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Vector space

Consists of:
> AsetV
> A scalar field (usually R or C)

» Two operations + and -



Properties

v

For any X,y € V, X+ y belongs to V
» For any X € V and any scalar o, - X € V

There exists a zero vector 0 such that X+ 0 = X for any X € V

v

» For any X € V there exists an additive inverse y such that X+ y = 0,
usually denoted by —x



Properties

» The vector sum is commutative and associative, i.e. for all X, y,Z €V

—

X+y=y+xX, X+yY)+Z=X+(y+32)
» Scalar multiplication is associative, for any scalars « and /3 and any
Xxey
a(B-x)=(ap)-x
» Scalar and vector sums are both distributive, i.e. for any scalars a and
B and any X,y € V

(a+p) X=a-X+-X, a-(X+y)=a-X+a-y



Subspaces

A subspace of a vector space V is any subset of V that is also itself
a vector space



Linear dependence/independence

A set of m vectors X1, %5, ..., Xn is linearly dependent if there exist
m scalar coefficients oy, am, . .., oy which are not all equal to zero and

m
E Oé,‘)?,‘ =0
i=1

Equivalently, any vector in a linearly dependent set can be
expressed as a linear combination of the rest



Span

The span of {Xi,...,Xn} is the set of all possible linear combinations
m
span (Xi,...,%Xm) =1y |y= E o; X for some scalars a1, ao, ..., am

i=1

The span of any set of vectors in V is a subspace of V



Basis and dimension

A basis of a vector space V is a set of independent vectors {x1,...,Xn}
such that

V =span (X1,...,Xn)

If V has a basis with finite cardinality then every basis contains
the same number of vectors

The dimension dim (V) of V is the cardinality of any of its bases

Equivalently, the dimension is the number of linearly independent vectors
that span V



Standard basis

The dimension of R" is n






Inner product

Operation (-, -) that maps a pair of vectors to a scalar



Properties

> If the scalar field is R, it is symmetric. For any X,y € V

where for any « € C @ is the complex conjugate of «



Properties

» |t is linear in the first argument, i.e. foranya € Rand any X,y,Z €V

(aX,y)=a(X,y),
X+v.2)=(x2)+{V.2).

If the scalar field is R, it is also linear in the second argument

> It is positive definite: (X, X) is nonnegative for all X € V and if
(X,X) =0then Xx=0



Dot product

Inner product between X,y € R"
%-7:= %11 71
i

R"” endowed with the dot product is usually called a Euclidean space of
dimension n

If %,y € C"



Sample covariance

Quantifies joint fluctuations of two quantities or features

For a data set (x1,y1), (x2,¥2), --., (Xn, ¥n)

cov ((x1,y1) .-y (Xn,¥n)) i= (xi—av(xt,....,xa)) (Vi —av(y1,..-,¥n))

where the average or sample mean is defined by
av(a an) == 1 zn:a-
1,.-+5dn .—ni:l i

If (x1,¥1), (x2,¥2), ..., (Xn,¥Yn) are iid samples from x and y

E(cov((x1,y1) -+, (xn;¥n))) = Cov (x,y) := E((x = E(x)) (y = E(y)))



Matrix inner product

The inner product between two m x n matrices A and B is

(A, B = tr (ATB>

=D > Aibj

i=1 j=1

where the trace of an n x n matrix is defined as the sum of its diagonal
n
tr (M) = Z M;;
i=1

For any pair of m x n matrices A and B

tr <BTA> =tr(ABT)



Function inner product

The inner product between two complex-valued square-integrable
functions f, g defined in an interval [a, b] of the real line is

b
F-g::/a f(x)g(x)dx






Norm

Let V be a vector space, a norm is a function ||-|| from V to R with
the following properties

» It is homogeneous. For any scalar « and any X € V
llax]] = [l [IX]]-
» |t satisfies the triangle inequality
X + Y11 < [1%]] + [1¥71] -

In particular, ||x|| >0

> ||X]| = 0 implies X =0



Inner-product norm

Square root of inner product of vector with itself

— -

X[y = V(%)



Inner-product norm

» Vectors in R" or C": /5 norm

[X]], == VX X =

» Matrices in R™*" or C™*": Frobenius norm

2.2 4

i=1 j=1

[|Allg := y/tr (ATA) =

» Square-integrable complex-valued functions: £> norm

b
Ifllz, == /({F.f) = / I (x)2 dx



Cauchy-Schwarz inequality

For any two vectors X and y in an inner-product space

(A <Xy 1

Assume [[X||,. , # 0, then

o Wl
%.9) =~ ¥l 5y = 7=~
o Wl
X ¥) =Xy WVl = Y=gz X
X, =Xy 171 1211,



Sample variance and standard deviation

The sample variance quantifies fluctuations around the average

n
1 2
var (X1, X2, ..., Xp) i= p— E (xi —av(x1,x2,...,Xn))
i=1
If X1, X2, ..., Xn are iid samples from x

E (var (x1,X2, ..., Xn)) = Var (x) := E ((x ~E (x))2)

The sample standard deviation is

std (x1, X2, ..., Xp) = \/var (x1, X2, .., Xn)



Correlation coefficient

Normalized covariance

N COV((XI;Y1)7---;(Xn7Yn))
Playa)e(oyn) "= oo (x5, Xn)std (y1, -, ¥n)

Corollary of Cauchy-Schwarz

L= Pasn)myn) =1

and
std Yi,- Y
pry=—1 = yi=av(y1,...,¥n) — <td EXI" ,x:; (xi —av(xy,
std (y1,.--,
pry =1 <= yi=av(y1,...,¥n) + std EXI’ ’X:; (xi —av (x1,



