mathcal{S}} \vec{x} - \vec{s}||_{\langle \cdot, \cdot \rangle}^2$$

Take any point $\vec{s} \in S$ such that $\vec{s} \neq \mathcal{P}_S \vec{x}$

$$\begin{split} \left| \left| \vec{x} - \vec{s} \right| \right|_{\langle \cdot, \cdot \rangle}^2 &= \left| \left| \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{x} + \mathcal{P}_{\mathcal{S}} \, \vec{x} - \vec{s} \right| \right|_{\langle \cdot, \cdot \rangle}^2 \\ &= \left| \left| \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{x} \right| \right|_{\langle \cdot, \cdot \rangle}^2 + \left| \left| \mathcal{P}_{\mathcal{S}} \, \vec{x} - \vec{s} \right| \right|_{\langle \cdot, \cdot \rangle}^2 \end{split}$$

Take any point $\vec{s} \in S$ such that $\vec{s} \neq \mathcal{P}_S \vec{x}$

$$\begin{aligned} ||\vec{x} - \vec{s}||^{2}_{\langle\cdot,\cdot\rangle} &= ||\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{x} + \mathcal{P}_{\mathcal{S}} \vec{x} - \vec{s}||^{2}_{\langle\cdot,\cdot\rangle} \\ &= ||\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{x}||^{2}_{\langle\cdot,\cdot\rangle} + ||\mathcal{P}_{\mathcal{S}} \vec{x} - \vec{s}||^{2}_{\langle\cdot,\cdot\rangle} \\ &> ||\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{x}||^{2}_{\langle\cdot,\cdot\rangle} \quad \text{if } \vec{s} \neq \mathcal{P}_{\mathcal{S}} \vec{x} \end{aligned}$$

Denoising

Aim: Estimating a signal from perturbed measurements

If the noise is additive, the data are modeled as the sum of the signal \vec{x} and a perturbation \vec{z}

$$\vec{y} := \vec{x} + \vec{z}$$

The goal is to estimate \vec{x} from \vec{y}

Assumptions about the signal and noise structure are necessary

Assumption: Signal is well approximated as belonging to a predefined subspace $\ensuremath{\mathcal{S}}$

Estimate: $\mathcal{P}_{\mathcal{S}} \vec{y}$, orthogonal projection of the noisy data onto \mathcal{S} Error:

$$||\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{y}||_{2}^{2} = ||\mathcal{P}_{\mathcal{S}^{\perp}} \vec{x}||_{2}^{2} + ||\mathcal{P}_{\mathcal{S}} \vec{z}||_{2}^{2}$$

$$\vec{x} - \mathcal{P}_{\mathcal{S}} \vec{y}$$

$$\vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{y} = \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{z}$$

$$\vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{y} = \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{z}$$
$$= \mathcal{P}_{\mathcal{S}^{\perp}} \, \vec{x} - \mathcal{P}_{\mathcal{S}} \, \vec{z}$$

Error

Training set: 360 64 \times 64 images from 40 different subjects (9 each) Noise: iid Gaussian noise

$$\mathsf{SNR} := \frac{||\vec{x}||_2}{||\vec{z}||_2} = 6.67$$

We model each image as a vector in \mathbb{R}^{4096}

Face denoising

We denoise by projecting onto:

- S_1 : the span of the 9 images from the same subject
- S_2 : the span of the 360 images in the training set

Test error:

$$\frac{\frac{||\vec{x} - \mathcal{P}_{\mathcal{S}_1} \vec{y}||_2}{||\vec{x}||_2} = 0.114}{\frac{||\vec{x} - \mathcal{P}_{\mathcal{S}_2} \vec{y}||_2}{||\vec{x}||_2}} = 0.078$$

$$\mathcal{S}_1 := \operatorname{span} \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array}$$

Denoising via projection onto \mathcal{S}_1

 \mathcal{S}_2

$$\mathcal{S}_2 := \operatorname{span} \left(\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$$

Denoising via projection onto \mathcal{S}_2

 $\mathcal{P}_{\mathcal{S}_1} \vec{z}$

 $\mathcal{P}_{\mathcal{S}_2} \vec{z}$

$$0.007 = \frac{||\mathcal{P}_{\mathcal{S}_1} \vec{z}||_2}{||\vec{x}||_2} < \frac{||\mathcal{P}_{\mathcal{S}_2} \vec{z}||_2}{||\vec{x}||_2} = 0.043$$
$$\frac{0.043}{0.007} = 6.14 \approx \sqrt{\frac{\dim(\mathcal{S}_2)}{\dim(\mathcal{S}_1)}} \qquad \text{(not a coincidence)}$$

 $\mathcal{P}_{\mathcal{S}_1^{\perp}} \vec{x}$

 $\mathcal{P}_{\mathcal{S}_2^{\perp}} \vec{x}$

$$0.063 = \frac{\left|\left|\mathcal{P}_{\mathcal{S}_{2}^{\perp}}\vec{x}\right|\right|_{2}}{||\vec{x}||_{2}} < \frac{\left|\left|\mathcal{P}_{\mathcal{S}_{1}^{\perp}}\vec{x}\right|\right|_{2}}{||\vec{x}||_{2}} = 0.190$$

 $\mathcal{P}_{\mathcal{S}_1} \vec{y}$ and $\mathcal{P}_{\mathcal{S}_2} \vec{y}$

 \vec{x}

 $\mathcal{P}_{\mathcal{S}_1} \vec{y}$

 $\mathcal{P}_{\mathcal{S}_2} \vec{y}$