Correlation coefficient

PRy 0.50 0.90 0.99

“ne

PRy 0.00 -0.90 -0.99

»e




Temperature data

Temperature in Oxford over 150 years

» Feature 1:
» Feature 1:

Temperature in January
Temperature in August
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Temperature data

Temperature in Oxford over 150 years (monthly)

» Feature 1: Maximum temperature
» Feature 1: Minimum temperature

p = 0.962
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Parallelogram law

A norm || - || on a vector space V is an inner-product norm if and only if
2|12 + 2]/ = [IX = ¥II* + IX + ¥II?

for any X,y € V



/1 and f norms

Norms in R"” or C" not induced by an inner product
n
1511y == > I<1i]]
i=1
IRl 1= max <11)

Halder's inequality

[Z AN < 11X 1Yo



Norm balls

61 62 EOO




Distance

The distance between two vectors X and y induced by a norm ||| is



Classification

Aim: Assign a signal to one of k predefined classes

Training data: n pairs of signals (represented as vectors) and
labels: {xi,h}, ..., {Xh I}



Nearest-neighbor classification

nearest neighbor



Face recognition

Training set: 360 64 x 64 images from 40 different subjects (9 each)
Test set: 1 new image from each subject

We model each image as a vector in R*%% and use the f»-norm distance



Face recognition

Training set




Nearest-neighbor classification

Test
image

Closest
image

Errors: 4 / 40







Orthogonality

Two vectors X and y are orthogonal if and only if
(%,7) =0
A vector X is orthogonal to a set S, if
(X,5) =0, forallsesS
Two sets of Sy, S, are orthogonal if for any X € S1,y € S,
(X,y)=0
The orthogonal complement of a subspace S is

Sti= (x| (X,7) =0 forallye S}



Pythagorean theorem

If X and y are orthogonal

1R+ 7117y = IR + 17117



Orthonormal basis

Basis of mutually orthogonal vectors with inner-product norm
equal to one

If {ih,..., Uy} is an orthonormal basis of a vector space V,
for any X € V



Gram-Schmidt

Builds orthonormal basis from a set of linearly independent vectors

X1, ooy Xmin R?

1. Set iy = x1/||%]l,

2. Fori=1,..., m, compute

and set ;1= v;/ ||Vi||,






Direct sum

For any subspaces S1, S» such that
S1NS; = {0}
the direct sum is defined as

— —

51@52::{)?|)?251+ ) 51651,52652}

Any vector X € 81 @ S has a unique representation

X=5+% 58,5



Orthogonal projection

The orthogonal projection of X onto a subspace S is a vector
denoted by Ps x such that

X—Psxe St

The orthogonal projection is unique



Orthogonal projection




Orthogonal projection

Any vector X can be decomposed into
X = 'PS X+ 'PSJ_ X.
For any orthonormal basis 51, e Em of S,
m
Psx = (%.b;)b
i=1

The orthogonal projection is a linear operation. For X and y

-

Ps (X+}7):73,5)?—|—'Ps)7



Dimension of orthogonal complement

Let V be a finite-dimensional vector space, for any subspace S C V

dim (S) + dim (sL) = dim (V)



Orthogonal projection is closest

The orthogonal projection Pgs x of a vector X onto a subspace S is
the solution to the optimization problem

minignize X = dlf..

subject to ves



Proof

Take any point 5§ € S such that §'# Pgs X

1% = 3117,y



Proof

Take any point 5§ € S such that §'# Pgs X

IR =8P, = K~ Ps+Psx— IR,



Proof

Take any point 5§ € S such that §'# Pgs X

I = 5IP., = IS — P+ Psx -5,
— K= PsHIL, +IPs% -7,



Proof

Take any point 5§ € S such that §'# Pgs X

1¥ =317, = [IK = Ps X+ Ps X —3lI7
= I8 =Ps |}, + |[Ps %317,
> |8 = PsK|;,, f5#PsK






Denoising

Aim: Estimating a signal from perturbed measurements

If the noise is additive, the data are modeled as the sum of the signal X
and a perturbation Z

<
I
X
_l_
Ny

The goal is to estimate X from y

Assumptions about the signal and noise structure are necessary



Denoising via orthogonal projection

Assumption: Signal is well approximated as belonging to a predefined
subspace S

Estimate: Ps y, orthogonal projection of the noisy data onto S

Error:

- =12 2112 =112
IX = Ps yllz = [[Ps+ Xz + [|Ps Z1[;



Proof



Proof



Proof

X—Psy=X—PsX—PszZ
=Ps . X—PsZ



Error




Face denoising

Training set: 360 64 x 64 images from 40 different subjects (9 each)

Noise: iid Gaussian noise

Ratl

E = 6.67

SNR :=
>

Ny

We model each image as a vector in R#0%



Face denoising

We denoise by projecting onto:

» Sp: the span of the 9 images from the same subject

» S,: the span of the 360 images in the training set

Test error:
HX - 7331 y‘|2 —0.114
P

[1X1]



oo e



Denoising via projection onto &y

Projection Projection
onto & onto Si

Signal

|gl1a "
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Noi
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Denoising via projection onto S»

Projection Projection
onto S, onto Sy

Estimate



Ps, 7 and Ps, 7

1Ps, 21l _ [IPs, I,

[1X1] 1711,

0.043 B N dim (S5) o
0007 6.14 ~ dim (S1) (not a coincidence)

0.007 = — 0.043




Ple_ )? and PSZJ_ )?

s A

Xl [IX]l

Psy %

2 —0.190

0.063 = ‘
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